Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/11971
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Freitas, Isabel Ferreira La Rocque de | |
dc.date.accessioned | 2023-12-22T01:59:47Z | - |
dc.date.available | 2023-12-22T01:59:47Z | - |
dc.date.issued | 2014-02-25 | |
dc.identifier.citation | FREITAS, Isabel Ferreira La Rocque de. Papel imunomodulador dos polissacarídeos capsulares glucuronoxilomanana (GXM) e galactoxilomanana (GalXM) de Cryptococcus neorformans na linhagem de macrófagos caninos DH82. 2014. 49 f. Dissertação (Programa de Pós-Graduação em Ciências Veterinárias) - Universidade Federal Rural do Rio de Janeiro, Seropédica. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/11971 | - |
dc.description.abstract | A criptococose é uma doença infecciosa causada pelo fungo Cryptococcus neoformans, acometendo animais e o homem. O C. neoformans é um fungo oportunista, portanto os animais e indivíduos imunocomprometidos são os principais alvos da doença, que atinge principalmente o sistema respiratório e o sistema nervoso central. Um dos principais fatores envolvidos na virulência do fungo é a sua cápsula, cujas principais moléculas constituintes são os polissacarídeos glucuronoxilomanana (GXM) e a galactoxilomanana (GalXM). Esses polissacarídeos são imunomoduladores, ajudando o fungo a escapar das ações do sistema imunológico do hospedeiro. Uma das populações de células alvo da modulação por essas moléculas são os macrófagos. Os macrófagos fazem parte da primeira linha de defesa do sistema imunológico, tanto dos animais quanto do homem, sendo uma importante célula do sistema imune inato e de fundamental importância para o estabelecimento da resposta adaptativa. Além do homem, outros animais podem desenvolver a criptococose, dentre eles os cães. Na infecção canina observa-se a ocorrência de quatro síndromes, inclusive da síndrome neurológica observada em humanos. A literatura relata o possível envolvimento dos macrófagos no sucesso da infecção. Nesse contexto, os macrófagos poderiam estar sendo modulados de forma desfavorável quanto a sua atividade microbicida, seja pelo fenômeno de funcionar como “cavalo de Tróia” levando leveduras fagocitadas a locais estratégicos ou mesmo tendo sua maquinaria de ativação comprometida. A escassez de informação na criptococose canina nos levou a avaliar se os polissacarídeos derivados da cápsula de C. neoformans são capazes de modular as atividades microbicidas de macrófagos e, portanto, do sistema imunológico do hospedeiro. Nossos trabalhos com a linhagem de macrófagos caninos DH82 juntamente com os polissacarídeos capsulares mostram que a cápsula do fungo, especialmente devido à GalXM e GXM, tende a suprimir a atividade microbicida/fungicida do macrófago através da inibição de mediadores pró-inflamatórios, como IL-12 e TNF-α, e indução de marcadores supressores, como o fator nuclear PPAR-γ. Junto a esses resultados, observamos a viabilidade de leveduras S. cerevisiae fagocitadas pelas células DH82 na presença de GalXM, GXM e a cápsula bruta de C. neoformans, indicando que este tipo celular poderia ser capaz de migrar a outros sítios dentro de um organismo com criptococose levando o fungo oculto e viável dentro de si, facilitando uma disseminação sistêmica | por |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Cryptococcus neoformans | por |
dc.subject | cápsula | por |
dc.subject | macrófago | por |
dc.subject | Cryptococcus neoformans | eng |
dc.subject | capsule | eng |
dc.subject | macrophage | eng |
dc.title | Papel imunomodulador dos polissacarídeos capsulares glucuronoxilomanana (GXM) e galactoxilomanana (GalXM) de Cryptococcus neorformans na linhagem de macrófagos caninos DH82 | por |
