Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11403
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarvalho, Gabriella Oliveira Alves Moreira de
dc.date.accessioned2023-12-22T01:52:19Z-
dc.date.available2023-12-22T01:52:19Z-
dc.date.issued2017-02-22
dc.identifier.citationCARVALHO, Gabriella Oliveira Alves Moreira de. Comunicação juncional em macrófago: papel e modulação da junção comunicante no microanbiente da infecção com Toxoplasma gondii. 2017. 105 f. Dissertação (Mestrado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11403-
dc.description.abstractToxoplasma gondii (T. gondii) é o protozoário intracelular obrigatório responsável pela toxoplasmose, e acredita-se que este parasita tenha infectado um terço da população mundial causando grande morbidade e mortalidade.(Mahmoudi et al; 2017) As junções comunicantes são canais transmembrana que permitem a comunicação direta nos tecidos (DHEIN, 1998) e estas junções possuem um papel de destaque em estudos associados às infecções parasitárias.(CAMPOS DE CARVALHO et al, 1998) Os canais juncionais são responsáveis pela troca de íons e pequenos mensageiros que mantém a homeostase tecidual (Adesse, et al., 2011), no entanto, ainda existem sistemas que não estão inteiramente caracterizados a respeito da comunicação juncional. Dentre eles podemos destacar o sistema Imunológico, particularmente os Macrófagos que participam do processo de resposta inata. A caracterização morfológica e funcional das junções comunicantes em macrófagos tem sido alvo de estudo de diversos grupos (Fortes et al., 2004), no entanto seus mecanismos regulatórios ainda merecem esclarecimentos, principalmente diante de alterações patológicas, como nos processos infecto-inflamatórios. Diante disto, o objetivo principal deste estudo é avaliar a modulação estrutural e funcional das junções comunicantes formadas pela Conexina 43 (Cx43) em linhagens macrofágicas tratadas com fatores pró-imune-inflamatórios e após a infecção com o Toxoplasma gondii. A metodologia utilizada foi: (1) Cultura de células de linhagem macrofágica J774-G8; (2) Ensaios imunoeletroforéticos de Western Blot; (4) Ensaios de imunofluorescência e análise por microscopia confocal; e (5) Ensaios de microinjeção intracelular de corantes. As culturas de células foram ativadas com fatores pró-imune inflamatórios (Fator de Necrose Tumoral-α (TNF-α) e Interferon-γ (IFN-γ)) ou infectadas com o toxoplasma de cepa RH em sua forma taquizoíta. Os resultados revelaram que as células J774-G8 apresentaram alterações significativas em seu crescimento e perfil de comunicação juncional em experimentos de injeção de corantes, quando submetidas a microambientes com fatores pró-imune inflamatórios combinados (LPS+IFN-γ e IFN-γ + TNF-α) em incubações de até 72 horas. Imagens de imunofluorescência confocal evidenciaram marcação para proteína conexina 43, faloidina (marcador de filamentos de actina) em células de linhagem macrofágica J774-G8, demonstrando uma possível co-localização entre as proteicas Cx43 e actina pela primeira vez em células de linhagem macrófagica. Já as imagens de imunofluorescência confocal marcadas para proteína Cx43, faloidina em células de linhagem macrofágica J774-G8 infectadas com T. gondii, mostraram a significativa diminuição da marcação para faloidina e consequentemente a falta da marcação para Cx43. Os ensaios imunoeletroforeticom evidenciaram o almento da expressão de Cx43 da linhagem celular macrofágica infectadas comparadas ao controle. Concluindo que As células da linhagem macrofágica J774-G8 tratadas com fatores pró-imuno inflamatórios combinados apresentaram alterações no crescimento celular e as células tratadas com fatores combinados apresentaram sua comunicação juncional modulada positivamente. As células da linhagem macrofágica J774-G8 infectadas com o parasita Toxoplasma gondii apresentaram não só alterações no crescimento celular, como também demonstraram alterações morfológicas, acompanhadas de morte celular; A expressão proteica, por transferência imunoeletroforética, da Cx43 se demonstrou alterada (aumentada) em células de linhagem macrofágica J774-G8 infectadas por 24 e 48 horas com o parasita Toxoplasma gondii, quando comparadas com as células não infectadas; As proteínas Cx43 e Faloidina interagem na membrana plasmática de linhagem macrofágica J774-G8 não infectadas com o parasita Toxoplasma gondii, mas sofrem uma sensível redução na membrana após 72 horas de infecção.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMacrófagopor
