Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/11828
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPinto, Letícia Baptista
dc.date.accessioned2023-12-22T01:57:34Z-
dc.date.available2023-12-22T01:57:34Z-
dc.date.issued2022-03-18
dc.identifier.citationPINTO, Letícia Baptista. Análise do perfil de resistência antimicrobiana em bactérias isoladas de animais necropsiados na Universidade Federal Rural do Rio de Janeiro. 2022. 82 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/11828-
dc.description.abstractO surgimento e a disseminação da resistência aos antimicrobianos é uma das três principais ameaças à Saúde Pública no século XXI, e deve ser analisado em uma abordagem integrada de Saúde Única, por se tratar de um risco à saúde compartilhado por pessoas, animais e meio ambiente. Apesar da compreensão a respeito da origem multifatorial da resistência antimicrobiana, pouco se sabe sobre a contribuição dos ambientes voltados a produção, manutenção e cuidados de animais na disseminação desse fenômeno. Dentre estes, o espaço de necropsia representa um ponto de coesão, sendo um local de extrema relevância para pesquisa e compreensão da circulação da microbiota bacteriana e seus genes de resistência. O presente estudo avaliou a ocorrência de superbactérias em amostras de animais necropsiados na Universidade Federal Rural do Rio de Janeiro, considerando os critérios de prioridade estabelecidos pela Organização Mundial de Saúde (OMS). Das 198 amostras coletadas de 45 animais, sendo 20 animais de companhia, 20 de produção e 3 selvagens, foram isoladas 325 cepas, das quais 51,38% (167/325) foram Enterobacterales, 31,69% (103/325) Staphylococcus spp., 12,62% (41/325) Enterococcus spp., 2,46% (8/325) Streptococcus spp. e 1,85% (6/325) BGNNF. O MALDI-TOF mostrou-se uma ferramenta eficiente para identificação bacteriana, principalmente em Enterococcus spp. e Enterobacterales. A concordância entre as técnicas bioquímica, proteômica e genotípica na identificação de Staphylococcus spp. foi de 80,58%, o que confirma a importância da associação entre diferentes métodos diagnósticos para a caracterização nesse gênero, levando ao direcionamento correto da análise de resistência. 8,74% (9/103) dos Staphylococcus spp. apresentaram resistência fenotípica indicativa de produção de PBP2a, com detecção do gene mecA em todas as cepas. Em 29,13% (30/103) dos Staphylococcus spp. houve detecção do gene blaZ. Foi evidenciada resistência fenotípica à vancomicina em E. faecalis, com detecção do gene vanB. 11,98% (20/167) das enterobactérias apresentaram resistência aos beta-lactâmicos, mediada pela produção de ESBL, no antibiograma de triagem e 80% (16/20) delas foi positiva no teste confirmatório. A pesquisa dos genes que codificam ESBL revelou a presença de blaSHV em 10,18% (17/167), blaTEM em 6,59% (11/167) e blaCTX-M-1 em 4,19% (7/167). Não houve detecção de cepas produtoras de carbapenemases. Não foram detectados genes mcr. Esses resultados revelam a ocorrência de espécies caracterizadas como superbactérias críticas pela OMS em ambiente de necropsia e reforçam a necessidade de monitoramento dessas cepas no ambiente veterinário não apenas para a adoção de medidas de controle e tratamento adequados dos animais, mas também para a implementação de protocolos seguros para o descarte de suas carcaças.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectresistência antimicrobianapor
dc.subjectnecropsiapor
dc.subjectSaúde Únicapor
dc.subjectantimicrobial resistanceeng
dc.subjectnecropsyeng
dc.subjectOne Healtheng
dc.titleAnálise do perfil de resistência antimicrobiana em bactérias isoladas de animais necropsiados na Universidade Federal Rural do Rio de Janeiropor
dc.title.alternativeAnalysis of the antimicrobial resistance profile in bacteria isolated from necropsied animals at the Federal Rural University of Rio de Janeiroeng
dc.typeDissertaçãopor
dc.description.abstractOtherThe emergence and spread of antimicrobial resistance is one of the three main threats to Public Health in the 21st century and must be analyzed in an integrated One Health approach, as it is a health risk shared by people, animals and the environment. Despite understanding the multifactorial origin of antimicrobial resistance, little is known about the contribution of environments aimed at the production, maintenance and care of animals in disseminating this phenomenon. Among these, the necropsy space represents a point of cohesion, being a place of extreme relevance for research and understanding of the circulation of bacterial microbiota and its resistance genes. The present study evaluated the occurrence of superbugs in samples of animals necropsied at the Federal Rural University of Rio de Janeiro, considering the priority criteria established by