dc.title.alternative | Immunomodulatory role of capsular polysaccharides glucuronoxilomanana (GXM) and galactoxilomanana (GalXM) of Cryptococcus neorformans in DH82 canine macrophage cell line. | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | Cryptococcosis is an infectious disease caused by the fungus Cryptococcus neoformans, affecting animals and human. C. neoformans is an opportunistic fungus, so immunocompromised animals and individuals are the main targets of the disease, which primarily affects the respiratory system and central nervous system. One of the main factors involved in fungal virulence is its capsule, whose main constituent molecules are glucuronoxilomanana polysaccharides (GXM) and galactoxilomanana (GalXM). These polysaccharides are immunomodulators, helping the fungus to escape the actions of the host immune system. One of the target cells by modulation of these molecules are macrophages. Macrophages are part of the first line of defense of the immune system, both in animals and man, being an important cell of the innate immune system and fundamental to the establishment of the adaptive response. Besides human, other animals may develop cryptococcosis, including dogs. In canine infection is observed the occurrence of four syndromes, including the neurological syndrome also observed in humans. The literature reports the possible involvement of macrophages in the successful of infection. In this context, macrophages could be down modulated to its microbicide activity, either by the phenomenon of acting as "Trojan horse" leading phagocytosed yeasts to strategic sites or even having their machines compromised. The dearth of information on canine cryptococcosis led us to assess whether the polysaccharides derived from the capsule of C. neoformans can modulate the microbicide activity of macrophages and thus the immune system of the host. Our work with the cell line of canine DH82 macrophages together with the capsular polysaccharides show that the capsule of the fungus , especially due to GalXM and GXM, tends to suppress microbicide / fungicidal activity of macrophages through inhibition of pro - inflammatory mediators such as IL-12 and TNF - α, and induction of suppressor markers such as nuclear factor PPAR-γ. Along with these results, we observe the viability of yeast S. cerevisiae engulfed by DH82 cells in the presence of GalXM, GXM and capsule of C. neoformans, indicating that this cell type is able to migrate to other sites within an organism with cryptococcosis leading hidden within himself and viable fungus, facilitating systemic dissemination. | eng |
dc.contributor.advisor1 | Lima, Débora Decotè Ricardo de | |
dc.contributor.advisor1ID | 875.362.007-06 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/4993524291130707 | por |
dc.contributor.advisor-co1 | Lima, Célio Geraldo Freire de | |
dc.contributor.advisor-co1ID | 002.031.157-59 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/9591632153788667 | por |
dc.contributor.referee1 | Nimrichter, Leonardo | |
dc.contributor.referee2 | Nascimento, Danielle de Oliveira | |
dc.contributor.referee3 | Silva, Lucia Helena Pinto da | |
dc.creator.ID | 100.788.307-37 | por |
dc.creator.Lattes | http://lattes.cnpq.br/4993524291130707 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Veterinária | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Ciências Veterinárias | por |
