Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11401
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRibeiro, Wallace Martins Vianna
dc.date.accessioned2023-12-22T01:52:18Z-
dc.date.available2023-12-22T01:52:18Z-
dc.date.issued2020-12-14
dc.identifier.citationRIBEIRO, Wallace Martins Vianna. Efeito da terapia farmacológica e do treinamento resistido sobre respostas comportamentais no modelo experimental de TDAH. 2020. 50 f. Dissertação (Mestre em Ciências Fisiológicas, Fisiologia) - Instituto de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11401-
dc.description.abstractIntrodução: O TDAH é caracterizado como um distúrbio do neurodesenvolvimento com níveis prejudiciais de impulsividade, hiperatividade e desatenção, podendo também afetar a memória de trabalho ou de curto prazo. Objetivos: Na primeira etapa, foi verificado se os SHR da Universidade Federal Rural do Rio de Janeiro apresentam respostas comportamentais semelhantes ao TDAH e na segunda etapa foi investigado o papel do treinamento resistido de alta intensidade (TR), da terapia farmacológica (MP), e resposta combinada (treinamento associado ao fármaco) sobre as alterações comportamentais no modelo experimental de TDAH. Metodologia: Foi utilizado TR de alta intensidade (grupo TDAHtr; n=10), MP (grupo TDAHmp; n=10) e TR+MP (grupo TDAHtr+mp; n=10) comparados com grupo controle (TDAHct; n=10). Para avaliar as respostas comportamentais, foram utilizados o Teste do Campo Aberto (CA), Labirinto em Cruz Elevado (LCE), Labirinto de Barnes (LB) e Esquiva Passiva (EP). Resultados: No teste do Campo Aberto foi avaliada a hiperatividade através dos quadrantes totais percorridos, a exposição ao risco através do tempo em quadrante central e a impulsividade através do número de quadrantes centrais percorridos. Os grupos experimentais TDAHmp, TDAHtr e TDAHtr+mp apresentaram diferença significativa (p<0,05) com menor hiperatividade, menor tempo em exposição ao risco e menor impulsividade em comparação ao grupo controle, sem que houvesse diferenças significativas entre os grupos experimentais. No teste do Labirinto em Cruz Elevado, foi avaliada a hiperatividade através do número de transições entre os braços abertos e fechados o tempo em exposição ao risco através do tempo de permanência nos braços abertos, o tempo em avaliação de risco através da postura alongada (SAP) e a impulsividade através do número de entradas nos braços abertos. Os grupos experimentais TDAHmp, TDAHtr e TDAHtr+mp apresentaram diferenças sifnificativas (p<0,05) com menor hiperatividade, menor tempo em exposição ao risco, maior tempo em avaliação do risco, e menor impulsividade quando comparados ao grupo controle, sem que houvesse diferenças entre os grupos experimentais, exceto no tempo em avaliação de risco, no qual TDAHtr+mp apresentou resultados ainda melhores que TDAHmp e TDAHtr. Os resultados acerca da memória, obtidos através dos testes do Labirinto de Barnes e Esquiva Passiva demonstram que os grupos experimentais TDAHmp, TDAHtr e TDAHtr+mp obtiveram melhor desempenho em ambos os testes de memória, quando comparados ao grupo controle (p<0,05). Todavia, TDAHtr+mp apresentou melhor resultado que TDAHtr, indicando uma possível vantagem da resposta combinada neste parâmetro. Conclusão: O treinamento resistido e a terapia farmacológica, assim como a combinada, foram eficazes em reverter significativamente os principais sintomas análogos ao TDAH na maioria dos testes aplicados.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectTDAHpor
dc.subjectTreinamento Resistidopor
dc.subjectComportamentopor
dc.subjectADHDeng
dc.subjectResistance Trainingeng
dc.subjectBehavioreng
dc.titleEfeito da terapia farmacológica e do treinamento resistido sobre respostas comportamentais no modelo experimental de TDAHpor