the World Health Organization (WHO). Of the 198 samples collected from 45 animals, being 20 companion animals, 20 production animals, and three wild ones, 325 strains were isolated, of which 51,38% (167/325) were Enterobacterales, 31,69% (103/325) Staphylococcus spp., 12,62% (41/325) Enterococcus spp., 2,46% (8/325) Streptococcus spp. and 1,85% (6/325) BGNNF. MALDI-TOF proved to be an efficient tool for bacterial identification, especially in Enterococcus spp. and Enterobacterales. The agreement between biochemical, proteomic and genotypic techniques in identifying Staphylococcus spp. was 80,58%, which confirms the importance of the association between different diagnostic methods for the characterization of this genus, leading to the correct direction of the resistance analysis. 8,74% (9/103) of Staphylococcus spp. showed phenotypic resistance indicative of PBP2a production, with detection of the mecA gene in all strains. Phenotypic resistance to vancomycin was evidenced in E. faecalis, with detection of the vanB gene. In 29,13% (30/103) of Staphylococcus spp. there was detection of the blaZ gene. 11,98% (20/167) of enterobacteria showed resistance to beta-lactams, mediated by the ESBL production, in the screening antibiogram and 80% (16/20) of them were positive in the confirmatory test. The search for genes encoding ESBL revealed the presence of blaSHV in 10,18% (17/167), blaTEM in 6,59% (11/167) and blaCTX-M-1 in 4,19% (7/167). There was no detection of carbapenemase-producing strains. No mcr genes were detected. These results reveal species characterized as critical superbugs in the necropsy environment and reinforce the need to monitor these strains in the veterinary environment, not only for the adoption of adequate control and treatment measures for the animals but also for the implementation of safe protocols for the disposal of their carcasses.eng
dc.contributor.advisor1Souza, Miliane Moreira Soares de
dc.contributor.advisor1ID010.761.987-32por
dc.contributor.advisor-co1Brito, Marilene de Farias
dc.contributor.advisor-co1ID211.517.924-20por
dc.contributor.advisor-co2Melo, Dayanne Araújo de
dc.contributor.advisor-co2ID122.524.547-84por
dc.contributor.referee1Souza, Miliane Moreira Soares de
dc.contributor.referee2Coelho, Shana de Mattos de Oliveira
dc.contributor.referee3Anzai, Eleine Kuroki
dc.creator.ID107.277.637-50por
dc.creator.IDOrcid iD: https://orcid.org/0000-0002-1139-9673por
dc.creator.Latteshttp://lattes.cnpq.br/7155372112888943por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesAARESTRUP, F.M. The Origin, Evolution, and Local and Global Dissemination of Antimicrobial Resistance. In: Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, D.C., p. 339–360, 2006. AKGÜL, Ö.; BORA, G.; GÜDÜCÜOĞLU, H. Investigation of the gene carriage rates for Staphylococcus aureus, mecA, vanA and nuc genes in the nasal and milk specimens from the sheep caretakers with sheep. Large Animal Review, v. 27, p. 259–268, 2021. ALÓS, J-I. Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades Infecciosas Y Microbiologia Clinica, v. 33, n. 10, p. 692-699, 2015. ALVARADO, M.; CLEMENTE-CASARES, P.; MORENO, D.A.; DE GROOT, P.W.J. MicroMundo Upside Down: Targeted Searching for Antibiotics Producing Bacteria from Soil with Reverse Antibiosis Approaches. Frontiers in Microbiology, v. 11, 577550, 2020. ALQUEIDÃO, SORAIA DIAS. Resistência a antibióticos em isolados de cães com foliculite superficial bacteriana: estudo retrospetivo. Dissertação de Mestrado. 87p., 2018. AMÂNCIO, F.L.R.; CARVALHO, I.K.N.P.; MENEZES, T.A.; ALBUQUERQUE, R.L.C.; SANTOS, A.G.; PINHEIRO, M.S. Fenótipos de resistência antimicrobiana epidemiologicamente importantes em culturas de vigilância de um serviço terciário de saúde em Aracaju-SE. Vigilância Sanitária em Debate: Sociedade, Ciência & Tecnologia, v. 9, n. 2, p. 111–116, 2021. ANVISA. Bases teóricas e uso clínico. 2007. https://www.anvisa.gov.br/servicosaude/controle/rede_rm/cursos/rm_controle/opas_web/mod ulo1/daptomicina.htm Acesso em 27 de outubro de 2021. AMÁBILE-CUEVAS, C.F. Global Perspectives of Antibiotic Resistance. In: SOSA, A.; BYARUGABA, D.; AMÁBILE-CUEVAS, C.; HSUEH, P.R.; KARIUKI, S.; OKEKE, I. Antimicrobial Resistance in Developing Countries. Springer, New York, NY, p. 3-13, 2010. ATLAS, R.M. One Health: Its Origins and Future. In: MACKENZIE, J.; JEGGO, M.; DASZAK, P.; RICHT, J. One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases. Current Topics in Microbiology and Immunology, v. 365. Springer, Berlin, Heidelberg, 2012. BABIŃSKA, I.; SOŁTYSZEWSKI, I.; KARAŹNIEWICZ, J.; SZAREK, J.; FELSMANN, M.Z.; DZIKOWSKI, A. Veterinary necropsy in the light of ethics and law. Med. Weter, v. 75, n. 11, p. 652–655, 2019. BENNETT, J.W.; CHUNG, K.T. Alexander Fleming and the