dc.relation.references | AGUIRRE, K.; MILLER, S. MHC class II-positive perivascular microglial cells mediate resistance to Cryptococcus neoformans brain infection. Glia, v. 39, p. 184–188, 2002. ALVAREZ, M.; BURN, T.; LUO, Y.; PIROFSKI, L.; CASADEVALL, A. The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiology, v. 9(51), 2009. ALVAREZ, M.; CASADEVALL, A. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunology, v.16, p. 8-16, 2007. ARAUJO, G. S.; FONSECA, F. L.; PONTES, B.; TORRES, A.; CORDERO, R. J. B.; ZANCOPÉ-OLIVEIRA, R. M.; CASADEVALL, A.; VIANA, N. B.; NIMRICHTER, L.; RODRIGUES, M. L.; GARCIA, E. S.; SOUZA, W.; FRASES, S. Capsules from pathogenic and non-pathogenic Cryptococcus spp.manifest significant diferences in structure and ability to protect against phagocytic cells. PLoS One, v. 7(1), p. 1-11, 2012. BARLUZZI, R.; BROZZETTI, A.; DELFINO, D.; BISTONI, F.; BLASI, E. Role of the capsule in microglial cell-Cryptococcus neoformans interaction: impairment of antifungal activity but not of secretory functions. Medical Mycology, v. 36(4), p. 189–197, 1998. BARNES, A.; BEE, A.; BELL, S.; GILMORE, W.; MEE, A.; MORRIS, R.; CARTER, S. D. Immunological and inflammatory characterization of three canine cell lines: k1, k6 and DH82. Veterinary Immunology and Immunopathology, v. 75, p. 9-25, 2000. BARNETT, J. A. A history of research on yeasts 14:1 medical yeasts part 2, Cryptococcus neoformans. Yeast, v.27, p. 875-904, 2010. BLACKSTOCK, R. Cryptococcal capsular polysaccharide utilizes an antigen-presenting cell to induce a T suppressor cell to secrete TsF. Journal of Medical and Veterinary Mycology, v. 34(1), p. 19–30, 1996. BLACKSTOCK, R.; MURPHY, J. W. Secretion of the C3 component of complement by peritoneal cells cultured with encapsulated Cryptococcus neoformans. Infection and Immunity, v. 65(10), p. 4114–4121, 1997. BOLAÑOS, B.; MITCHELL, T. G. Phagocytosis and killing of Cryptococcus neoformans by rat alveolar macrophages in the absence of serum. Journal of Leukocyte Biology, v. 46(6), p. 521-528, 1989. BOSE, I.; REESE, A. J.; ORY, J. J.; JANBON, G.; DOERING, T. L. A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryotic Cell, v. 2(4), p. 655–663, 2005. CARNEIRO, A. B.; IACIURA, B. M.; NOHARA, L. L.; LOPES, C. D.; VEAS, E. M.; MARIANO, V. S.; BOZZA, P. T.; LOPES, U. G.; ATELLA, G. C.; ALMEIDA, I. C.; SILVA-NETO, M. A. Lysophosphatidylcholine triggers TLR2- and TLR4-mediated signaling pathways but counteracts LPS-induced NO synthesis in peritoneal macrophages by inhibiting NF-κB translocation and MAPK/ERK phosphorylation. PloS One, v. 8(9), 2013. CASADEVALL, A. Criptococci at the brain gate: break and enter or use a Trojan horse. Journal of Clinical Investigation, v. 120(5), p. 1389-1392, 2010. CASADEVALL, A. Fungi and rise of mammals. PLoS Pathogens, v. 8(8), p. 1-3, 2012. CASTELLÁ, G.; ABARCA, M. L.; CABAÑES, F. J. Criptococosis y animals de compañía. Revista Iberoamericana de Micologia, v. 25, p. 19-24, 2008. CHANG, Y. C.; KWON-CHUNG, K. J. Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Molecular and Cell Biology, v. 14(7), p. 4912-4919, 1994. CHANG, Z. L.; NETSKI, D.; THORKILDSON, P.; KOZEL, T. R. Binding and internalization of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus 44 neoformans, by murine peritoneal macrophages. Infection and Immunology, v. 74(1), p. 144–151, 2006. CHARLIER, C.; NIELSEN, K.; DAOU, S.; BRIGITTE, M.; CHRETIEN, F.; DROMER, F. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infection and Immunology, v. 77(1), p. 120–127, 2009. CHATURVEDI, V.; WONG, B.; NEWMAN, S. L. Oxidative killing of Cryptococcus neoformans by human neutrophils. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. Journal of Immunology, v.156, p.3836–3840, 1996. CHERNIAK, R.; JONES, R. G.; REISS, E. Structure determination of Cryptococcus neoformans serotype A-variant glucuronoxylomannan by 13C-n.m.r. spectroscopy. Carbohydrate Research, v. 172(1), p. 113-138, 1988. CHERNIAK, R.; SUNDSTROM, J. B. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infection and Immunity, v. 62(5), p. 1507–1512, 1994. CHIAPELLO, L. S.; AOKI, M. P.; RUBINSTEIN, H. R.; MASIH, D. T. Apoptosis induction by glucuronoxylomannan of Cryptococcus neoformans. Medical Mycology, v. 41(4), p. 347-353, 2003. CHRISMAN, C. J.; ALBUQUERQUE, P.; GUIMARÃES, A. J.; NIEVES, E.; CASADEVALL, A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathogens, v. 7(5), p. 1-15, 2011. COELHO, C.; BOCCA, A.; CASADEVALL, A. The intracelular life of Cryptococcus neoformans. Annual Review of Pathology: Mechanisms of Disease, v. 9, p. 219-238, 2013. COHEN, H. B.; MOSSER, D. M. Extrinsic and intrinsic control of macrophage inflammatory responses. Journal of Leukocyte Biology, v. 94(5), p. 913-919, 2013. CORDERO, R. J. B.; PONTES, B.; GUIMARÃES, A. J.; MARTINEZ, L. R.; RIVERA, J.; FRIES, B. C.; NIMRICHTER, L.; RODRIGUES, M. L.; VIANA, N. B.; CASADEVALL, A. Chronological aging is associated with biophysical and chemical changes in the capsule of Cryptococcus neoformans. Infection and Immunity, v. 79(12), p. 4990-5000, 2011. DAN, J. M.; WANG, J. P.; LEE, C. K.; LEVITZ, S. M. Cooperative stimulation of dendritic cells by Cryptococcus neoformans mannoproteins and CpG oligodeoxynucleotides. PLoS ONE, v. 3(4), 2008. DAVIS, M. J.; TSANG, T. M.; QIU, Y.; DAYRIT, J. K.; FREIJ, J. B.; HUFFNAGLE, G. B.; OLSZEWSKI, M. A. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio, v. 4(3), 2013. DE JESUS, M.; PARK, C. G.; SU, Y.; GOLDMAN, D. L.; STEINMAN, R. M.; CASADEVALL, A. Spleen deposition of Cryptococcus neoformans capsular glucuronoxylomannan in rodents occurs in red pulp macrophages and not marginal zone macrophages expressing the C-type lectin SIGN-R1. Med Mycol, v. 46(2), p. 153–162, 2008. DELFINO, D.; CIANCI, L.; LUPIS, E.; CELESTE, A.; PETRELLI, M. L.; CURRO, F.; CUSUMANO, V.; TETI, G. Interleukin-6 production by human monocytes stimulated with Cryptococcus neoformans components. Infection and Immunity, v. 65(6), p. 2454–2456, 1997. DELFINO, D.; CIANCI, L.; MIGLIARDO, M.; MANCUSO, G.; CUSUMANO, V.; CORRADINI, C.; TETI, G. Tumor necrosis factor inducing activities of Cryptococcus neoformans components. Infection and Immunity, v. 64(12), p. 5199–5204, 1996. DOERING, T. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annual Review Microbiology, v. 63, p. 223-247, 2009. FINDLEY, K.; RODRIGUEZ-CARRES, M.; METIN, B.; KROISS, J.; FONSECA, A.; VILGALYS, R.; HEITMAN, J. Phylogeny and phenotypic characterization of pathogenic Cryptococcus 45 species and closely related saprobic taxa in the Tremellales. Eukaryot Cell, v. 8(3), p. 353-361, 2009. FREIRE-DE-LIMA, C. G.; XIAO, Y. Q.; GARDAI, S. J.; BRATTON, D. L.; SCHIEMANN, W. P.; HENSON, P. M. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem, v. 281(50), p. 38376-84, 2006. FUJIMOTO, Y.; NAKATANI, N.; KUBO, T.; SEMI, Y.; YOSHIDA, N.; NAKAJIMA, H.; ISERI, T.; AZUMA, Y. T.; TAKEUCHI, T. Adenosine and ATP Affect LPS-Induced Cytokine Production in Canine Macrophage Cell Line DH82 Cells. The Journal of Veterinary Medical Science, v. 74(1), p. 27-34, 2012. GARCIA-HERMOSO D.; DROMER F.; JANBON G. Cryptococcus neoformans capsule structure evolution in vitro and during murine infection. Infect Immun, v. 72(6), p. 3359-3365, 2004. GARCÍA-RODAS, R.; ZARAGOZA, O. Catch me if you can: phagocytosis and killing avoidance byCryptococcus neoformans. FEMS Immunology and Medical Microbiology, v. 64(2), p. 147-161, 2012. GRONE, A.; FONFARA, S.; BAUMGARTNER, W. Cell Type-Dependent Cytokine Expression after Canine Distemper Virus Infection. Viral Immunology, v. 