dc.title.alternativeEffect of pharmacological therapy and resistance training on behavioral responses in the experimental model of ADHDeng
dc.typeDissertaçãopor
dc.description.abstractOtherIntroduction: ADHD is characterized as a neurodevelopmental disorder with harmful levels of impulsivity, hyperactivity and inattention, and can also affect working or short-term memory. Objectives: In the first stage, it was verified whether the SHR of the Federal Rural University of Rio de Janeiro have behavioral responses similar to ADHD and in the second stage, the role of high-intensity resistance training (RT), pharmacological therapy (MP), and combined response (drug-associated training) were investigated on behavioral changes in the experimental model of ADHD. Methods: High-intensity RT group (ADHDrt; n=10), MP group (ADHDmp group; n=10) and TR+MP group (ADHDrt+mp; n=10) were used compared to the control group (ADHDct; n=10). To assess behavioral responses, the Open Field Test (OF), Elevated Plus Maze (EPM), Barnes Maze (BM) and Avoidance Test (AT) were used. Results: In the Open Field test, hyperactivity was assessed through the total quadrants covered, exposure to risk over time in the central quadrant and impulsivity through the number of central quadrants covered. The experimental groups ADHDmp, ADHDtr and ADHDrt+mp showed a significant difference (p <0.05) with less hyperactivity, less time in exposure to risk and less impulsivity compared to the control group, without significant differences between the experimental groups. In the Labyrinth in Cross Elevated test, hyperactivity was assessed through the number of transitions between open and closed arms, the time in risk exposure through the time in the open arms, the time in risk assessment through extended posture (SAP) and impulsiveness through the number of open arms entries. The experimental groups ADHDmp, ADHDtr and ADHDrt+mp showed significant differences (p<0.05) with less hyperactivity, less time in risk exposure, more time in risk assessment, and less impulsiveness when compared to the control group, without any differences between the experimental groups, except for the time in risk assessment, in which ADHDrt+mp showed even better results than ADHDmp and ADHDtr. The results about memory, obtained through the Barnes Labyrinth and Passive Dodge tests demonstrate that the experimental groups ADHDmp, ADHDtr and ADHDrt+mp obtained better performance in both tests of memory, when compared to the control group (p<0.05). However, ADHDrt+mp showed better results than ADHDtr, indicating a possible advantage of the combined response in this parameter. Conclusion: Resistance training and pharmacological therapy, as well as combination therapy, were effective in significantly reversing the main symptoms similar to ADHD in most of the tests applied.eng
dc.contributor.advisor1Silveira, Anderson Luiz Bezerra da
dc.contributor.advisor1ID078.828.167-44por
dc.contributor.referee1Silveira, Anderson Luiz Bezerra da
dc.contributor.referee2Giusti, Fabiana Cardoso Vilela
dc.contributor.referee3Olivares, Emerson Lopes
dc.creator.ID124.232.537-96por
dc.creator.Latteshttp://lattes.cnpq.br/5820622607230348por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesARABO, A. et al. Temporal analysis of free exploration of an elevated plus-maze in mice. Journal of experimental psychology. Animal learning and cognition, v. 40, n. 4, p. 457–466, 2014. ARIME, Y.; KUBO, Y.; SORA, I. Animal models of attention-deficit/hyperactivity disorder. Biological and Pharmaceutical Bulletin, v. 34, n. 9, p. 1373–1376, 2011. AZAM, M. S. et al. Treadmill exercise improves LPS-induced memory impairments via endocannabinoid receptors and cyclooxygenase enzymes. Behavioural Brain Research, v. 380, n. July, p. 112440, 2020. BARKER, G. R. I. et al. Recognition memory for