dc.subjectJunção comunicantepor
dc.subjectToxoplasma gondiipor
dc.subjectMacrophageseng
dc.subjectGap junctioneng
dc.titleComunicação juncional em macrófago: papel e modulação da junção comunicante no microanbiente da infecção com Toxoplasma gondiipor
dc.title.alternativeJunction communication in the macrophages: modulation of the gap junction in the microanbient of infection with Toxoplasma gondiieng
dc.typeDissertaçãopor
dc.description.abstractOtherToxoplasma gondii is a protozoan parasite responsible for toxoplasmosis, and it’s believed that this parasite has infected one-third of the world population. In immunocompromised individuals toxoplasmosis may be cause problems in the central nervous and visual systems. Some of these complications are associated with the change of intercellular communication mediated by Junctions Communicators. However, there are still systems that aren’t fully characterized regarding the junctional communication, including the innate immune system, represented by Macrophages. In view of this, the aim of this study is to evaluate the structural and functional modulation of gap junctions formed by Connexin 43 (Cx43) in macrophage lines and peritoneal macrophages after infection with Toxoplasma gondii, and treatments with pro-immune-inflammatory factors. The methodology used is: (1) J774-G8 macrophage cell line culture; (2) Primary culture of peritoneal macrophages of Swiss mice; (3) Western Blot Assays; (4) Immunofluorescence assays and analysis by confocal microscopy; and (5) Intracellular dye microinjection (functional assessment of gap junctions). The results showed that J774-G8 cells presented significant changes in their growth and junctional communication profile in dye injection experiments when submitted to microenvironments with combined inflammatory pro-immune factors (LPS + IFN-γ and IFN-γ + TNF -α) in incubation of up to 72 hours. Confocal immunofluorescence images showed marking for connexin 43 protein, phalloidin (actin filament marker) in J774-G8 macrophage cells, demonstrating a possible co-localization between Cx43 and actin proteins for the first time in macrophage lineage cells. On the other hand, confocal immunofluorescence images labeled for Cx43, phalloidin protein in T. gondii infected J774-G8 macrophages have shown a significant decrease in phalloidin labeling and consequently lack of Cx43 labeling. Immunoelectrophoresis assays showed the expression of Cx43 expression of the infected macrophage cell line compared to control. Concluding that J774-G8 macrophage cells treated with combined pro-inflammatory factors showed alterations in cell growth and cells treated with combined factors presented their positively modulated junctional communication. The cells of the J774-G8 macrophage line infected with the Toxoplasma gondii parasite showed not only alterations in cell growth, but also demonstrated morphological alterations, accompanied by cell death; Protein expression, by immunoelectrophoretic transfer, of Cx43 was altered (increased) in J774-G8 macrophage cells infected with the parasite Toxoplasma gondii for 24 and 48 hours compared to uninfected cells; The Cx43 and Phalloidin proteins interact in the J774-G8 macrophage plasma membrane uninfected with the parasite Toxoplasma gondii, but suffer a significant reduction in the membrane after 72 hours of infection.eng
dc.contributor.advisor1Fortes, Fabio da Silva de Azevedo
dc.contributor.advisor1ID075.128.627-33por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8632870958098126por
dc.contributor.referee1Fortes, Fabio da Silva de Azevedo
dc.contributor.referee2Almeida, Norma Aparecida dos Santos
dc.contributor.referee3Seabra, Sérgio Henrique
dc.creator.ID153.391.847-84por
dc.creator.Latteshttp://lattes.cnpq.br/2454737860710756por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Fisiológicaspor
