Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/11398
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Silveira, Mayra Dias | |
dc.date.accessioned | 2023-12-22T01:52:17Z | - |
dc.date.available | 2023-12-22T01:52:17Z | - |
dc.date.issued | 2019-08-30 | |
dc.identifier.citation | SILVEIRA, Mayra Dias. Avaliação comportamental da Ingestão hídrica e mecanismos neuroendócrinos envolvidos no controle do balanço hidroeletrolítico em codornas japonesas (Coturnix coturnix japonica). 2019. 41 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11398 | - |
dc.description.abstract | A diminuição dos fluidos corporais pode ser ocasionada pela privação hídrica e com isso, mecanismos de controle e regulação são ativados de forma a garantir a manutenção do equilíbrio hidroeletrolítico, dentre eles a secreção de hormônios neurohipofisários. A privação hídrica em aves é um importante estímulo estressor que provoca uma ampliação da atividade dos neurônios dos NPV e NSO, denominados magnocelulares, e consequentemente um aumento no comportamento da ingestão de água em aves. Com isso, a privação hídrica se torna um modelo experimental conveniente para os estudos da atividade vasotocinérgica e mesotocinérgica, assim como estudos da interação desses peptídeos com seus respectivos receptores e sua ação central e sistêmica. Desta forma, o presente estudo investigou as possíveis correlações entre a atividade vasotocinérgica e mesotocinérgica em aves com as alterações comportamentais entre o mecanismo de sede e da ingestão de água, através de modelo experimental desenvolvido com codornas japonesas (Coturnix coturnix japonica), submetendo os grupos experimentais à privação hídrica. Foram utilizados codornas machos de aproximadamente 50 dias, mantidos sob temperatura controlada de 26±2ºC, ciclo claro-escuro de 12/12 horas, subdivididas em três grupos distintos (n=6): i.Grupo Controle (CTRL), ii.Grupo Privado Hidricamente por 36 horas (PvH) e iii.Grupo Privado Hidricamente por 36 horas com Reapresentação de água durante duas horas (IH-2h). Verificamos que a privação hídrica foi capaz de aumentar a ingestão hídrica do grupo IH-2h, para todos os intervalos de tempo observados, quando comparado ao grupo CTRL e ao grupo IH-2 antes da privação (IH-2h após privação vs CTRL, p < 0,0001; IH-2h após privação vs IH-2h antes da privação, p < 0,0001). O grupo PvH demonstrou diferença estatisticamente significativa quando comparado ao grupo CTRL na ingestão basal de água no tempo de 120 minutos (PvH 3,56±1,36 vs CTRL 0,79±0,29; p = 0,002). Houve redução do peso corporal de maneira significativa dos grupos PvH e IH-2h, quando considerada a variação de ganho de peso antes e após privação (PvH após privação vs CTRL, p < 0,0001 e IH-2h após privação vs CTRL, p<0,0001). Deste modo, o presente estudo foi capaz de demonstrar resultados positivos com relação ao comportamento ingestivo de água e suas possíveis influências no ganho de peso corporal da espécie após privação hídrica. Embora os resultados dos parâmetros plasmáticos avaliados neste estudo não permitam afirmar que mecanismos de controle neuroendócrino vasotocinérgico e mesotocinérgico estejam envolvidos na privação hídrica, sugerimos que a ação dos hormônios AVT e MT tem importância impar no controle de líquidos corporais. Estudos posteriores são necessários, para que se possa elucidar o papel desses e outros hormônios envolvidos da osmorregulação de codornas japonesas. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Comportamento Ingestivo | por |
dc.subject | Osmorregulação | por |
dc.subject | Controle Neuroendócrino | por |
dc.subject | Ingestive Behavior | eng |
dc.subject | Osmoregulation | eng |
dc.subject | Neuroendocrine Control | eng |