objects, place, and temporal order: A disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. Journal of Neuroscience, v. 27, n. 11, p. 2948–2957, 2007. BAYLESS, D. W.; PEREZ, M. C.; DANIEL, J. M. Comparison of the validity of the use of the spontaneously hypertensive rat as a model of attention deficit hyperactivity disorder in males and females. Behavioural Brain Research, v. 286, p. 85–92, 2015. BIEDERMAN, J. et al. Family-Genetic and Psychosocial Risk Factors in DSM-III Attention Deficit Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, v. 29, n. 4, p. 526–533, 1990. BIEDERMAN, J. Further Evidence for Family-Genetic Risk Factors in Attention Deficit Hyperactivity Disorder. Archives of General Psychiatry, v. 49, n. 9, p. 728, 1 set. 1992. BIEDERMAN, J. et al. Homem E Defict De Atenção. n. January, p. 36–42, 2002. BOUCHATTA, O. et al. Neonatal 6-OHDA lesion model in mouse induces Attention-Deficit/ Hyperactivity Disorder (ADHD)-like behaviour. Scientific Reports, v. 8, n. 1, p. 1–13, 2018. CALISKAN, H. et al. Effects of exercise training on anxiety in diabetic rats. Behavioural Brain Research, v. 376, p. 112084, 2019. CASPERSEN, C. J.; POWELL, K. E.; CHRISTENSON, G. M. Physical Activity , Exercise , and Physical Fitness : Definitions and Distinctions for Health- Related Research Reviewed work. Public Health Reports, v. 100, n. 2, p. 126–131, 1985. CASSILHAS, R. C. et al. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, v. 202, p. 309–317, 2012. CHANG, H. et al. Effects of Acute High-Intensity Resistance Exercise on Cognitive Function and Oxygenation in Prefrontal Cortex. Journal of Exercise Nutrition & Biochemistry, v. 21, n. 2, p. 1–8, 2017. CHEN, Z. et al. Exercise Intervention in Treatment of Neuropsychological Diseases: A Review. Frontiers in Psychology, v. 11, n. October, 2020. CHENG, J. et al. Disrupted glutamatergic transmission in prefrontal cortex contributes to behavioral abnormality in an animal model of ADHD. Neuropsychopharmacology, v. 42, n. 10, p. 2096–2104, 2017. CHO, H. S.; BAEK, D. J.; BAEK, S. S. Effect of exercise on hyperactivity, impulsivity and dopamine D2 receptor expression in the substantia nigra and striatum of spontaneous hypertensive rats. Journal of Exercise Nutrition and Biochemistry, v. 18, n. 4, p. 379–384, 2014. COGHILL, D. R.; SETH, S.; MATTHEWS, K. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: Advancing beyond the three-pathway models. Psychological Medicine, v. 44, n. 9, p. 1989–2001, 2014. CORTESE, S. et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. The Lancet Psychiatry, v. 5, n. 9, p. 727–738, 2018. CROPLEY, V. L. et al. Molecular Imaging of the Dopaminergic System and its Association with Human Cognitive Function. Biological Psychiatry, v. 59, n. 10, p. 898–907, 2006. CRUZ, A. P. M.; FREI, F.; GRAEFF, F. G. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacology, Biochemistry and Behavior, v. 49, n. 1, p. 171–176, 1994. DAVIDS, E. et al. Animal models of attention-deficit hyperactivity disorder. Brain Research Reviews, v. 42, n. 1, p. 1–21, abr. 2003. DAVIES, W. Sex differences in Attention Deficit Hyperactivity Disorder: Candidate genetic and endocrine mechanisms. Frontiers in Neuroendocrinology, v. 35, n. 3, p. 331–346, 2014. DE SANTANA SOUZA, L. et al. Role of Neuropeptide S on Behavioural and Neurochemical Changes of an Animal Model of Attention-Deficit/Hyperactivity Disorder. Neuroscience, v. 448, p. 140–148, 2020. DIMAKOS, J. et al. The Associations Between Sleep and Externalizing and Internalizing Problems in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder. Child and Adolescent Psychiatric Clinics of North America, 2020. DUNCAN, N. D.; WILLIAMS, D. A.; LYNCH, G. S. Adaptations in rat skeletal muscle following long-term resistance exercise training. European Journal of