15(3), p. 493-505, 2002. HARRUS, S.; WANER, T.; FRIEDMANN-MORVINSKI, D.; FISHMANA, Z.; BARKA, H.; HARMELIND, A. Down-regulation of MHC class II receptors of DH82 cells, following infection with . Veterinary Immunology and Immunopathology, v. 96, p. 239-143, 2003. HARRUS, S.; WANER, T.; FRIENDMAN-MORVINSKI, D.; FISHMAN, Z.; BARK, H.; HARMELIN A. Down-regulation of MHC class II receptors of DH82 cells, following infection with Ehrlichia canis. Veterinary Immunology and Immunopathology, v. 96, p. 239-243, 2003. HEISE, N.; GUTIERREZ, A. L.; MATTOS, K. A.; JONES, C.; WAIT, R.; PREVIATO, J. O.; MENDONCA-PREVIATO, L. Molecular analysis of a novel family of complex glycoinositolphosphoryl ceramides from Cryptococcus neoformans: structural differences between encapsulated and acapsular yeast forms. Glycobiology, v. 12(7), p. 409-420, 2002. HINES, R.; MAURY, W. DH82 cells: a macrophage cell line for the replication and study of equine infectious anemia virus. Journal of Virological Methods, v. 95, p.47–56, 2001. IDNURM, A.; YONG-SUN, B.; NIELSEN, K.; LIN, X.; FRASER, J. A.; HEITMAN, J. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nature Reviews - Microbiology, v. 3, p. 753-764, 2005. JOHANN, A. M.; VON KNETHEN, A.; LINDEMANN, D.; BRUNE, B. Recognition of apoptotic cells by macrophages activates the peroxisome proliferator-activated receptor-gamma and attenuates the oxidative burst. Cell Death Differ, v. 13(9), p. 1533-1440, 2006. KECHICHIAN, T. B.; SHEA, J.; DEL, P. M. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice. Infection and Immunology, v. 75(10), p. 4792–4798, 2007. KIDD, S. E.; HAGEN, F.; TSCHARKE, R. L.; HUYNH, M.; BARLLETT, K. H.; FYFE, M.; MACDOUGALL, L.; BOEKHOUT, T.; KWON-CHUNG, K. J.; MEYER, W. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proceedings of the National Academy of Sciences of the United States of America, v. 101(49), p. 17258-17263, 2004. 46 KIM, S. K.; SHIN, M. S.; JUNG, B. K.; SHIM, J. Y.; WON, H. S.; LEE, P. R.; KIM, A. Effect of dehydroepiandrosterone onlipopolysaccharide-induced interleukin-6 production in DH82 cultured canine macrophage cells. Journal of Reproductive Immunology, v. 70, p. 71-81, 2006. KOZEL, T. R.; MASTROIANNI, R. P. Inhibition of Phagocytosis by Cryptococcal Polysaccharide: Dissociation of the Attachment and Ingestion Phases of Phagocytosis. Infection and Immunity, v. 14(1), p. 62-67, 1976. KOZEL, T. R.; TABUNI, A.; YOUNG, B. J.; LEVITZ, S. M. Influence of opsonization conditions on C3 deposition and phagocyte binding of large- and small-capsule Cryptococcus neoformans cells. Infection and Immunity, v. 64(6), p. 2336–2338, 1996. LAVELY, J. & LIPSITZ, D. Fungal Infections of the Central Nervous System in the Dog and Cat. Clinical Thechniques in Small Animal Practice, v. 20, p. 212-219, 2005. LESTER, S. J.; MALIK, R.; BARLETT, K. H.; DUNCAN, C. G. Criptococcosis: updates and emergence of Cryptococcus gattii. Veterinary Clinical Pathology, v. 40(1), p. 4-17, 2011. LI. S. S. & MODY, C. H. Criptococcus. Proceedings of the American Thoracic Society, v. 7, p. 186-196, 2010. LIN, X. Criptococcus neoformans: morphogenesis, infection, and evolution. Infections, Genetics and Evolution, v. 9, p. 401-416, 2009. LIN, X.; HEITMAN, J. A. The biology of the Cryptococcus neoformans species complex. Annual Review of Microbiology, v. 60, p. 69-105, 2006. LIN, X.; HULL, C. M.; HEITMAN, J. Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature, v. 434, p. 1017-1021, 2005. MA, H.; CROUDACE, J. E.; LAMMAS, D. A.; MAY, R. C. Expulsion of live pathogenic yeast by macrophages. Current Biology, v. 16(21), p. 2156–2160, 2006. MA, H.; MAY, R. C. Virulence in Cryptococcus species. Advances in Applied Microbiology, v. 67, p. 131-190, 2009. MAIA, C.; ROLÃO, N.; NUNES, M.; GONÇALVES, L.; CAMPINO, L. Infectivity of five different types of macrophages by Leishmania infantum. Acta Tropica, v. 103, p.150–155, 2007. MAMBULA, S. S.; SIMONS, E. R.; HASTEY, R.; SELSTED, M. E.; LEVITZ, S. M. Human neutrophil-mediated nonoxidative antifungal activity against Cryptococcus neoformans. Infection and Immunity, v.68, p.6257–6264, 2000. MARCASSO, R. A.; SIERRA, S.; BAHR ARIAS, M. V. B.; BRACARENSE, A. P. R. L.; YAMAMURA, A. A. M.; DE BIASI, F.; LOPES, B. A.; AMUDE, A. M.; CORTÊZ, D. E. A. Criptococose no sistema nervoso de cães - relato de três casos. Semina: Ciências Agrárias, v. 26(2), p. 229-238, 2005. MARTINS, D. B.; BARBOSA, A. L. T. B.; CAVALHEIRO, A.; LOPES, S. T. A.; SANTURIO, J. M.; SCHOSSLER, J. E.; MAZZANTI, A. Diagnóstico de criptococose canina pela citologia aspirativa por agulha fina. Ciência Rural, v.38(3), p.826-829, 2008. MAXSON, M. E.; DADACHOVA, E.; CASADEVALL, A.; ZARAGOZA, O. Radial mass density, charge, and epitope distribution in the Cryptococcus neoformans capsule. Eukaryot Cell, v. 6(1), p. 95–109, 2007. MCCLELLAND, E. E.; BERNHARDT, P.; CASADEVALL, A. Estimating the relative contributions of virulence factors for pathogenic microbes. Infection and Immunity, v. 74(3), p. 1500-1504, 2006. MCFADDEN, D. C.; DE JESUS, M.; CASADEVALL, A. The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. The Journal of Biologu Chemistry, v. 281(4), p. 1868-1875, 2006. 47 MCFADDEN, D. C.; FRIES, B. C.; WANG F.; CASADEVALL, A. Capsule structural heterogeneity and antigenic variation in Cryptococcus neoformans. Eukaryot Cell, v. 6(8), p. 1464-1473, 2007. MONARI, C.; KOZEL, T. R.; PAGANELLI, F.; PERICOLINI, E.; PERITO, S.; BISTONI, F.; CASADEVALL, A.; VECCHIARELLI, A. Microbial immune suppression mediated by direct engagement of inhibitory Fc receptor. Journal of Immunology, v. 177(10), p. 6842–6851, 2006. MONARI, C.; PAGANELLI, F.; BISTONI, F.; KOZEL, T. R.; VECCHIARELLI, A. Capsular polysaccharide induction of apoptosis by intrinsic and extrinsic mechanisms. Cellular Microbiology, v. 10(10), p. 2129-2137, 2008. MONARI, C.; PERICOLINI, E.; BISTONI, G.; CASADEVALL, A.; KOZEL, T. R.; VECCHIARELLI, A. Cryptococcus neoformans capsular glucuronoxylomannan induces expression of fas ligand in macrophages. Journal of Immunology, v. 174(6), p. 3461–3468, 2005. MUKHERJEE, J.; NUSSBAUM, G.; SCHARFF, M. D.; CASADEVALL, A. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. Brief Definitive Report, v. 181, p. 405-409, 1995. (*) MUKHERJEE, S.; LEE, S. C.; CASADEVALL, A. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infection and Immunity, v. 63(2), p. 573-579, 1995. MURPHY, J. W.; COZAD, G. C. Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infection and Immunity, v. 5(6), p.896–901, 1972. NIMRICHTER, L.; FRASES, S.; CINELLI, L. P.; VIANA, N. B.; NAKOUZI, A.; TRAVASSOS, L. R.; CASADEVALL, A.; RODRIGUES, M. L. Self-aggregation of Cryptococcus neoformans capsular glucuronoxylomannan is dependent on divalent cations. Eukaryotic Cell, v. 6(8), p. 1400–1410, 2007. OLIVEIRA, D. L.; FREIRE-DE-LIMA, C. G.; NOSANCHUK, J. D.; CASADEVALL, A.; RODRIGUES, M. L.; NIMRICHTER, L. Extracellular vesicles from Cryptococcus neoformans modulate macrophage functions. Infection and Immunity, v. 78(4), p. 1601-1609, 2010. OLIVEIRA, D.L.; G. FREIRE-DE-LIMA, C.; NOSANCHUK, J. D.; CASADEVALL, A., RODRIGUES, M. L.; NIMRICHTER, L. Extracellular Vesicles from Cryptococcus neoformans Modulate Macrophage Functions. Infection and Immunity, v. 78(4), p. 1601-1609, 