dc.title | Avaliação comportamental da ingestão hídrica e mecanismos neuroendócrinos envolvidos no controle do balanço hidroeletrolítico em codornas japonesas (Coturnix coturnix japonica) | por |
dc.title.alternative | Behavioral evaluation of water intake and neuroendocrine mechanisms involved in hydroelectrolytic balance control in japanese quails (Coturnix coturnix japonica) | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | The decrease of the body fluids can be caused by water deprivation and, therefore, control and regulation mechanisms are activated in order to ensure the maintenance of hydroelectrolytic balance, among them the secretion of neurohypophyseal hormones. Water deprivation in birds is an important stress stimulus that causes an increase in the activity of NPV and NSO neurons, called magnocellular cells, and consequently an increase in water intake behavior in birds. Thus, water deprivation becomes a convenient experimental model for studies of vasotocinergic and mesotocinergic activity, as well as studies of the interaction of these peptides with their respective receptors and their central and systemic action. Thus, the present study investigated the possible correlations between vasotocinergic and mesotocinergic activity in birds with behavioral changes between thirst mechanism and water intake, through an experimental model developed with Japanese quails (Coturnix coturnix japonica), submitting the experimental groups an water deprivation. Male quails of approximately 50 days were used, maintained at a controlled temperature of 26 ± 2ºC, under a photoperiod of 12/12 hours, subdivided into 3 distinct groups (n = 6): Control Group (CTRL), Water Deprivation for 36 hours (PvH) and Water Deprivation for 36 hours with 2 hours of water presentation (IH-2h). We found that water deprivation was able to increase the water intake of the IH-2h group for all observed time intervals when compared to the CTRL group and the IH-2 group before deprivation (IH-2h after deprivation vs CTRL, p IH-2h after deprivation vs IH-2h before deprivation, p <0.0001). The PvH group showed a statistically significant difference when compared to the CTRL group in basal water intake at 120 minutes (PvH 3,56±1,36 vs CTRL 0,79±0,29; p = 0,002). There was a significant reduction in body weight in the PvH and IH-2h groups when considering the variation in weight gain before and after deprivation (PvH after deprivation vs CTRL, p <0.0001 and IH-2h after deprivation vs CTRL, p <0.0001). Thus, the present study was able to demonstrate positive results regarding water ingestive behavior and its possible influences on species body weight gain after water deprivation. Although the results of the plasma parameters evaluated in this study do not allow us to confirm that the vasotocinergic and mesotocinergic neuroendocrine control mechanisms are involved in water deprivation, but we suggest that the action of the hormones AVT and MT is extremely important in the body fluids control. Further studies are needed to elucidate the role of these and other hormones involved in the osmoregulation of Japanese quails. | eng |
dc.contributor.advisor1 | Reis, Luis Carlos | |
dc.contributor.advisor1ID | CPF: 484.252.577-00 | por |
dc.contributor.referee1 | Côrtes, Wellington da Silva | |
dc.contributor.referee2 | Mercez, Pedro Leonardo Cedraz | |
dc.creator.ID | CPF: 136.777.657-06 | por |
dc.creator.Lattes | http://lattes.cnpq.br/0338512431674922 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Biológicas e da Saúde | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Fisiológicas | por |