discovery of penicillin. Advances in Applied Microbiology, v. 49, p. 163–184, 2001. BOROWIAK, M.; BAUMANN, B.; FISCHER, J.; THOMAS, K.; DENEKE, C.; HAMMERL, J.A.; SZABO, I.; MALORNY, B. Development of a Novel mcr-6 to mcr-9 Multiplex PCR and Assessment of mcr-1 to mcr-9 Occurrence in Colistin-Resistant Salmonella enterica Isolates from Environment, Feed, Animals and Food (2011–2018) in Germany. Frontiers in Microbiology, v. 11:80, 2020. BORTOLAMI, A.; ZENDRI, F.; MACIUCA, E.I.; WATTRET, A.; ELLIS, C.; SCHMIDT, V.; et al. Diversity, Virulence, and Clinical Significance of Extended-Spectrum β-Lactamaseand pAmpC-Producing Escherichia coli From Companion Animals. Frontiers in Microbiology, 10:1260, 2019. BRASIL. Agência Nacional de Vigilância Sanitária. Resolução RDC nº 306, de 07 de dezembro de 2004. Dispõe sobre o Regulamento Técnico para o gerenciamento de resíduos de serviços de saúde. Diário Oficial da União, Brasília, DF, 2004. BRASIL. Conselho Nacional do Meio Ambiente. Resolução nº 358, de 29 de abril de 2005. Dispõe sobre o tratamento e disposição final dos resíduos de serviço de saúde e dá outras providências. Diário Oficial da República, Federativa do Brasil, Brasília, DF, 2005. BRESALIER, M.; CASSIDY, A.; WOODS, A. One health in history. In: One Health: The Theory and Practice of Integrated Health Approaches, eds ZINSSTAG, J.; SCHELLING, E.; WHITTAKER, M.; TANNER, M.; WALTNER-TOEWS, D. (1st ed. Oxfordshire, CAB International). p. 1–15, 2015. BRINK, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr Opin Infect Dis, v. 32, n. 6, p. 609–616, 2019. BRITO, M.A.V.P. et al. Concentração mínima inibitória de dez antimicrobianos para amostras de Staphylococcus aureus isoladas de infecção intramamária bovina. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 53, n. 5, p. 531–537, 2001. CARDOSO, C.V.P. Descarte de Carcaças. In: ANDRADE, A.; PINTO, S.C.; OLIVEIRA, R.S. (orgs.) Animais de Laboratório: criação e experimentação. Rio de Janeiro: Editora FIOCRUZ, 388 p., 2002. CARROLL, D.; WANG, J.; FANNING, S.; MCMAHON, B.J. Antimicrobial Resistance in Wildlife: Implications for Public Health. Zoonoses and Public Health, v. 62, n. 7, p. 534–542, 2015. CENTERS FOR DISEASE CONTROL AND PREVENTION. One Health Basics. 2018. https://www.cdc.gov/onehealth/basics/index.html Acesso em 25 de setembro de 2021. CHANG, S.; SIEVERT, D.M.; HAGEMAN, J.C.; BOULTON, M.L.; TENOVER, F.C.; DOWNES, F.P.; et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. New England Journal of Medicine, v. 348, n. 14, p. 1342–1347, 2003. CHRISTAKI, E.; MARCOU, M.; TOFARIDES, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. Journal of Molecular Evolution, v. 88, p. 26–40, 2020. CIFTCI, A.; FINDIK, A.; ONUK, E. E.; SAVASAN, S. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Brazilian Journal of Microbiology, v. 40, p. 254–261, 2009. CLINICAL AND LABORATORY STANDARDS INSTITUTE. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. 4th ed. CLSI Supplement VET08. Wayne, PA, 2020. CLINICAL AND LABORATORY STANDARDS INSTITUTE. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI Supplement M100. Wayne, PA, 2021. CONG, Y.; YANG, S.; RAO, X. Vancomycin resistant Staphylococcus aureus infections: A review of case updating and clinical features. Journal of Advanced Research, v. 21, p. 169– 176, 2020. COSTA, A.; SILVA, G.J. Resistência à Colistina e sua Disseminação: Implicações em Saúde Pública. Rev Port Farmacoter, v. 10, p. 47–52, 2017. COURVALIN, P. Predictable and unpredictable evolution of antibiotic resistance. Journal of Internal Medicine, v. 264, n. 1, p. 4-16, 2008. CUI, L.; MURAKAMI, H.; KUWAHARA-ARAI, K.; HANAKI, H.; HIRAMATSU, K. Contribution of a thickened cell wall and its gultamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob Agents Chemother, v. 44, p. 2276–2285, 2020. DAMBORG, P.; SØRENSEN, A.H.; GUARDABASSI, L. Monitoring of antimicrobial resistance in healthy dogs: First report of canine ampicillin-resistant Enterococcus faecium clonal complex 17. Veterinary Microbiology, v. 132, p. 190–196, 2008. DASHTI, A. A.; JADAON, M. M.; ABDULSAMAD, A. M.; DASHTI, H. M. Heat Treatment of Bacteria: A Simple Method of DNA Extraction for Molecular Techniques. Kuwait Medical Journal, v. 41, n. 2, p. 117–122, 2009. EJAZ, H.; YOUNAS, S.; ABOSALIF, KOA.; JUNAID, K.; ALZAHRANI, B.; ALSRHANI, A.; et al. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE, v. 16, n. 1, e0245126, 2021. EWERS, C.; GROBBEL, M.; STAMM, I.; KOPP, P. A.; DIEHL, I.; SEMMIER, T.;FRUTH, A.; BEUTLICH, J.; GUERRA, B.; WIELER, L. H.; GUENTHER, S. Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum beta lactamase producing Escherichia coli among companion animals. Journal of Antimicrobial Chemotherapy, v. 65, p. 1–10, 2010. EZECHUKWU, I.; SINGAL, M.; IGBINOSA, O. Aerococcus viridans: Case Report, Microbiology, and Literature Review. American Journal of Case Reports, v. 20, p. 697–700, 2019. FARON, M.L.; BUCHAN, B.W.; HYKE, J.; MADISEN, N.; LILLIE, J.L.; GRANATO, P.A. et al. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates. PLoS ONE, v. 10, n. 11, 2015. FENG, B.; SHI, H.; XU, F.; HU, F.; HE, J.; YANG, H.; DING, C.; CHEN, W.; YU, S. FTIRassisted MALDI-TOF MS for the identification and typing of bacteria. Analytica Chimica Acta, v. 1111, p 75–82, 2020. FERREIRA, A.M.; BONESSO, M.F.; MONDELLI, A.L.; CAMARGO, C.H.; CUNHA, M.L.R.S. Oxacillin resistance and antimicrobial susceptibility profile of Staphylococcus saprophyticus and other Staphylococci isolated from patients with urinary tract infection. Chemother, v. 58, n. 6, p. 482–491, 2012. FICK, J.; SÖDERSTRÖM, H.; LINDBERG, R.H.; PHAN, C.; TYSKLIND, M.; LARSSON, D.G.J. Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, v. 28, n. 12, p. 2522–2527, 2009. FLUIT, A.C.; VISSER, M.R.; SCHMITZ, F.J. Molecular Detection of Antimicrobial Resistance. Clinical Microbiology Reviews, v. 14, n. 4, p. 836–871, 2001. FOURNIER, C.; AIRES-DE-SOUSA, M.; NORDMANN, P.; POIREL, L. Occurrence of CTXM- 15- and MCR-1-producing Enterobacterales in pigs in Portugal: evidence of direct links with antibiotic selective pressure. Int J Antimicrob Agents, v. 55, 105802, 2020. FRIGATTO, E.A.M.; MACHADO, A.M.O.; PIGNATARI, A.C.C.; GALES, A.C. Is the cefoxitin disk test reliable enough to detect oxacillin resistance in coagulase-negative Staphylococci? J Clin Microbiol, v. 43, p. 2028–2029, 2005. FUNG, J.C.; KAPLAN, M.H.; HSIEH, H.; STEPHENS, A.; TYBURSKI, M.B.; TENENBAUM, M.J. Two Coagulase-Variant Forms of Staphylococcus aureus Isolated from Blood Cultures. Journal of Clinical Microbiology, v. 20, n. 1, p.115–117, 1984. GARINO JUNIOR, F. et al. Susceptibilidade a antimicrobianos e produção de betalactamase em amostras de Staphylococcus isolados de mastite caprina no Semi-árido Paraibano. Arquivos do Instituto Biológico, v. 78, n. 1, p. 103–107, 2011. GESER, N.; STEPHAN, R.; KORCZAK, B.M.; BEUTIN, L.; HÄCHLERA, H. Molecular Identification of Extended-Spectrum-β-Lactamase Genes from Enterobacteriaceae Isolated from Healthy Human Carriers in Switzerland. Antimicrobial Agents and Chemotherapy, v. 56, n. 3, p. 1609–1612, 2012. GUARDABASSI, L.; SCHWARZ, S.; LLOYD, D. H. Pet animals as reservoirs of antimicrobial-resistant bacteria. Journal of Antimicrobial Chemotherapy, v. 54, n. 2, p. 321- 332, 2004. GUENTHER, S.; GROBBEL, M.; LÜBKE-BECKER, A.; GOEDECKE, A.; FRIEDRICH, N.D.; WIELER, L.H.; EWERS, C. Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Veterinary Microbiology, v. 144, p. 219–225, 2010. GUENTHER, S.; EWERS, C.; WIELER, L.H. Extended-spectrum betalactamases producing E. coli in wildlife, yet another form of environmental pollution? Frontiers in Microbiology, v. 2, n. 246, 2011. HANAKI, H.; KUWAHARA-ARAI, K.; BOYLE-VAVRA, S.; DAUM, R.S.; LABISCHINSKI, H.; HIRAMATSU, K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. Antimicrob Chemother, v. 42, p. 199–209, 1998. HERNANDO-AMADO, S.; COQUE, T.M.; BAQUERO, F.; MARTÍNEZ, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, v. 4, p. 1432–1442, 2019. HOLLENBECK, B.L. & RICE, L.B. Intrinsic and acquired resistance mechanisms in Enterococcus. Virulence, v. 3, n. 5, p. 421–433, 2012. HOLMES, A. H.; MOORE, L. S. P.; ORD, A. N. S.; STEINBAKK, M.; REGMI, S.; KARKEY, A.; GUERIN, P. J.; PIDDOCK, L. J. V. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, v. 387, p. 176–187, 2015. HOOKEY, J. V.; RICHARDSON, J. F.; COOKSON, B. D. Molecular typing of Staphylococcus aureus based on PCR Restriction Fragment Length Polymorphism and DNA sequence analysis of the coagulase gene. Journal of Clinical Microbiology, v. 36, n. 4, p. 1083–1089, 1998. IOVLEVA, A.; DOI, Y. Carbapenem-Resistant Enterobacteriaceae. Clinics in Laboratory Medicine, v. 37, n. 2, p. 303–315, 2017. ISLAM, M.S.; SOBUR, M.A.; RAHMAN, S.; et al. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh. Microbial Ecology, 2021. KAASE, M.; LENGA, S.; FRIEDRICH, S.; SZABADOS, F.; SAKINC, T.; KLEINE, B.; GATERMANN, S.G. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin. Microbiol. Infect., v. 14, p. 614–616, 2008. KARIYAMA, R.; MITSUHATA, R.; CHOW, J.W.; CLEWELL, D.B.; KUMON, H. Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant Enterococci. Journal of Clinical Microbiology, v. 38, n. 8, p. 3092–3095, 2000. KATAOKA, Y.; UMINO, Y.; OCHI, H.; HARADA, K.; SAWADA, T. Antimicrobial susceptibility of enterococcal species isolated from antibiotic-treated dogs and cats. Journal of Veterinary Medical Science, v. 76, p. 1399–1402, 2014. KAWANO, J.; SHIMIZU, A.; SAITOH, Y.; YAGI, M.; SAITO, T.; OKAMOTO, R. Isolation of methicillin-resistant coagulase-negative staphylococci from chickens. J. Clin. Microbiol., v. 34, n. 9, p. 2072–2077, 1996. KE, D.; PICARD, F. J.; MARTINEAU, F.; MÉNARD, C.; ROY, P. H.; OUELLETTE, M.; BERGERON, M. G. Development of a PCR Assay for Rapid Detection of Enterococci. Journal of Clinical Microbiology, v. 37, n. 11, p. 3497–3503, 1999. KINGSLEY, P. & TAYLOR, E.M. One Health: Competing Perspectives in an Emerging Field. Parasitology, v. 144, n. 1, p. 7–14, 2017. KLARE, I.; BADSTÜBNER, D.; KONSTABEL, C.; BÖHME, G.; CLAUS, H.; WITTE, W. Decreased Incidence of VanA-type Vancomycin-Resistant Enterococci Isolated from Poultry Meat and from Fecal Samples of Humans in the Community after Discontinuation of Avoparcin Usage in Animal Husbandry. Microbial Drug Resistance, v. 5, n. 1, p. 45–52, 1999. KONEMAN, E. W.; PROCOP, G. W.; CHURCH, D. L.; HALL, G. S.; JANDA, W. M.; SCHRECKENBERGER, P. C.; WOODS, G. L. Diagnóstico Microbiológico, 7ª ed. Rio de Janeiro. Editora: Guanabara Koogan, 2018. 1854 p. KUDIRKIENE, E.; WELKERB, M.; KNUDSENA, N.R.; BOJESEN, A.M. Rapid and accurate identification of Streptococcus equi subspecies by MALDI-TOF MS. Systematic and Applied Microbiology, v. 38, p. 315–322, 2015. LA SCOLA, B.; et al. Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. Journal of clinical microbiology, v. 44, n. 3, p. 827– 832, 2006. LAN, R.; ALLES, M.C.; DONOHOE, K.; MARTINEZ, M.B.; REEVES, P.R. Molecular evolutionary relationships of enteroinvasive Escherichia coli and Shigella spp. Infection and Immunity, v. 72, n. 9, p. 5080–5088, 2004. LARSSON, D.G.J.; DE PEDRO, C.; PAXEUS, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, v. 148, p. 751– 755, 2007. LAUDERDALE, T.-L.; SHIAU, Y.-R.; et al.Effect of banning vancomycin analogue avoparcin on vancomycin-resistant enterococci in chicken farms in Taiwan. Environmental Microbiology, v. 9, n. 3, p. 819–823, 2007. LEHNER, A.; LOY, A.; BEHR, T.; GAENGE, H.; LUDWIG, W.; WAGNER, M.; SCHLEIFER, M. Oligonucleotide Microarray for Identification of Enterococcus Species. FEMS Microbiology Letters, v. 246, n. 1, p. 133–142, 2005. LEMCKE, R.; BÜLTE, M. Occurrence of the vancomycin-resistant genes vanA, vanB, vanC1, vanC2 and vanC3 in Enterococcus strains isolated from poultry and pork. International Journal of Food Microbiology, v. 60, p. 185–194, 2000. JACKSON, C. R.; FEDORKA-DRAY, P. J.; DAVIS, J. A.; et al. Prevalence, species distribution and antimicrobial resistance of enterococci isolated from dogs and cats in the United States. Journal of Applied Microbiology, v. 107, n. 4, p. 1269-1278, 2009. LENCASTRE, H., OLIVEIRA, D. C. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, v. 46, n. 7, p. 2155–2161, 2002. LING, Z.; YIN, W.; SHEN, Z.; WANG, Y.; SHEN, J.; WALSH, T. R. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. Journal of Antimicrobial Chemotherapy, v. 75, p. 3087–3095, 2020. LÓPEZ, M.; CERCENADO, E.; TENORIO, C.; et al. Diversity of clones and genotypes among vancomycin-resistant clinical Enterococcus isolates recovered in a Spanish hospital. Microbial Drug Resistance, v. 18, n. 5, p. 484-491, 2012. LUO, Q.; WANG, Y.; XIAO, Y. Prevalence and transmission of mobilized colistin resistance (mcr) gene in bacteria common to animals and humans. Biosafety and Health, v. 2, p. 71-78, 2020. MACHADO, V.S.; BICALHO, R.C. Complete Genome Sequence of Trueperella pyogenes, an Important Opportunistic Pathogen of Livestock. Genome Announcements, v. 2, n. 2, 2014. MAGIORAKOS, A.P.; SRINIVASAN, A.; CAREY, R.B.; et al. Multidrug-resistant, extensively drug-resistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, v. 18, p. 268 –281, 2012. MARKEY, B.; LEONARD, F.; ACHAMBAULT, M; et al. Clinical Veterinary Microbiology, 2 ed. Editora: Elsevier Health Sciences, 2013. MCGUINNESS, W.A.; MALACHOWA, N.; DELEO, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale Journal of Biology and Medicine, v. 90, p. 269–281, 2017. MEDINA, M.; LEGIDO-QUIGLEY, H.; HSU, L.Y. Antimicrobial Resistance in One Health. In: MASYS, A.J. et al. (eds). Global Health Security. Springer Nature Switzerland AG, p. 209– 229, 2020. MELO, D. A.; COELHO, I. D. S.; MOTTA, C. C. D.; et al. Impairments of mecA gene detection in bovine Staphylococcus spp. Brazilian Journal of Microbiology, v. 45, n. 3, p. 1075–1082, 2014. MENDONÇA, E. C. L.; MAQUES, V.F.; MELO, D.A.; et al. Caracterização fenogenotípica da resistência antimicrobiana em Staphylococcus spp. isolados de mastite bovina. Pesquisa Veterinária Brasileira, v. 32, n. 9, p. 859-864, 2012. MINARINI, L.A.R.; GALES, A.C.; PALAZZO, I.C.V.; DARINI, A.L.C. Prevalence of Community-Occurring Extended Spectrum β-Lactamase-Producing Enterobacteriaceae in Brazil. Current Microbiology, v. 54, p. 335–341, 2007. MŁYNARCZYK, G.; KOCHMAN, M.; ŁAWRYNOWICZ, M.; FORDYMACKI, P.; MŁYNARCZYK, A.; JELJASZEWICZ, J. Coagulase-negative