dc.relation.referencesAbbas, A.K.; Lichtman, A.H.; Pillai, S. Imunologia Celular e Molecular - Rio de Janeiro: Elsevier, 7a edição. 2011. Alves, L.A. et al.; Gap junction modulation by extracellular signaling molecules: the thymus model. Braz. J. Med. Biol. Res. 33, 457–465; 2000. Aderem, A. & Underhill, DM.; Mechanisms of phagocytosis in macrophages. Ann Rev -of Immunol 17, 593 – 623, 1999. Alberts B, et al. Molecular Biology of the Cell, 3rd ed. New York: Garland Publishing, 1994. Bahia-Oliveira L.M.G.; Jones, J.F.; Azevedo-Silva J.; Alves C.C.F., Oréfice F.; Addiss D.G.. Highly endemic, waterborne toxoplasmosis in north Rio de Janeiro state, Brazil. Emerging Infectious Diseases; 9: 55–62, 2003. Balkwill, F.R. and Burke, F. The cytokine network. Immunol.Today, 10, 299– 304,1989. Beyer, E. C.; and T. H. Steinberg.. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J. Biol. Chem. 266-797, 1991. Bennett, M.V.; Harris, L.C.; Bargiello, T.A.; Spray, D.C.; Hertzberg, E.L. & Saez, J.C. Gap junctions: new tools, new answers, new questions. Neuron 6, 305-320, 1991. Bennett, P.B.; Valenzuela, C.; Chen, L.Q.; Kallen, R.G. On the molecular nature of the lidocaine receptor of cardiac Na+ channels. Modification of block by alterations in the alpha-subunit III-IV interdomain. Circ Res., 77 (3): 584-92. 1995. Bennet, M. V. L. et al. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 26, 610–617, 2003. Beyer, E & Steinberg T.H. Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J. Biol. Chem. 266, 7971-7974,1991. Beyer, E & Steinberg T.H. Connexin, gap-junction proteins, and ATP-induced pores in macrophages. Progr Cell Res 3, 71-74, 1993. Boehm, U; Klamp, T; Groot, M & Howard, J.C. Cellular responses to interferon-gamma. Ann Rev of Immun 15, 749 – 795, 1997. Bradford, M M. Rapid and sensitive method for the quantitation of microgran quatities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-54, 1976. Britz-Cunninghan, S.H.; Shah, M.M.; Zuppan, C.W. & Fletcher, W.H. Mutations of the connexin43 gap junction gene in patients with heart malformations and defects of laterality. New Engl J Med 332, 1323-29, 1995. Bruzzone, R; White, T.W. & Goodenough, D.A. The cellular internet: on- line with connexins. BioEssays 18, n.9, 709-718, 1996. Burt J.M. & Spray D.C. Inotropic agents modulate gap junctional conductance between cardiac myocytes. Am J Physiol 254, H1206-10,1988. Casey B.; Ballabio A. Connexin 43 mutations in sporadic and familial defects of laterality. N Engl J Med. ; 333(14):941, 1995 Campos de Carvalho, A.C.; Roy, C.; Hertzberg, E.L.; Tanowitz, H.B.; Kessler, J.A.; Weiss, L.M.; Wittner, M.; Dermietzel, R.; Gao, Y.; Spray, D.C. Gap Junction disappearance in astrocytes and leptomeningeal cells as a consequence of protozoan infection. Brain Res. 20; 790 (1-2): 304-14, 1998. Chanson, M. Gap junctional communication in tissue inflammation and repair. Biochim. Biophys. Acta 1711, 197–207, 2005. Chen, G. Y.; Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology, v. 10, p. 826- 837, 2010 Contreras, J.E.; Sánchez, H.A.; Véliz, L.P.; Bukauskas, F.F.; Bennett, M.V.; Sáez, J.C. Role of connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res. Brain Res. Rev. 47, 290–303, 2004. Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature. 420:860–867, 2002. Cotran, R.S.; Kumar, V.; Robbins, S. Robbins Pathologic Basis of Disease. Schoen, FJ., editor. W. B. Saunders Company; Philadelphia p. 1255-1259, 1994. Cuzzocrea, S. Shock, inflammation and PARP. Pharmacological Research, v. 52, p. 72-82, 2005. Das Sarma, J,; Meyer, R.A.; Wang, F.; Abraham, V.; Lo, C.W.; Koval, M. Multimeric connexin interactions prior to the trans-Golgi network. J Cell Sci. 114 (Pt 22):4013-24, 2001. Davis, D.M. Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat. Rev. Immunol. 