2010. PEREIRA, M. F.; SANTOS, B. M.; SILVA, V. C. L.; PEREIRA, H. N. S.; SILVA, L. B. G.; PAIVA, B. H. A.; BARROS, R. B.; DIAS, M. B. M. C.; NEVES, A. K. R.; OLIVEIRA, A. A. F. Aspectos clínicos e anatomopatológicos da criptococose nasal com disseminação sistêmica em cão: relato de caso. Medicina Veterinária, v.7(2), p.7-15, 2013. PERFECT, J. R.; LANG, S. D.; DURACK, D. T. Chronic cryptococcal meningitis: a new experimental model in rabbits. The American Journal of Pathology, v.102, p.177– 194, 1980. PERICOLINI, E.; ALUNNO, A.; GABRIELLI, E.; BARTOLONI, E.; CENCI, E.; CHOW, S.; BISTONI, G.; CASADEVALL, A.; GERLI, R.; VECCHIARELLI, A. The microbial capsular polysaccharide galactoxylomannan inhibits IL-17ª production in circulating T cells from rheumatoid arthritis patients. PLoS One, v. 8(1), p. 1-11, 2013. PERICOLINI, E.; CENCI, E.; MONARI, C.; DE JESUS, M.; BISTONI, F.; CASADEVALL, A.; VECCHIARELLI, A. Cryptococcus neoformans capsular polysaccharide component galactoxylomannan induces apoptosis of human T-cells through activation of caspase-8. Cellular Microbiology, v. 8(2), p. 267–275, 2006. 48 PIETRELLA, D.; CORBUCCI, C.; PERITO, S.; BISTONI, G.; VECCHIARELLI, A. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infection and Immunity, v. 73(2), p.820–827, 2005. PILLARISETTY, V. G.; KATZ, S. C.; BLEIER, J. I.; SHAH, A. B.; DEMATTEO, R. P. Natural killer dendritic cells have both antigen presenting and lytic function and in response to CpG produce IFN-gamma via autocrine IL-12. Journal of Immunology, v. 174(5), p. 2612-2618, 2005. PRADO, M.; DASILVA, M. B.; LAURENTI, R.; TRAVASSOS, L. R.; TABORDA, C. P. Mortality due to systemic mycoses as a primary cause of death or in associate on with AIDS in Brazil: a review from1996 to 2006. Memórias do Instituto Oswaldo Cruz, v. 104, p. 513–521, 2006. QUEIROZ, J. P. A. F.; SOUSA, F. D. N.; LAGE, R. A.; IZAEL, M. A.; SANTOS, A. G. A Criptococose – Uma revisão bibliográfica. Acta Veterinaria Brasilica, v. 2(2), p. 32-38, 2008. RAMACHANDRA, L.; SIMMONS, D.; HARDING, C. V. MHC molecules and microbial antigen processing in phagosomes. Current Opinion of Immunology, v. 21(1), p. 98-104, 2009. RETINI, C.; VECCHIARELLI, A.; MONARI, C.; BISTONI, F.; KOZEL, T. R. Encapsulation of Cryptococcus neoformans with glucuronoxylomannan inhibits the antigen-presenting capacity of monocytes. Infection and Immunity, v. 66(2), p. 664–669, 1998. ROBSON, K.; SMITH, P. M. Cryptococcal meningoencephalitis in a dog. Veterinary Record, v. 168, p. 538-540, 2011. ROCHA, J. D. B. Modulação das redes extracelulares de neutrófilos (NETs) pelo fungo oportunista Cryptococcus neoformans. 2013. 108 f. Tese (Doutorado em Ciências) – Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2013. RODRIGUES, M. L.; NIMRICHTER, L.; CORDERO, R. J. B.; CASADEVALL, A. Fungal polysaccharides: biological activity beyond the usual structural properties. Frontiers in Microbiology, v. 2(171), p. 1-4, 2011. SHI, M. et al. Real-time imaging of trapping and urease-dependent transmigration of Cryptococcus neoformans in mouse brain. The Journal of Clinical Investigation, v. 120(5), p. 1683-1693, 2010. SRIKANTA, D.; SANTIAGO-TIRADO, F. H.; DOERING, T. L. Cryptococcus neoformans: historical curiosity to modern pathogen. Yeast, v. 31(2), p. 47-60, 2014. SYKES, J. E.; STURGES, B. K.; CANNON, M. S.; GERICOTA, B.; HIGGINS, R. J.; TRIVEDI, S. R.; DICKINSON, P. J.; VERNAU, K. M.; MEYER, W.; WISNER, E. R. Clinical Signs, Imaging Features, Neuropathology, and Outcome in Cats and Dogs with Central Nervous System Cryptococcosis from California. Journal of Veterinary International Medicine, v. 24, p. 1427-1438, 2010. TAJIMA, T.; WADA, M. Inhibitory effect of interferon gamma on frequency of Ehrlichia canis-infected