Applied Physiology and Occupational Physiology, v. 77, n. 4, p. 372–378, 1998. ELIA, J. et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Molecular Psychiatry, v. 15, n. 6, p. 637–646, 2010. ELIA, JOSEPHINE et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genetics, v. 44, n. 1, p. 78–84, 2012. ERSKINE, H. E. et al. Research Review: Epidemiological modelling of attention-deficit/ hyperactivity disorder and conduct disorder for the Global Burden of Disease Study 2010. Journal of Child Psychology and Psychiatry and Allied Disciplines, v. 54, n. 12, p. 1263–1274, 2013. EVENDEN, J. L. Varieties of impulsivity. Psychopharmacology, v. 146, n. 4, p. 348–361, 1999. FAIR, D. A. et al. Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proceedings of the National Academy of Sciences of the United States of America, v. 109, n. 17, p. 6769–6774, 2012. FARAONE, S. V. et al. Comparing the efficacy of medications for ADHD using meta-analysis. MedGenMed Medscape General Medicine, v. 8, n. 4, p. 1–23, 2006. FARAONE, S. V.; BIEDERMAN, J.; MICK, E. The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychological Medicine, v. 36, n. 2, p. 159–165, 2006. FARAONE, S. V.; BUITELAAR, J. Comparing the efficacy of stimulants for ADHD in children and adolescents using meta-analysis. European Child and Adolescent Psychiatry, v. 19, n. 4, p. 353–364, 2010. FARAONE, S. V.; GLATT, S. J. A comparison of the efficacy of medications for adult attention-deficit/ hyperactivity disorder using meta-analysis of effect sizes. Journal of Clinical Psychiatry, v. 71, n. 6, p. 754–763, 2010. FARAONE, S. V et al. ADHD is a heterogeneous disorder with multiple causes that probably differ between individuals. v. 1, p. 2015, 2015. FERGUSON, S. A. et al. Baseline behavior, but not sensitivity to stimulant drugs, differs among Spontaneously Hypertensive, Wistar-Kyoto, and Sprague-Dawley rat strains. Neurotoxicology and Teratology, v. 29, n. 5, p. 547–561, 2007. FLIERS, E. A. et al. Undertreatment of motor problems in children with ADHD. Child and Adolescent Mental Health, v. 15, n. 2, p. 85–90, 2010. GAUB, M.; CARLSON, C. L. Gender differences in ADHD: A meta-analysis and critical review. Journal of the American Academy of Child and Adolescent Psychiatry, v. 36, n. 8, p. 1136–1139, 1997. GAWEL, K. et al. Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. Naunyn-Schmiedeberg’s Archives of Pharmacology, v. 392, n. 1, p. 1–18, 2019. GERSHON, J. A meta-analytic review of gender differences in ADHD. Journal of Attention Disorders, v. 5, n. 3, p. 143–154, 2002. HAMZEHLOEI, L.; REZVANI, M. E.; RAJAEI, Z. Effects of carvacrol and physical exercise on motor and memory impairments associated with Parkinson’s disease. Arquivos de Neuro-Psiquiatria, v. 77, n. 7, p. 493–500, 2019. HILLMAN, C. H.; ERICKSON, K. I.; KRAMER, A. F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, v. 9, n. 1, p. 58–65, 2008. HORNBERGER, T. A.; FARRAR, R. P. Physiological Hypertrophy of the FHL Muscle Following 8 Weeks of Progressive Resistance Exercise in the Rat. Canadian Journal of Applied Physiology, v. 29, n. 1, p. 16–31, 2004. HOWELLS, F. M.; BINDEWALD, L.; RUSSELL, V. A. Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats. Behavioral and Brain Functions, v. 5, p. 1–11, 2009. HUSS, M. et al. Methylphenidate dose optimization for ADHD treatment: Review of safety, efficacy, and clinical necessity. Neuropsychiatric Disease and Treatment, v. 13, p. 1741–1751, 2017. JAGER, A. et al. Methylphenidate Dose-Dependently Affects Aggression and Improves Fear Extinction and Anxiety in BALB/cJ Mice. Frontiers in Psychiatry, v. 10, n. October, p. 1–13, 2019. KATZ, D. L. et al. Putting physical activity where it fits in the school day: Preliminary results of the ABC (Activity Bursts in the Classroom) for fitness program. Preventing