7, 238–243, 2007. Campos De Carvalho, A.C.; Tanowitz, H.B.; Wittner, M.; Dermietzel, R.; Roy, C.; Hertzberg, E.L., et al., Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi. Circ. Res. 70, 733–742, 1992. Campos de Carvalho, A.C.; Roy, C.; Hertzberg, E.L.; Tanowitz, H.B.; Kessler, J.A.; Weiss, L.M.; Wittner, M.; Dermietzel, R.; Gao, Y.; Spray, D.C. Gap junction disappearance in astrocytes and leptomeningeal cells as consequence of protozoaninfection. Brain Res. 790(1-2):304-14, 1998. Delmar, M.; Stergiopoulos, K.; Homma, N.; Calero G.; Morley, G.; Ek-Victorin, J.F. & Taffet, S.M. A molecular model for the chemical regulation of connexin43 channels: The “Ball-and-Chain) Hypothesis. Gap junctions: Molecular basis of cell communication in health and disease, Current Topics in Membranes 49, 223-248, 2000. De Maio, A. et al. Gap junctions, homeostasis, and injury. J. Cell. Physiol. 191, 269–282, 2002. Dermietzel, R. & Spray, D.C. Gap junctions in the brain: where, what type, how many and why? Trends Neurosci. 16, 186 –192, 1993. Dean, C.; Pichersky, E. and Dunsmuir, P. Structure, evolution and regulation of rbcSgenes in higher plants. Annu. Rev. Plant Physiol. 40, 415-439, 1989. Dhein, S. Gap junction channels in the cardiovascular system: pharmacological and physiological modulation. Trends Pharmacol. Sci. 19, 229-241, 1998. Dubey, J. P.; Lago, E. G.; Gennari, S.M.; Su, C. and Jones, J. L. Toxoplasmosis in humans and animals in Brazil: high prevalence, high burden of disease, and epidemiology. Parasitology, p. 1 of 50, 2012 Dubey, J. P. The History of Toxoplasma gondii—The First 100 Years. Journal of Eukaryotic Microbiology, v. 6, n. 55, p. 467–475, 2008. Dubey, J. P.; Lindsay, D. S.; Speer, C. A. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clinical Microbiology Review, v.11, n.2, p.267-99, 1998. Dubey, J.P.; Frenkel, J.K. Feline toxoplasmosis from acutely infected mice and the development of Toxoplasma cysts. Journal of Protozoology ,23, 4, 537, 1976. Dubremetz J.F.; Garcia-Réguet N.; Conseil, V. et al. Apical organelles and hostcell invasion by Apicomplexa. Int J Parasitol. 28:1007-13. 1998 Elbez-Rubinstein, A.; Ajzenberg, D.; Darde, M.L.; Cohen, R.; Dumetre, A.; Year, H.; Gondon, E.; Janaud, J.C.; Thulliez, P. Congenital toxoplasmosis and reinfection during pregnancy: case report, strain characterization, experimental model of reinfection, and review. J Infect Dis. 199:280–285, 2009. Elmore, S.A.; Jones, J.L.; Conrad, P.A.; Patton, S.; Lindsay, D.S.; Dubey, J.P. Toxoplasma gondii: epidemiology, feline clinical aspects, and prevention. Trends Parasitol, 26(4): 190-196, 2010. Eugenin, E.A.; Eckardt, D; Theis, M; Willecke, K; Bennett, MVL & Saéz, JC. Microglia at brain stab wounds express connexin and in vitro form functional gap junctions after treatment with interferon- and tumor necrosis factor-. Proc Natl Acad Sci USA 98, 4190-4195, 2001. Eugenin, E.A.; Branes, M.C.; Berman, J.W. & Saez, J.C. TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/ macrophages that enhance physiological responses. J Immunol. 170(3): 1320-8, 2003. Evans W.H. & Martin P.E. Gap junctions: structure and function (Review). Mol Membr Biol. 19(2):121-36, 2002. Ferguson, D. J.; Birch-Andersen, P. A ; Siim, J. C. and Hutchison, W. M. Observations on the ultrastructure of the sporocyst and the initiation of sporozoite formation in Toxoplasma gondii. Acta Pathol. Microbiol. Scand. Sect. B 86:165–167, 1978. FERREIRA-DA-SILVA, M. F.; BARBOSA, H. S.; GROSS U.; LÜDER, C. G. Stress-related and spontaneous stage differentiation of Toxoplasma gondii. Molecular Biosystems. n.4, p.824-834,2008 FRESHNEY, Ian R. Culture of Animal Cells: A Manual of Basic Technique. 15 ed. Nova Jersey: John Wiley, 2005. Flagg-Newton, J.; Simponson, I. & Loewenstein, W.R. Permeability of the cell-to-cell membrane channels in mammalian cell junctions. Science, 205-404, 1979). Friedl, P. et al. Tuning immune responses: diversity and adaptation of the immunological synapse. Nat. Rev. Immunol. 5, 532–545, 2005. Fortes, F.S.A., Pecora IL, Persechini PM, Hurtado S, Costa V, Coutinho-Silva R, Braga MB, Silva-Filho FC, Bisaggio RC, De Farias FP, Scemes E, De Carvalho AC & Goldenberg RC. Modulation of intercellular communication in macrophages: possible interactions between Gap junctions and P2 receptors. J Cell Sci. 117(Pt 20): 4717-26. 