variants of methicillin-resistant Staphylococcus aureus subsp.aureus strains isolated from hospital specimens. Zentralblatt Für Bakteriologie, v. 288, n. 3, p. 373–381, 1998. MONTEIRO, J.; WIDEN, R.H.; PIGNATARI, A.C.C.; KUBASEK, C.; SILBERT, S. Rapid detection of carbapenemase genes by multiplex real-time PCR. Journal of Antimicrobial Chemotherapy, v. 67, n. 4, p. 906–909, 2012. MOYAERT, H.; DE JONG, A.; SIMJEE, S.; et al. Survey of antimicrobial susceptibility of bacterial pathogens isolated from dogs and cats with respiratory tract infections in Europe: ComPath results. Journal of Applied Microbiology, v. 127, p. 29-46, 2019. MURAKAMI, K.; MINAMIDE, W.; WADA, K.; et al. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. Journal of Clinical Microbiology, v. 29, n. 10, p. 2240–2244, 1991. OIE – WORLD ORGANISATION FOR ANIMAL HEALTH. COVID-19. 2021. https://www.oie.int/en/what-we-offer/emergency-and-resilience/covid-19/ Acesso em 20 de setembro de 2021. OLAITAN, A.O.; DANDACHI, I.; BARON, S.A.; DAOUD, Z.; MORAND, S.; ROLAIN, J.- M. Banning colistin in feed additives: a small step in the right direction. The Lancet Infectious Diseases, v. 21, n. 1, p. 29–30, 2021. OLSEN, J.E.; CHRISTENSEN, H.; AARESTRUP, F.M. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. Journal of Antimicrobial Chemotherapy, v. 57, n. 3, p. 450–60, 2006. O’NEILL, J. Tackling drug-resistant infections globally: Final report and recommendations. The review on antimicrobial resistance, London: HM Government and the Wellcome Trust, 2016. NOWAKIEWICZ, A.; ZIÓLKOWSKA, G.; ZIEBA, P.; et al. Modified 16S–23S rRNA intergenic region restriction endonuclease analysis for species identification of Enterococcus strains isolated from pigs, compared with identification using classical methods and matrixassisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Medical Microbiology, v. 64, n. 3, p. 217-223, 2015. PAHLAVANZADEH, S.; KHOSHBAKHT, R.; KABOOSI, H.; MOAZAMIAN, E. Antibiotic resistance and phylogenetic comparison of human, pet animals and raw milk Staphylococcus aureus isolates. Comparative Immunology, Microbiology and Infectious Diseases, v. 79, p. 101717, 2021. PATERSON, D. L.; BONOMO, R. A. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol., v. 18, p. 657–686, 2005. PEIXOTO, P. V.; BARROS, C. S. L. A importância da necropsia em medicina veterinária. Pesquisa Veterinária Brasileira, v. 18, p. 3-4, 1998. PÉREZ-ETAYO, L.; BERZOSA, M.; GONZÁLEZ, D.; VITAS, A.I. Prevalence of Integrons and Insertion Sequences in ESBL-Producing E. coli Isolated from Different Sources in Navarra, Spain. Int J Environ Res Public Health. v. 15, n. 10, 2308, 2018. PÉREZ-SANCHO, M.; VELA, A.I.; GARCÍA-SECO, T.; GONZÁLEZ, S.; DOMÍNGUEZ, L.; FERNÁNDEZ-GARAYZÁBAL, J.F. Usefulness of MALDI-TOF MS as a Diagnostic Tool for the Identification of Streptococcus Species Recovered from Clinical Specimens of Pigs. PLoS ONE, v. 12, n. 1, 2017. PINTO, L.; RADHOUANI, H.; COELHO, C.; MARTINS DA COSTA, P.; SIMOES, R.; BRANDAO, R.M.; et al. Genetic detection of extended-spectrum beta-lactamase containing Escherichia coli isolates from birds of prey from Serra da Estrela Natural Reserve in Portugal. Appl. Environ. Microbiol., v. 76, n. 12, p. 4118–4120, 2010. PLANO DE AÇÃO NACIONAL DE PREVENÇÃO E CONTROLE DA RESISTÊNCIA AOS ANTIMICROBIANOS NO ÂMBITO DA SAÚDE ÚNICA 2018-2022 (PAN-BR). Ministério da Saúde, Secretaria de Vigilância em Saúde, Departamento de Vigilância das Doenças Transmissíveis. Brasília, 2019. http://bvsms.saude.gov.br/bvs/publicacoes/plano_prevencao_resistencia_antimicrobianos.pdf Acesso em 19 de março de 2022. POSTHAUS, H.; BODMER, T.; ALVES, L.; OEVERMANN, A.; SCHILLER, I.; RHODES, S.G.; ZIMMERLI, S. Accidental infection of veterinary personnel with Mycobacterium tuberculosis at necropsy: A case study. Veterinary Microbiology, v. 149, p. 374–380, 2011. PRESCOTT, J.F.; BRAD HANNA, W.J.; REID-SMITH, R.; DROST, K. Antimicrobial drug use and resistance in dogs. Can Veterinary Journal, v. 43, p. 107–116, 2002. REBELO, A. R.; BORTOLAIA, V.; KJELDGAARD, J. S. et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill, v. 23, n. 6, 2018. RADHOUANI, H.; POETA, P.; PINTO, L.; MIRANDA, J.; COELHO, C.; CARVALHO, C.; et al. Proteomic characterization of vanA-containing Enterococcus recovered from Seagulls at the Berlengas Natural Reserve, W Portugal. Proteome Science, v. 8, n. 1, p. 48, 2010. RADHOUANI, H.; SILVA, N.; POETA, P.; TORRES, C.; CORREIA, S.; IGREJAS, G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Frontiers in Microbiology, v. 5, n. 23, p. 1–12, 2014. REZANEJAD, M.; KARIMI, S.; MOMTAZ, H. Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BMC Microbiology, v. 19, n. 305, 2019. RIBEIRO, M.G.; RISSETI, R.M.; BOLAÑOS, C.A.D.; CAFFARO, K.A.; DE MORAIS, A.C.B.; LARA, G.H.B.; ZAMPROGNA, T.O.; PAES, A.C.; LISTONI, F.J.P.; FRANCO, M.M.J. Trueperella pyogenes multispecies infections in domestic animals: a retrospective study of 144 cases (2002 to 2012). Veterinary Quarterly, v. 35, n. 2, p. 82 – 87, 2015. RODRIGUES, N.M.B.; BRONZATO, G. F.; SANTIAGO, G. S.; BOTELHO, L.A.B.; MOREIRA, B.M.; COELHO, I.S.; SOUZA, M.M.S.; COELHO, S.M.O. The Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) identification versus biochemical tests: a study with enterobacteria from a dairy cattle environment. Brazilian Journal of Microbiology, v. 48, n. 1, p. 132-138, 2016. RODRÍGUEZ, C. H.; NASTRO, M.; FAMIGLIETTI, A. Carbapenemases in Acinetobacter baumannii. Review of their dissemination in Latin America. Revista Argentina de Microbiologia. v. 50, n. 3, p. 327–333, 2018. RODRÍGUEZ-MEDINA, N.; BARRIOS-CAMACHO, H.; DURAN-BEDOLLA, J.; GARZARAMOS, U. Klebsiella variicola: an emerging pathogen in humans. Emerging Microbes & Infections, v. 8, n. 1, p. 973–988, 2019. ROGERS, K.L.; FEY, P.D.; RUPP, M.E. Coagulase-Negative Staphylococcal Infections, Infectious Disease Clinics of North America, v. 23, n. 1, p. 73–98, 2009. ROSATO, A.E; KREISWIRTH, B.N; GRAIG, W.A.; EISNER, W.; CLIMO, M.W.; AECHER, G.L. mecA-blaZ corepressors in clinical Staphylococcus aureus isolates. Antimicrobial Agents Chemotherapy, v.47, p. 1463-1466, 2003. RUTGERSSON, C.; FICK, J.; MARATHE, N.; KRISTIANSSON, E.; JANZON, A.; ANGELIN, M.; JOHANSSON, A.; SHOUCHE, Y.; FLACH, C.F.; LARSSON, D.G.J. Fluoroquinolones and qnr Genes in Sediment, Water, Soil, and Human Fecal Flora in an Environment Polluted by Manufacturing Discharges. Environmental Science & Technology, v. 48, n. 14, p. 7825–7832, 2014. SARAIVA, M.M.S.; DE LEON, C.M.C.G.; SILVA, N.M.V.; RASO, T.F.; et al. Staphylococcus sciuri as a Reservoir of mecA to Staphylococcus aureus in Non-Migratory Seabirds from a Remote Oceanic Island. Microbial Drug Resistance, v. 27, n. 4, 2021. SASAKI, T. TSUBAKISHITA, S.; TANAKA, Y.; SAKUSABE, A.; OHTSUKA, M.; HIROTAKI, S.; KAWAKAMI, T.; FUKATA, T.; HIRAMATSU, K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. Journal of Clinical Microbiology, v. 48, n. 3, p. 765–769, 2010. SAWA, T.; KOOGUCHI, K.; MORIYAMA, K. Molecular diversity of extended-spectrum β- lactamases and carbapenemases, and antimicrobial resistance. Journal of Intensive Care, v. 8, n. 1, 2020. SENG, P.; ROLAIN, J.M.; FOURNIER, P.E.; LA SCOLA, B.; DRANCOURT, M.; RAOULT, D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiology, v. 5, n. 11, p. 1733–1754, 2010. SEVERIN, J. A.; LESTARI, E. S.; KUNTAMAN, K.; et al. Nasal carriage of methicillinresistant and methicillin-sensitive strains of Staphylococcus sciuri in the Indonesian population. Antimicrobial agents and chemotherapy, v. 54, n. 12, p. 5413–5417, 2010. SHAHID, M. Citrobacter spp. Simultaneously Harboring blaCTX-M, blaTEM, blaSHV, blaampC, and Insertion Sequences IS26 and orf513: an Evolutionary Phenomenon of Recent Concern for Antibiotic Resistance. Journal of Clinical Microbiology, v. 48, n. 5, p. 1833–1838, 2010. SHARMA, S. K.; GALAV, V.; AGRAWAL, M.; FARIDI, F. N.; KUMAR, B. Multi-drug resistance pattern of bacterial flora obtained from necropsy samples of poultry. Journal of Animal Health and Production, v. 5, n. 4, p. 165-17, 2017. SHEN, C.; ZHONG, L.-L.; YANG, Y.; et al. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study. Lancet Microbe, v. 1, p. 34–43, 2020. SILBERGELD, E.K.; GRAHAM, J.; PRICE, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health, v. 29, p. 151–169, 2008. SMITH, D.L.; HARRIS, A.D.; JOHNSON, J.A.; SILBERGELD, E.K.; MORRIS, J.G. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc. Natl. Acad. Sci, v. 99, n. 9, p. 6434–6439, 2002. SO, A.; FURLONG, M.; HEDDINI, A. Globalisation and antibiotic resistance. British Medical Journal, v. 341, p. 615–616, 2010. SOARES, V.M. Emergência de Klebsiella pneumoniae produtora de carbapenemase (KPC) em um hospital terciário. Bras. Patol. Med. Lab., v. 48, n. 4, p. 251–253, 2012. SOUZA, M. M. S.; COELHO, S. M. O.; COELHO, I. S.; et al. Antimicrobial resistance in animal production: an overview. Revista Brasileira de Medicina Veterinária, v. 38, p. 68-74, 2016. STĘPIEŃ-PYŚNIAK, D.; HAUSCHILD, T.; RÓŻAŃSKI, P.; MAREK. A. MALDI-TOF Mass Spectrometry as a Useful Tool for Identification of Enterococcus spp. from Wild Birds and Differentiation of Closely Related Species. Journal of Microbiology Biotechnology, v. 27, n.6, p. 1128–1137, 2017. STRAUB, J.A.; HERTEL, C.; HAMMES, W.P. A 23S RNAr-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat started cultures and dairy products. Journal of Food Protection, v.62, p. 1150–1156, 1999. SUKRU, K.; UGUR, P.; TUGBA, Y.H.; ALI, O.M. Molecular