Chronic Disease, v. 7, n. 4, 2010. KISHIKAWA, Y. et al. The spontaneously hypertensive rat/Izm (SHR/Izm) shows attention deficit/hyperactivity disorder-like behaviors but without impulsive behavior: Therapeutic implications of low-dose methylphenidate. Behavioural Brain Research, v. 274, p. 235–242, 2014. KUNTSI, J.; KLEIN, C. Intraindividual Variability in ADHD and Its Implications for Research of Causal Links. Brain Imaging in Behavioral Neuroscience. [S.l: s.n.], 2011. p. 67–91. LAI, T. K. Y. et al. Development of a peptide targeting dopamine transporter to improve ADHD-like deficits. Molecular brain, v. 11, n. 1, p. 66, 2018. LARSSON, H. et al. Genetic and environmental influences on adult attention deficit hyperactivity disorder symptoms: A large Swedish population-based study of twins. Psychological Medicine, v. 43, n. 1, p. 197–207, 2013. LEFFA, D. T. et al. Systematic review and meta-analysis of the behavioral effects of methylphenidate in the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Neuroscience and Biobehavioral Reviews, v. 100, n. February, p. 166–179, 2019. LESCH, K. P. et al. Genome-wide copy number variation analysis in attention-deficit/ hyperactivity disorder: Association with neuropeptide y gene dosage in an extended pedigree. Molecular Psychiatry, v. 16, n. 5, p. 491–503, 2011. LOURENCO, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nature Medicine, v. 25, n. 1, p. 165–175, 2019. LUMAN, M.; TRIPP, G.; SCHERES, A. Identifying the neurobiology of altered reinforcement sensitivity in ADHD: A review and research agenda. Neuroscience and Biobehavioral Reviews, v. 34, n. 5, p. 744–754, 2010. MARCONDES, L. A. et al. Involvement of medial prefrontal cortex NMDA and AMPA/kainate glutamate receptors in social recognition memory consolidation. Neurobiology of Learning and Memory, v. 168, p. 107153, 2020. MATTE, B. et al. ADHD in DSM-5: A field trial in a large, representative sample of 18- to 19-year-old adults. Psychological Medicine, v. 45, n. 2, p. 361–373, 2015. MEDINA, J. A. et al. Exercise impact on sustained attention of ADHD children, methylphenidate effects. ADHD Attention Deficit and Hyperactivity Disorders, v. 2, n. 1, p. 49–58, 2010. MENESES, A. et al. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: A short overview. Reviews in the Neurosciences, v. 22, n. 3, p. 365–371, 2011. MORMÈDE, P. et al. Marker-assisted selection of a neuro-behavioural trait related to behavioural inhibition in the SHR strain, an animal model of ADHD. Genes, Brain and Behavior, v. 1, n. 2, p. 111–116, 2002. NAKAMURA-PALACIOS, E. M. et al. Deficits of spatial learning and working memory in spontaneously hypertensive rats. Behavioural Brain Research, v. 74, n. 1–2, p. 217–221, 1996. NATSHEH, J. Y.; SHIFLETT, M. W. Dopaminergic modulation of goal-directed behavior in a rodent model of attention-deficit/hyperactivity disorder. Frontiers in Integrative Neuroscience, v. 12, n. October, p. 1–13, 2018. NIIGAKI, S. T. et al. Young spontaneously hypertensive rats (SHRs) display prodromal schizophrenia-like behavioral abnormalities. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 90, n. July 2018, p. 169–176, 2019. OKAMOTO, K.; AOKI, K. Development of a Strain of Spontaneously Hypertensive Rats. Japanese Circulation Journal, v. 27, n. 3, p. 282–293, 1963. PARDEY, M. C. et al. Re-evaluation of an animal model for ADHD using a free-operant choice task. Journal of Neuroscience Methods, v. 176, n. 2, p. 166–171, 2009. PARÉ, W. P. Learning behavior, escape behavior, and depression in an ulcer susceptible rat strain. Integrative Physiological and Behavioral Science, v. 27, n. 2, p. 130–141, 1992. POLANCZYK, G. et al. Implications of Extending the ADHD Age-of-Onset Criterion to Age 12: Results from a Prospectively Studied Birth Cohort. Journal of the American Academy of Child & Adolescent Psychiatry, v. 49, n. 3, p. 210–216, 2010. POLANCZYK, G. V. et al. ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. International Journal of Epidemiology, v. 43, n. 2, p. 434–442, 2014. PRUT, L.; BELZUNG, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. European Journal of Pharmacology, v. 463, n. 1–3, p. 3–33, 2003. RAMOS, A.; MORMÈDE, P. Stress and emotionality: A multidimensional and genetic approach. Neuroscience and Biobehavioral Reviews, v. 22, n. 1, p. 33–57, 1997. RITTENHOUSE, P. A. et al. Amplified behavioral and endocrine responses to forced swim stress in the Wistar-Kyoto rat. Psychoneuroendocrinology, v. 27, n. 3, p. 303–318, 2002. ROBINSON, E. S. J. Blockade of noradrenaline re-uptake sites improves accuracy and impulse control in rats performing a five-choice serial reaction time tasks. Psychopharmacology, v. 219, n. 2, p. 303–312, 2012. ROY, V. et al. Free versus forced exposure to an elevated plus-maze: Evidence for new behavioral interpretations during test and retest. Psychopharmacology, v. 203, n. 1, p. 131–141, 2009. RUCKLIDGE, J. J. Gender Differences in Attention-Deficit/Hyperactivity Disorder. Psychiatric Clinics of North America, v. 33, n. 2, p. 357–373, 2010. RUSSELL, V. A. et al. Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit/hyperactivity disorder-the spontaneously hypertensive rat. Brain Research Bulletin, v. 53, n. 2, p. 187–192, 2000. RUSSELL, V. A.; WIGGINS, T. M. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metabolic Brain Disease. [S.l: s.n.]. , 2000. RUSSELL, VIVIENNE ANN. Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder - The spontaneously hypertensive rat. Behavioural Brain Research, v. 130, n. 1–2, p. 191–196, 2002. SAGVOLDEN, T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neuroscience and Biobehavioral Reviews, v. 24, n. 1, p. 31–39, 2000. SAGVOLDEN, T. Terje Sagvolden. European Psychologist, v. 5, n. 2, p. 149–152, 2005. SAGVOLDEN, T.; PETTERSEN, M. B.; LARSEN, M. C. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiology and Behavior, v. 54, n. 6, p. 1047–1055, 1993. SATO, C. et al. Effects of voluntary and forced exercises on motor function recovery in intracerebral hemorrhage rats. NeuroReport, p. 1, 2019. SCHERES, A.; LEE, A.; SUMIYA, M. Temporal reward discounting and ADHD: Task and symptom specific effects. Journal of Neural Transmission, v. 115, n. 2, p. 221–226, 2008. SEGABINAZI, E. et al. Comparative overview of the effects of aerobic and resistance exercise on anxiety-like behavior, cognitive flexibility, and hippocampal synaptic plasticity parameters in healthy rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, v. 53, n. 11, p. e9816, 2020. SERGEANT, J. Modeling attention-deficit/hyperactivity disorder: A critical appraisal of the cognitive?energetic model. Biological Psychiatry, 2004. SHAW, M. et al. A systematic review and analysis of long-term outcomes in attention deficit hyperactivity disorder: Effects of treatment and non-treatment. BMC Medicine, v. 10, 2012. SHIER, A. C. et al. Pharmacological Treatment of Attention Deficit Hyperactivity Disorder in Children and Adolescents: Clinical Strategies. Journal of Central Nervous System Disease, v. 5, p. JCNSD.S6691, 2013. SMITH, A. L. et al. Pilot Physical Activity Intervention Reduces Severity of ADHD Symptoms in Young Children. Journal of Attention Disorders, v. 17, n. 1, p. 70–82, 2013. SONUGA-BARKE, E.; BITSAKOU, P.; THOMPSON, M. Beyond the Dual Pathway Model: Evidence for the Dissociation of Timing, Inhibitory, and Delay-Related Impairments in Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, v. 49, n. 4, p. 345–355, 2010. SONUGA-BARKE, E. J. S.; FAIRCHILD, G. Neuroeconomics of attention-deficit/hyperactivity disorder: Differential influences of medial, dorsal, and ventral prefrontal brain networks on suboptimal decision making? Biological Psychiatry, v. 72, n. 2, p. 126–133, 2012. SPILLER, H. A.; HAYS, H. L.; ALEGUAS, A. Overdose of drugs for attention-deficit hyperactivity disorder: Clinical presentation, mechanisms of toxicity, and management. CNS Drugs, v. 27, n. 7, p. 531–543, 2013. STEIMER, T.; DRISCOLL, P. Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: Behavioural, neuroendocrine and developmental aspects. Stress, v. 6, n. 2, p. 87–100, 2003. THOMAS, R. et al. Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Pediatrics, v. 135, n. 4, p. e994–e1001, 2015. TIAN, Y. et al. Methylphenidate improves spatial memory of spontaneously hypertensive rats: Evidence in behavioral and ultrastructural changes. Neuroscience Letters, v. 461, n. 2, p. 106–109, 2009. TOMBLIN, J. B.; MUELLER, K. L. How can comorbidity with attention-deficit/hyperactivity disorder aid understanding of language and speech disorders? Topics in Language Disorders, v. 32, n. 3, p. 198–206, 2012. UMEHARA, M.; AGO, Y.; FUJITA, K.; et al. Effects of serotonin-norepinephrine reuptake inhibitors on locomotion and prefrontal monoamine release in spontaneously hypertensive rats. European Journal of Pharmacology, v. 702, n. 1–3, p. 250–257, 2013. UMEHARA, M.; AGO, Y.; KAWANAI, T.; et al. Methylphenidate and venlafaxine attenuate locomotion in spontaneously hypertensive rats, an animal model of attention-deficit/hyperactivity disorder, through α2-adrenoceptor activation. Behavioural Pharmacology, v. 24, n. 4, p. 328–331, 2013. VAN DER MEER, D. et al. The serotonin transporter gene polymorphism 5-HTTLPR moderates the effects of stress on attention-deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, v. 55, n. 12, p. 1363–1371, 2014. VAN DER STAAY, F. J.; ARNDT, S. S.; NORDQUIST, R. E. Evaluation of animal models of neurobehavioral disorders. Behavioral and Brain Functions, v. 5, p. 1–23, 2009. VERRET, C. et al. A physical activity program improves behavior and cognitive functions in children with ADHD: An exploratory study. Journal of Attention Disorders, v. 16, n. 1, p. 71–80, 2012. WILLCUTT, E. G. et al. Validity of the executive function theory of attention-deficit/ hyperactivity disorder: A meta-analytic review. Biological Psychiatry, v. 57, n. 11, p. 1336–1346, 2005. WILLIAMS, N. M. et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis. The Lancet, v. 376, n. 9750, p. 1401–1408, 2010. WINSTANLEY, C. A.; EAGLE, D. M.; ROBBINS, T. W. Behavioral models of impulsivity in relation to ADHD: Translation between clinical and preclinical studies. Clinical Psychology Review, v. 26, n. 4, p. 379–395, 2006. WOLRAICH, M. et al. ADHD: Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/ hyperactivity disorder in children and adolescents. Pediatrics, v. 128, n. 5, p. 1007–1022, 2011. YUEN, E. Y. et al. Repeated Stress Causes Cognitive Impairment by Suppressing Glutamate Receptor Expression and Function in Prefrontal Cortex. Neuron, v. 73, n. 5, p. 962–977, 2012.por
dc.subject.cnpqFisiologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69656/2020%20-%20Wallace%20Martins%20Vianna%20Ribeiro.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5746
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-06-06T21:50:14Z No. of bitstreams: 1 2020 - Wallace Martins Vianna Ribeiro.pdf: 1207166 bytes, checksum: 9388e3fea45a1bb74412bddda5f4a158 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-06-06T21:50:14Z (GMT). No. of bitstreams: 1 2020 - Wallace Martins Vianna Ribeiro.pdf: 1207166 bytes, checksum: 9388e3fea45a1bb74412bddda5f4a158 (MD5) Previous issue date: 2020-12-14eng
Appears in Collections:Mestrado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Wallace Martins Vianna Ribeiro.pdf1.18 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.