dc.relation.references | AMAN, N.A.; NAGARAJAN, G.; KANG, S.W.; HANCOCK, M.; KUENZEL, W.J. Differential responses of the vasotocin 1a receptor(V1aR) and osmoreceptors to immobilization and osmotic stress in sensory circumventricular organs of the chicken (Gallus gallus) brain. Brain Research. v. 1649. p. 67-78. 2016. BAEYENS, D.A; CORNETT, L.E. The cloned avian neurohypophysial hormone receptors. Comparative Biochemistry and Physiology. v.143. p.12-19. 2006. BARTH, S.W.; BATHGATE, R.A.D.; MESS, A.; PARRY, L.J.; IVELL,R.; GROSSMANN, R. Mesotocin Gene Expression in the Diencephalon of Domestic Fowl: cloning and sequencing of the MT cDNA and distribution of MT gene expressing neurons in the chicken hypothalamus. Journal of Neuroendocrinology. v. 9. p. 777-787. 1997. BONS, N. The Topography of Mesotocin and Vasotocin Systems in the Brain of the Domestic Mallard and Japanese Quail: Immunocytochemical Identification. Cell Tiss. Res. v. 213, p. 35-51. 1980. BOUNOUS, D. I.; STEDMAN, N.L. Normal Avian Hematology: Chicken and Turkey. In: FELDMAN, B.F.; ZINKL, J.G.; JAIN, N.C. Schalm´s Veterinary Hematology. Philadelphia, Lippincot, Williams & Wilkins. e.5. p.1147-1154. 2000. BRAUN, E.J. Osmoregulatory Systems of Birds. In: Sturkie's Avian Physiology. (Ed. C.G. Scanes). Academic Press. e. 6. p. 285-300. 2015. BRAUN, E.J.; DANTZLER, W.H. Function of mammalian-type and reptilian type nephrons in kidney of desert quail. Am. J. Physiol. v. 222. p.617–629. 1972. BRUN, S.R.M.; LUZ, V.; FERNANDEZ, M.F.; PASCHOALINI, M.A.; MARINO-NETO, J. Atypical angiotensin receptors may mediate water intake induced by central injections of angiotensin II and of serotonin in pigeons. Regul Pept. v.98. p.127–135. 2001. CAMPANELLA, L.C.A.; SILVA, A.A.S.; GELLERT, D.S.; PARREIRA. C.; RAMOSA, M.C.; PASCHOALINI, M.A.; MARINO-NETO, J. Tonic serotonergic control of ingestive behaviours in the pigeon (Columba livia): The role of the arcopallium. Behavioural Brain Research. v. 205. p. 396–405. 2009. CAMPBELL, T.W. Clinical Chemistry of Birds. In: THRALL, M.A. Veterinary Hematology and Clinical Chemistry. Philadelphia, Lippincott, Williams & Wilkins. p. 479-492. 2004. CHATURVEDI, C. M.; NEWTON, B. W.; CORNETT, L. E.; KOIKE, T. I. An in situ hybridization and immunochemical study of vasotocin neurons in the hypothalamus of water-deprived chickens. Peptides. v.15. p.1179-1187. 1994. CHATURVEDI, C.M.; CHOWDHURY, A.; CORNET, L.E. Water deprivation and circadian changes in plasma arginine vasotocin and mesotocin in the domestic hen (Gallus domesticus). Chronobiol. Int. v. 18, p. 947–956. 2001. DENBOW, D. M.; CLINE, M. A. Food intake regulation. . In: Sturkie's Avian Physiology. (Ed. C.G. Scanes). Academic Press. e. 6. p. 469–485. 2015. FURUSE, M.; MATSUMOTO, M.; SAITO, N.; SUGAHARA, K.; HASEGAWA, S. The central corticotrophin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur. J. Pharmacol. v.339. p. 211–213. 1997 GOLDSTEIN, D. L.; SKADHAUGE, E. Renal and extrarenal regulation of body fluid composition. In Sturkie’s Avian Physiology (Ed. G. C. Whittow). Academic Press. e. 5. p. 285-300. 2000. GOLDSTEIN, D.V. Regulation of the avian kidney by arginine vasotocin. General and Comparative Endocrinology. v. 147. p. 78–84. 2006. GOTO, K.; KOIKE, T. I.; NELDON, H. L.; MCKAY, D. W. Peripheral angiotensin II stimulates release of vasotocin in conscious chickens. Am. J. Physiol. v.251, p. 333–340. 1986. GRAY, D. A.; SIMON, E. Mammalian and avian antidiuuretic hormone, studies related to possible species variation in osmoregulatory system. J. Comp. Physiol. B. v.151. p. 241-246. 1983. GUTKOWSKA J, THIBAULT G, JANUSZEWICZ P, CANTIN M, GENEST J. Direct radioimmunoassay of atrial natriuretic factor. Biochem Biophys Res Commun. v. 122 p. 593-601. 1984; HAWKINS R.; CORBIT, J.D. Drinking in response to cellular dehydration in the pigeon. J Comp Physiol Psychol. v.84. p. 265-267. 