Identification of Aerococcus viridans Associated with Bovine Mastitis and Determination of Antibiotic Susceptibilities. Arch Animal Husb & Dairy Sci. v. 1, n. 1, 2018. SYKES, J.E. Antimicrobial drug use in dogs and cats. In GIGUÈRE S.; PRESCOTT, J.F.; DOWLING, P.M. Antimicrobial Therapy in Veterinary Medicine, 5th ed, pp. 473–494. Iowa State University Press, USA, 2013. TAUBES, G. The bacteria fight back. Science, v. 321, p. 356–361, 2008. TORRES-CORRAL, Y.; FERNÁNDEZ-ÁLVAREZ, C.; SANTOS, Y. Proteomic and molecular fingerprinting for identification and tracking of fish pathogenic Streptococcus. Aquaculture, v. 498, p. 322–334, 2019. TUNON, G.I.L.; SILVA, E.P.; FAIERSTEIN, C.C. Isolamento de estafilococos multirresistentes de otites em cães e sua importância para a saúde pública. Boletim Epidemiológico Paulista, v. 5, n. 58, p. 4–7, 2008. VAN DER KOLK, J. H.; ENDIMIANI, A.; GRAUBNER, C.; GERBER, V.; PERRETEN, V. Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. Journal of global antimicrobial resistance, v. 16, p. 59–71, 2019. VENUGOPAL, N.; MITRA, S.; TEWARI, R.; GANAIE, F.; SHOME, R.; RAHMAN, H.; SHOME, B.R. Molecular detection and typing of methicillin-resistant Staphylococcus aureus and methicillin-resistant coagulase-negative staphylococci isolated from cattle, animal handlers, and their environment from Karnataka, Southern Province of India, Veterinary World, v. 12, n. 11, p. 1760–1768, 2019. VIJAYAKUMAR, S.; BISWAS, I.; VEERARAGHAVAN, B. Accurate identification of clinically important Acinetobacter spp.: an update. Future science OA, v. 5, n. 7, p. FSO395, 2019. WALLER, K. P.; ASPAN, A.; NYMAN, A.; PERSSON, Y.; ANDERSSON, U. G. CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis. Veterinary Microbiology, v.152, p.112–116, 2011. WANG, C.; FENG, Y.; LIU, L.; WEI, L.; KANG, M.; ZONG. Z. Identification of novel mobile colistin resistance gene mcr-10. Emerging Microbes & Infections, v. 9, n. 1, p. 508–516, 2020. WANGER, A. R.; MORRIS, S. L.; ERICSSON, C.; SINGH, K. V.; LAROCCO, M. T. Latex agglutination-negative methicillin-resistant Staphylococcus aureus recovered from neonates: epidemiologic features and comparison of typing methods. Journal of Clinical Microbiology, v. 30, p. 2583–2588, 1992. WASYL, D.; ZAJĄC, M.; LALAK, A.; SKARŻYŃSKA, M.; SAMCIK, I.; KWIT, R.; et al. Antimicrobial Resistance in Escherichia coli Isolated from Wild Animals in Poland. Microbial Drug Resistance, v. 24, n. 6, p. 807–815, 2018. WOODFORD, N.; JOHNSON, A.; MORRISON, D.; SPELLER, D. Current perspectives on glycopeptide resistance. Clin. Microbiol. Rev., v. 8, p. 585–615, 1995. WORLD HEALTH ORGANIZATION. One Health. 2017a. https://www.who.int/newsroom/ questions-and-answers/item/one-health Acesso em 20 de agosto de 2021. WORLD HEALTH ORGANIZATION. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. 2017b. https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12 Acesso em 31 de outubro de 2021. WORLD HEALTH ORGANIZATION. WHO publishes list of bacteria for which new antibiotics are urgently needed. 2017c https://www.who.int/news/item/27-02-2017-whopublishes- list-of-bacteria-for-which-new-antibiotics-are-urgently-needed Acesso em 07 de novembro de 2021. WORLD HEALTH ORGANIZATION. WHO Antibiotic Categorization. 2019. https://aware.essentialmeds.org/groups Acesso em 20 de setembro de 2021. WORLD HEALTH ORGANIZATION. Tripartite and UNEP support OHHLEP’s definition of “One Health”. 2021. (https://www.who.int/news/item/01-12-2021-tripartite-and-unep-supportohhlep- s-definition-of-one-health) Acesso em 10 de dezembro de 2021. ZHANG, K.; SPARLING, J.; CHOW, B. L.; ELSAYED, S.; HUSSAIN, Z.; CHURCH, D. L.; GREGSON, D. B.; LOUIE, T.; CONLY, J. M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. Journal of Clinical Microbiology, v. 42, n. 11, p. 4947–4955, 2004. ZONG, Z.; PENG, C.; LU, X. Diversity of SCCmec elements in methicillin-resistant coagulasenegative Staphylococcus clinical isolates. PLoS One, v. 6, n. 5, 2009.por
dc.subject.cnpqSaúde Coletivapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69230/2022%20-%20Leticia%20Baptista%20Pinto.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5636
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-05-10T18:38:35Z No. of bitstreams: 1 2022 - Leticia Baptista Pinto.pdf: 1572478 bytes, checksum: 9b8b1148e65527a8c43819d714e79dd8 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-05-10T18:38:35Z (GMT). No. of bitstreams: 1 2022 - Leticia Baptista Pinto.pdf: 1572478 bytes, checksum: 9b8b1148e65527a8c43819d714e79dd8 (MD5) Previous issue date: 2022-03-18eng
Appears in Collections:Mestrado em Ciências Veterinárias

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Leticia Baptista Pinto.pdf1.54 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.