2004. Fujimoto, J.; Sawamoto, K.; Okabe, M.; Okano, H.; Yamamoto, T. Molecular cloning and characterization of focal adhesion kinase of Drosophila melanogaster. Mol. Biol. Cell 8(Suppl.): 399a, 1997). Furshpan, E.J. & Potter, D.D. Transmission at the giant motor synapses of the crayfish. J. Physiol. 154, 289, 1959. Gaietta, G; Deerinck, T.J.; Adams, S.R.; Bouwer, J.; Tour, O.; Laird, D.W.; Sosinsky, G.E.; Tsien, R.Y. & Ellisman, M.H. Science 96, 503-507, 2002. Garg, S. M.; Syed, M. and Kielian, T. Staphylococcus aureusderived peptidoglycan induces Cx43 expression and functional gap junction intercellular communication in microglia. J. Neurochem. 95, 475–483, 2005. Giaume, C., and K.D. McCarthy. Control of junctional communication in astrocytic networks. TINS. 19:319–325, 1996. Gilula, N.B.; Reeves, O.R. & Steinbach, A. Metabolic coupling, ionic coupling and cell contacts. Nature 235, 262, 1972. Gimlich, R.L.; Kumar, N.M. & Gilula, N.B. Differential regulation of the levels of three gap junction mRNAs in Xenopus embryos. J. Cell. Biol. 110, 597-605, 1990. Giepmans B.N. Gap junctions and connexin-interacting proteins. Cardiovasc Res. 62(2):233-45, 2004. Goodenough, D.A. The crystalline lens: a system networked by gap junction intercellular communication. Sem Cell Biol 49-58, 1992. Goodenough, D. A.; Goliger, J. A. and Paul. D. L. Connexins, connexons, and intercellular communication. Annu. Rev. Biochem. 65:475, 1996. Goodenough D.A. and Paul D.L. Gap Junctions; Cold Spring Harb Perspect Biol., 2009. Gong, X.; Li, E.; Klier, G.; Huang, Q.; Wu, Y.; Lei, H.; Kumar, N.M.; Horwitz, J. & Gilula, N.B. Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91, 833-43, 1997. Green, C.R. & Severs, N.J. Distribution and role of gap junctions in normal myocardium and human ischaemic heart disease. Histochemistry, 99 105-120, 1993. Gros, D.B.; Nicholson, B.J. & Revel, J.P. Comparative analysis of gap junction protein from rat heart and liver: is there a tissue specificity of gap junctions? Cell 35, 539, 1983. GUIMARÃES, E. V.; DE CARVALHO, L.; BARBOSA, H. S. Primary culture of skeletal muscle cells as a model for studies of Toxoplasma gondii cystogenesis. International Journal for Parasitology, v.94, p.72-83, 2008. Handel, A.; Yates, A.; Pilyugin, S.S.; Antia, R.; Gap junctionmediated antigen transport in immune responses. Trends Immunol. 28 (11): 463-6, 2007. Hansson and Skiöldebrand. Coupled cell networks are target cells of inflammation, which can spread between different body organs and develop into systemic chronic inflammation. Journal of Inflammation., 2015. Hehl, A.B.; Basso, W.U.; Lippuner, C.; Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of nonoverlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics. V.16, n66, p.1-16, 2015. Herve, J.C.; Bourmeyster N. & Sarrouilhe D. Diversity in protein–protein interactions of connexins: emerging roles. Biochim Biophys.1662 (1–2), 22– 41, 2004. Herve, J.C. The Connexins. Biochim Biophys Acta. 1711, 97 – 98, 2005. Hide, G.; Role of vertical transmission of Toxoplasma gondii in prevalence of infection - Expert review of anti-infective therapy vol. 14, no. 3, 335–344 , 2016. HILL, D. AND DUBEY, J. P. Toxoplasma gondii: transmission, diagnosis and prevention. Europan Society of Clinical Microbiology and Infectius diseases. v. 8, p. 634-640, 2002. Jawetz, E.; Melnick, J.L.; Adelberg, E.A.; Brooks, G.F.; Butel, J.S. & Morse, S.A. Microbiologia Médica - Ed. Guanabara Koogan, 20a edição, RJ, 1995. John S.A.; Revel J.P. Connexon integrity is maintained by non-covalent bonds: intramolecular disulfide bonds link the extracellular domains in rat connexin-43. Biochem Biophys Res Commun. 178(3):1312-8, 1991). Jones, J.L.; Dargelas, V; Roberts , J.; Press, C.; Remington, J. S.; Montoya, J. G. Risk Factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884, 2009. Jongsma, H.J.; Wilders, R.; Takens-Kwak, B.R. & Rook, M.B. Gap junctions: Progress in Cell Research 3, 187-192, 1993. Junqueira, L.C. & Carneiro, J. Histologia Básica. Ed. Guanabara Koogan, 8a edição, RJ, 1998. Kane, A.B. & Bols, N.C. A study of metabolic cooperation with rat peritoneal macrophages. J. Cell Physiol 102, 385-393, 1980. Koval, M.; Molina, S.A..; Burt, J.M. Mix and match: Investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett., 588(8): 1193–1204, 2014. Kumar, N.M. & Gilula, N.B. The gap junction communication channel. Cell 84, 381-388, 1996). Kwak B.R.; Hermans M.M.; De Jonge, H.R.; Lohmann, S,M.; Jongsma, H.J. & Chanson M. Differential regulation of distinct types of gap junction channels by similar phosphorylating conditions. Mol Biol Cell 6, 1707-19,1995. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259): 680-685, 1970. Laird, D.W.; Puranam, K.L.; Revel, J.P.; Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J 273(Pt 1): 67–72, 1991. Laird, D.W. Life cycle of connexins in health and disease. Biochem. J. 394, 527–543, 2006. Levine, N.D.; Corliss, J.O.; Cox, F.E.; Deroux, G.; Grain, J.; Honigberg, B.M.; Leedale, G.F.; Loeblich, A.R. 3rd; Lom, J.; Lynn, D.; Merinfeld, E.G.; Page, F.C.; Poljansky, G.; Sprague, V.; Vavra, J.; Wallace, F.G. A newly revised classification of the protozoa. J Protozool. 27(1):37-58, 1980. Langston PK, Shibata M, Horng T. Metabolism Supports Macrophage Activation. Front Immunol. 8:61, 2017. Levy, J.A.; Weiss, R.M.; Dirksen, E.R. & Rosen, M.R. Possible communication between murine macrophages oriented in linear chains in tissue culture. Exp Cell Res 103, 375-385, 1976. Lilly, E.; Sellitto, C.; Milstone, LM.; White, TW. Connexin channels in congenital skin disorders. Seminars in Cell and Developmental Biology, 2015. Loewenstein, W.R. Permeability of membrane junctions. Ann N York Acad Sci. p.137, 441, 1966. Loewenstein, W.R. Gap junctions. Physiol. Rev. 61,p. 829-913, 1981. Lüdera, C. G. K.; Bohnea, W.; Soldati, D. Toxoplasmosis: a persisting challenge. Trends Parasitol. v.17, p. 460-3, 2001. MacMicking, J.; Xie, Q-X. & Nathan, C.F. Nitric oxide and macrophage function. Annual Review of Immunology, p. 15, 323 – 350, 1997. MadhumitaJagannathan-Bogdan and Leonard I. Z. Hematopoiesis. Development. 140(12): 2463–2467, 2013. MANGIAVACCHI, B. M.; VIEIRA, F. P.; BAHIA-OLIVEIRA, L. M. G.; HILL, D. Salivary IgA against sporozoite-specific embryogenesis-related protein (TgERP) in the study of horizontally transmitted toxoplasmosis via T. gondii oocysts in endemic settings. Epidemiol. Infect. 144(12):2568-77, 2016. Makowski, L.; Caspar, D.L.D.; Phillips, W.C. & Goodenough, D.A. Gap junction structures. II. Analysis of X-ray diffraction data. J. Cell. Biol. 74, 629-645, 1977. Martin, C.A.; Homaidan, F.R.; Palaia,T.; Burakoff, R. & el-Sabban, M.E. Gap junctional communication between murine macrophages and intestinal epithelial cell lines. Cell Adhes Commun 6, 437-49, 1998. Mahmoudi, S.; Mamishi, S.; Suo, X.; Keshavarz, H. Early detection of Toxoplasma gondii infection by using a interferon gamma release assay: A review, Experimental Parasitology, 2017. Montecino-Rodriguez, E. et al. Expression of connexin 43 (cx43) is critical for normal hematopoiesis. Blood 96, 917–924, 2000. Mossman, B.T.; Churg, A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am. J. Respir. Crit. Care Med., 157:1666–1680, 1998. MURPHY, K.; TRAVARES, P.; WALPORT, M. Imunobiologia de Janeway. São Paulo: Artmed, 7ed. 2010. Musil, L. & Goodenough, D.A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell 74, 1065-77, 1993. Nihei, O.K. et al. A novel form of cellular communication among thymic epithelial cells: intercellular calcium wave propagation. Am. J. Physiol. Cell Physiol. 285, C1304–C1313, 2003. Noma A. & Tsuboi N., Dependence of junctional conductance on proton, calcium and magnesium ions in cardiac paired cells of guineapig. J Physiol 382 193-211, 1987. Omata, Y.; Umeshita, Y.; Murao, T.; Kano, R.; Kamiya, H.; Kudo, A.; Masukata, Y.; Kobayashi, Y.; Maeda, R.; Saito, A.; Murata, K. Toxoplasma gondii does not persist in goldfish (Carassius auratus). J Parasitol. 