1973. HUSS, D.; POYNTER, G.; LANSFORD, R. Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Animal. v. 37. p. 513-519. 2008. HUSS, D.; POYNTER, G.; LANSFORD, R. Japonese quail (Coturnix japonica) as a laboratory animal model. Lab Animal. v.37. p. 513-519. 2008. JACCOBY, S.; SINGH, A. B.; CORNETT, L. E.; KOIKE, T. I.. Arginine vasotocin gene expression and secretion during osmotic stimulation and hemorrhagic hypotension in hens. Gen. Comp. Endocrinol. v.106. p. 327-337. 1997. JARVIS, E.D.; GUNTURKUN, O.; BRUCE, L.; CSILLAG, A.; KARTEN, H.; KUENZEL, W.; MEDINA, L.; PAXINOS, G.; PERKEL, D.J.; SHIMIZU, T.; STRIEDTER, G.; WILD, J.M.; BALL, G.F.; DUGAS-FORD, J.; DURAND, S.E.; HOUGH, G.E.; HUSBAND, S.; KUBIKOVA, L.; LEE, D.W.; MELLO, C.V.; POWERS, A.; SIANG, C.; SMULDERS, T.V.; WADA, K.; WHITE, S.A.; YAMAMOTO, K.; YU, J.; REINER, A.; BUTLER, A.B. Avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. v.6. p. 151–159. 2005. KAUFMAN S.; KAESERMANN, H.P; PETERS, G. The mechanism of drinking induced by parenteral hyperoucotic solutions in the pigeon and in the rat. J Physiol (Lond). v.301. p. 91-99. 1980. KAUR, C; LING, E. The Circumventricular organs. Histol Histopathol. v. 11881. 2017. KOBAYASHI, H.; TAKEI, Y. Mechanisms for induction of drinking with special reference to angiotensin lI. Comp Biochem Physiol. v. 71a. p. 485-494. 1982. KOIKE, T. I.; PRYOR, L. R..; NELDON, H. L.; VENABLE, R. S. Effect of water deprivation on plasma radioimmunoassayable arginine vasotocin in conscious chickens (Gallus domesticus). Gen. Comp. Endocrinol. v.33. p. 359–364. 1977. KUENZEL, W.J. The Avian Subpallium and Autonomic Nervous System. In: Sturkie's Avian Physiology. (Ed. C.G. Scanes). Academic Press. e. 6. p. 135-163. 2015. KUENZEL, W.J.; JURKEVICH, A. Molecular neuroendocrine events during stress in poultry. Poult Sci. v.89. p. 832-840. 2010. KUENZEL, W.J.; TIENHOVEN, A.V. Nomenclature and Location of Avian Hypothalamic Nuclei and Associated Circumventricular Organs. J. Comp. Neurol. v. 31. p. 206-293. 1982. LAVERTY, G.; SKADHAUGE, E. Physiological Roles and Regulation of Transport Activities in the Avian Lower Intestine. J. Exp. Zoology. v. 494. p. 283-480. 1999. LAVERTY, G.; SKADHAUGE, E. Physiological roles and regulation of transport activities in the avian lower intestine. J. Exp. Zool. v.283. p.480– 494. 1999. LEUNG, C.H.; ABEBE, D.F.; EARP, S.E.; GOODE, C.T.; GROZHIK, A.V.; MIDIDODDI, P.; MANEY, D.L. Neural Distribution of Vasotocin Receptor mRNA in two Species of Songbird. Endocrinology. v. 152. p. 4865–4881. 2011. Lewandowski, A.H.; Campbell, T.W.; Harrison, G.J. Clinical Chemistries. In: Harrison, G.J.; Harrison, L.R. Clinical Avian Medicine, Philadelphia, W. B. Sauders. 717p . 1986. MADISON, F.N.; JURKEVICH, A.; KUENZEL, W.J. Sex differences in plasma corticosterone release in undisturbed chickens (Gallus gallus) in response to arginine vasotocin and corticotropin releasing hormone. General and Comparative Endocrinology. v. 155 (3). p. 566-573. 2008. MIKAMI, S. Ultrastructure of the Organum vasculosum of the Lamina terminalis of the Japanese Quail, Coturnix coturnix japonica. Cell Tiss. Res. v.172. p. 227-243. 1976. NAGARAJAN, G.; TESSARO, B.A.; KANG, S.W.; KUENZEL, W.J. Identification of arginine vasotocin (AVT) neurons activated by acute and chronic restraint stress in the avian septum and anterior diencephalon. General and Comparative Endocrinology. v. 202. p. 59–68. 2014. NISHIMURA, H. Urine concentration and avian aquaporin water channels. Pflugers Arch. v.456, p.755–768. 2008. NISHIMURA, H.; KOSEKI, C.; PATEL, T.B. Water transport in collecting ducts of Japanese quail. Am. J. Physiol. v. 271. p. 1535 – 1543. 