cells in vitro. Veterinary Immunology and Immunopathology, v. 156(3-4), p. 200-204, 2013. TRIVEDI, S. R.; SYKES, J. E.; CANNON, M. S.; WISNER, E. R.; MEYER, W.; STURGES, B. K.; DICKINSON, P. J.; JOHNSON, L. R. Clinical features and epidemiology of cryptococcosis in cats and dogs in California: 93 cases (1988-2010). Journal of the American Veterinary Medical Association, v. 239(3), p. 357-369, 2011. TUCKER, S. C.; CASADEVALL, A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles 49 containing polysaccharide in the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, v. 99(5), p. 3165–3170, 2002. VAISHNAV, V. V.; BACON, B. E.; O'NEILL, M. Cherniak R. Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap67. Carbohydrate Research, v. 306(12), p. 315–330, 1998. VILLENA, S. N.; PINHEIRO, R. O.; PINHEIRO, C. S.; NUNES, M. P.; TAKIYA, C. M.; DOSREIS, G. A.; PREVIATO, J. O.; MENDONÇA-PREVIATO, L.; FREIRE-DE-LIMA, C. G. Capsular polysaccharides galatoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cellular Microbiology, v. 10(6), p. 1274-1285, 2008. L. WELLMAN, STEVEN VOELZ, K. & MAY, R. C. Cryptococcal interactions with the host immune system. Eukaryotic Cell, v. 9(6), p. 835-846, 2010. VON KNETHEN, A.; SHA, L. K.; KUCHLER, L.; HEEG, A. K.; FUHRMANN, D.; HEIDE, H.; WITTIG, I.; MAIER, T. J.; STEINHILBER, D.; BRUNE, B. 5-Lipoxygenase contributes to PPAR-γ activation in macrophages in response to apoptotic cells. Cellular Signaling, v. 25(12), p. 2762-2768, 2013. VORATHAVORN, V. I.; SYKES, J. E.; FELDMAN, D. G. Cryptococcosis as an emerging systemic mycosis in dogs. Journal of Veterinary Emergency and Critical Care, v. 23(5), p. 489-497, 2013. WASSERMAN, J.; DIESE, L.; VANGUNDY, Z.; LONDON, C.; CARSON, W. E.; PAPENFUSS, T. L. Suppression of canine myeloid cells by soluble factors from cultured canine tumor cells. Veterinary Immunology and Immunopathology, v.145, p. 420– 430, 2012. WELLMAN, M. L.; KRAKOWKA, S.; JACOBS, R. M.; KOCIBA, G.J. A macrophage – monocyte cell line from a dog with malignant histiocytosis. In Vitro Cellular & Developmental Biology, v. 24(3), p. 223-229, 1988. ZARAGOZA, O.; RODRIGUES, M. L.; JESUS, M.; FRASES, S.; DADACHOVA, E.; CASADEVALL, A. The capsule of the fungal pathogen Cryptococcus neoformans. Advances in Applied Microbiology, v. 68, p. 133-216, 2009. | por |
dc.subject.cnpq | Medicina Veterinária | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/11934/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/17276/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/23594/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/29972/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/36346/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/40516/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/47096/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/53510/2014%20-%20Isabel%20Ferreira%20La%20Rocque%20de%20Freitas.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/3205 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-12-30T13:27:47Z No. of bitstreams: 1 2014 - Isabel Ferreira La Rocque de Freitas.pdf: 2308298 bytes, checksum: 3a8fe10a5de4da0c40b82b373d20cc5c (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2019-12-30T13:27:47Z (GMT). No. of bitstreams: 1 2014 - Isabel Ferreira La Rocque de Freitas.pdf: 2308298 bytes, checksum: 3a8fe10a5de4da0c40b82b373d20cc5c (MD5) Previous issue date: 2014-02-25 | eng |
Appears in Collections: | Mestrado em Ciências Veterinárias |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2014 - Isabel Ferreira La Rocque de Freitas.pdf | Isabel Ferreira La Rocque de Freitas. | 2.25 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.