91(6):1496-9, 2005. Oviedo-Orta, E. et al. Immunoglobulin and cytokine expression in mixed lymphocyte cultures is reduced by disruption of gap junction intercellular communication. FASEB J. v.15, p.768–774, 2001. Oviedo-Orta, E. Gap junction intercellular communication during lymphocyte transendothelial migration. Cell Biol. Int. 26, 253–263, 2002. Oviedo-Orta, E. and Evans, W.H. Gap junctions and connexinmediated communication in the immune system. Biochim. Biophys. Acta 1662, 102–112, 2004. Padrão, J.C.; Cabral, G.R.A.; Silva, M.F.S.; Seabra, S.H.; DaMatta, R. A. Toxoplasma gondii infection of activated J774-A1 macrophages causes inducible nitric oxide synthase degradation by the proteasome pathway. Parasitology International 63, p. 659–663, 2014. Paul, D. Molecular cloning of cDNA for rat liver gap junction proteins. J. Cell Biol 103, 123-134, 1986. Peracchia, C. Chemical gating of gap junction channels Roles of calcium, pH and calmodulin, Biochimica et Biophysica Acta 1662, p. 61 – 80, 2004. Paredes-Santos, T.C.; Martins-Duarte, E.S.; Vitor R.W.; de Souza W.; Attias M.; Vommaro R.C. Spontaneous cystogenesis in vitro of a Brazilian strain of Toxoplasma gondii. Parasitol Int. ;62(2):181-8, 2013. Porter S. B.; Sander, M. A. Toxoplasmic encephalitis in patients with the acquired immunodeficiency syndrome. The New England Journal of Medicine, n. 23, p. 1643-1648, 1992. Polacek, D.; Lal, R.; Volin, M.V. & Davies, P.F. Gap junctional communication between vascular cells. Am. J. Pathol. 142, 593-605, 1993. Polontchouck, L.; Haefliger, J.A.; Ebelt, B.; Schaefer, T.; Stuhlmann, D.; Mehlhorn, U.; Kuhn-Regnier, F.; De Vivie, E.R. & Dhein, S. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J. Amer. Coll. Cardiol. 38, p.883-891, 2001. Kane, A.B. & Bols, N.C. A study of metabolic cooperation with rat peritoneal macrophages. J. cell. Physiol. 102, p. 385-393, 1980. Revel, J.P. & Karnovsky, M.J.. Hexagonal array of subunits in intercellular junctions of mouse heart and liver, J. Cell. Biol. 33, C7 – C12, 1967. REY, L. Toxoplasma gondii e toxoplasmose. Parasitologia: parasitos e doenças parasitárias do homem nos trópicos ocidentais. 4 ed. Rio de Janeiro: Guanabara Koogan, p.162- 206, 2008. Ross R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340:115– 126. 1999. Saéz, J.C. & Spray, D.C. Cell Functions. In: Encyclopedia of Human Biology, volume 2. Academic Press. Inc. – New York / USA, 1991. Saéz, J.C.; Brañes, M.C.; Corvalán, L.A.; Eugenín, E.A.; González, H.; Martínez, A.D. & Palisson, F. Gap junctions in cells of the immune system: structure, regulation and possible functional roles. Braz. J. Med. Biol. Res. 33, 447-455, 2000. Saez, J.C. et al. Plasma membrane channels formed by connexins: their regulation and functions. Physiol. Rev. 83, 1359–1400, 2003. SANTOS, T. A. T.; Portes, J. A.; Damasceno-Sá, J. C.; Caldas, L. A.; de Souza, W.; DaMatta, R. A.; Seabra, S. H. Phosphatidylserine Exposure by Toxoplasma gondii Is Fundamental to Balance the Immune Response Granting Survival of the Parasite and of the Host. Plos One, v. 6, p. e 27867, 2011 Selders, G.S.; Fetz, A.E.; Radic, M.Z.; Bowlin G.L. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 2017 Schaible, U.E.; Collins, H.L. & Kaufmann, S.H.E. (1999) Confrontation between intracellular bacteria and the immune system. Adv Immunol 71, 313- 367 Seabra, S.H.; de Souza, W. & DaMatta, R.A. Toxoplasma gondii partially inhibits nitric oxide production of activated murine macrophages. Exp. Parasitol., 100: 62- 70, 2002. Segretain, D. & Falk, M.M. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta. 1662(1-2): 3-21, 2004. Severs N.J.; Dupont E.; Coppen S.R.; Halliday D.; Inett E.; Baylis D. & Rothery S. Remodelling of gap junctions and connexin expression in heart disease. Biochim Biophys Acta. 1662(1-2):138-48, 2004. Severs, N.J.; Dupont, E.; Thomas, N.; Kaba, R.; Rothery, S.; Jain, R.; et al., Alterations in cardiac connexin expression in cardiomyopathies. Adv. Cardiol. 42, 228–242, 2006. Sibley, L.D. Invasion and intracellular survival by protozoan parasites. Department of Molecular Microbiology. v. 240, p 72–91, 2011. Sohl, G. & Willecke, K. An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes. 10(4-6): 173-80, 2003. Sosinsky, G. Gap junction structure: new structures and new insights. In Gap Junctions, Academic Press, San Diego, p. 1-22, 2000. Sosinsky, G.E. & Nicholson B.J. Structural organization of gap junction channels. Biochim Biophys Acta. 1711 (2): 99-125, 2005. Sousa, W.; Martins-Duarte, E. S.; Lemgruber, L.; Attias, M.; Vommaro, R. C. Structural organization of the tachyzoite of Toxoplasma gondii. Scientia Medica, v. 20, n. 1, p. 131-143, 2010. Spray, D.C. & Burt, J.M. Structure-activity relations of the cardiac gap junction channel. Am J Physiol 258, 195-205, 1990. Spray, D.C. Transjunctional voltage dependence of gap junctions channels. In, Peracchia, C. (ed) Gating of gap junction channel (Boca Raton, FL: CRC Press), pp 97, 1991. Takeuchi O.; Akira S. Pattern recognition receptors and inflammation. Cell. 140:805–820, 2010. Tibayrene, M.; Kjellberg, F.; Arnaud, J.; Oury, B.; Brenie’re, S. F.; Darde´, M. L. & Ayala, F. J. Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proceeding of the National Academy of Sciences of United States of Amerrica. v.88, p. 5129-5133, 1991. Unger, V.M.; Kumar, N.M.; Gilula, N.B.; Yeager, M. Three-dimensional structure of a recombinant gap junction membrane channel. Science. 283 (5405):1176-80, 1999. Unkeless, J.C.; Kaplan, G.; Plutner, H. & Cohn, Z.A. Fc-receptor variants of a mouse macrophage cell line. Proc Natl Acad Sci U S A. 76(3): 1400-4(1979). Unwin, P.N. & Zampighi, G. Structure of the junction between communicating cells. Nature 283, 545-49, 1980. Van Veen, T.A.; Van Rijen, H.V. & Jongsma, H.J. Electrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation. Cardiovasc Res 46, 496-510, 2000. Veenstra, R.D. Ion permeation through connexin gap junction channels: effects on conductance and selectivity. Gap junctions: Molecular basis of Cell Communication in Health and Disease. Current Topics in Membranes 49, cap. 5, 95-130, 2000. Wang, X.G. & Peracchia, C. Chemical gating of heteromeric heterotypic gap junction channel. J. Membr. Biol 162, 169-170, 1998. Watts, A., Zhao,Y., Dhara, A., Eller, B., Patwardhan,A., Sinai, A.P. Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo. v. 6, 2015. Weidmann, S. The electrical constants of Purkinje Fibers. J. Physiol. (London) 118, 348, 1972. Weiner, H.L.; Frenkel, D. Immunology and immunotherapy of Alzheimer's disease. Nature Rev. Immunol; 6:404–416, 2006. Werner, R.; Levine, E.; Rabadan-Diehl, C. & Dahl, G. Formation of hybrid cell-cell channels. Proc Natl Acad Sci USA 86, 5380, 1989. White, T.. Acidification-resistent junctional conductance between pairs of ventricular myocytes dissociated from adult rat. Am J Phys 149, C447, 1985. White, T.W. & Paul, D.L. Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61, p. 283-310, 1999. White, T.W. & Bruzzone, R. Intercellular communication in the eye: clarifying the need for connexin diversity. Brain Res Brain Res Rev. 32(1): 130- 7, 2000. Willecke, K.; Eiberger, J.; Degen, D.; Eckardt, A.; Romunaldi, M.; Gueldenagel, U.D. & Sohl, G. Structural and functional diversity of connexin genes in the mouse and human genome. 2001. Wong, C.W. et al. Connexins in leukocytes: shuttling messages Cardiovasc. Res. 62, 357–367 22, 2004. Xia, Y. & Nawy, S. The gap junction blockers carbenoxolone and 18betaglycyrrhetinic acid antagonize cone-driven light responses in the mouse retina. Vis Neurosci. 20(4), p. 429-35, 2003. Yeager, M; Unger, V.M. & Falk, M.M. Synthesis, assembly and structure of gap junction intercellular channels [published erratum appears in Curr Opin Struct Biol. v.8, p.810-11. Curr Opin Struct Biol 8, 517-24,1998.por
dc.subject.cnpqFisiologiapor
dc.subject.cnpqFarmacologiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/70635/2017%20-%20Gabriella%20Oliveira%20Alves%20Moreira%20de%20Carvalho.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5964
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-09-05T17:37:02Z No. of bitstreams: 1 2017 - Gabriella Oliveira Alves Moreira de Carvalho.pdf: 6561721 bytes, checksum: a5b11c489e700ae7e277e6633efd1f1d (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-09-05T17:37:03Z (GMT). No. of bitstreams: 1 2017 - Gabriella Oliveira Alves Moreira de Carvalho.pdf: 6561721 bytes, checksum: a5b11c489e700ae7e277e6633efd1f1d (MD5) Previous issue date: 2017-02-22eng
Appears in Collections:Mestrado em Ciências Fisiológicas

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Gabriella Oliveira Alves Moreira de Carvalho.pdf6.41 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.