1996. PANZICA, G.C.; ASTE, N.; CASTAGNA, C.; VIGLIETTI-PANZICA, C.; BALTHAZART, J. Steroid-induced plasticity in the sexually dimorphic vasotocinergic innervation of the avian brain: behavioral implications. Brain Research Reviews. v. 37. p. 178–200. 2001 ROBERTSON GL, MAHR EA, ATHAR S, SINHA T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. v.52. p. 2340-2352. 1973; ROBINZON, B.; HOIKE, T.I.; NELDON, H.L.; KINZLER, S.L.; HENDRY, I.R.; HALAWANI, M.E.E. Physiological effects of arginine vasotocin and mesotocin in cockerels. British Poultry Science. v. 29. p. 639-652. 1988. ROSS, J.G.; CHRISTIE, W.G.; HALLIDAY, W.G.; MORLEY JONES, R. Haematological and blood chemistry “comparison values” for clinical pathology in poultry. Veterinary Record v. 102, p. 29-31, 1978. SCANES, C.G. Pituitary Gland. In: Sturkie's Avian Physiology. (Ed. C.G. Scanes). Academic Press. e. 6. p. 497-533. 2015 SHARMA, D.; CHATURVEDI, C.M. Testosterone modulates pituitary vasotocin receptor expression and adrenal activity in osmotically stressed chicken. Comparative Biochemistry and Physiology. v.158. p. 87–93. 2011. SIMON-OPPERMANN, C; SIMON, E.; GRAY, D.A. Central and systemic antidiuretic hormone and angiotensin ii in salt and fluid balance of birds as compared to mammals. Comp. Biochem. Physiol. v. 90. p. 789-803. 1988. SKADHAUGE, E.; SCHMIDT-NIELSEN, B. Renal medullary electrolyte and urea gradient in chickens and turkeys. Am. J. Physiol. v.212, p.1313–1318. 1967. SOMERO, G.N. From dogfish to dog: trimethylamines protect proteins from urea. NIPS v. 1, p. 9–12. 1986. STALLONE, J.N.; BRAUN, E.J.. Contributions of glomerular and tubular mechanisms to antidiuresis in conscious domestic fowl. Am. J. Physiol. v. 249, p. 842. 1985 SUNN, N.; MCKINLEY, M.J.; OLDFIELD, B.J. Circulating Angiotensin II Activates Neurones in Circumventricular Organs of the Lamina Terminalis That Project to the Bed Nucleus of the Stria Terminalis. J. of Neuroendocrinology. v. 15. p. 725-731. 2003. TAKAHASHI, T.; KAWASHIMA, M.; YASUOKA, T. KAMIYOSHI, M.; TANAKA, K.; Diuretic and antidiuretic effects of mesotocin as compared with the antidiuretic effect of arginine vasotocin in the hen. Poult. Sci. v. 74. p. 890–892. 1995. TAKAHASHI, T.; KAWASHIMA, M.; YASUOKA, T. KAMIYOSHI, M.; TANAKA, K.; Appearance of an arginine vasotocin receptor of large molecular size in the uterus (shell gland) of the hen at oviposition. J. Reprod. Fertil. v. 110 p. 245-248. 1997 TAKEI, Y,; OKAWARA, Y.; KOBAYASHI, H. Water intake induced by water deprivation in the quail, Coturnix coturnix japônica. J Comp Physiol B. v.158. p. 51-525. 1988. TAKEI, Y. The Role of the Subfornical Organ in Drinking Induced by Angiotensin in the Japanese Quail, Coturnix cotumix japonica. Cell Tiss. Res. v. 185, p. 175-181. 1977. THORNTON, S.N. Osmoreceptor localization in the brain of the pigeon (Columba livia). Brain Res. v.377. p. 96-104. 1986 WIDEMAN JR, R.F. Avian kidney anatomy and physiology. In: CRC Critical Reviews in Poultry Biology, CRC Press, Boca Raton, FL, v. 1. p. 133–176. 1988. | por |
dc.subject.cnpq | Fisiologia | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/67899/2019%20-%20Mayra%20Dias%20Silveira.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5324 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-01-19T19:23:59Z No. of bitstreams: 1 2019 - Mayra Dias Silveira.pdf: 1253286 bytes, checksum: 588dc1e598437cef77651092a22b7210 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-01-19T19:23:59Z (GMT). No. of bitstreams: 1 2019 - Mayra Dias Silveira.pdf: 1253286 bytes, checksum: 588dc1e598437cef77651092a22b7210 (MD5) Previous issue date: 2019-08-30 | eng |
Appears in Collections: | Mestrado em Ciências Fisiológicas |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Mayra Dias Silveira.pdf | 1.22 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.