Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/13316
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lomeu, Alice Azevedo | |
dc.date.accessioned | 2023-12-22T02:45:21Z | - |
dc.date.available | 2023-12-22T02:45:21Z | - |
dc.date.issued | 2022-12-14 | |
dc.identifier.citation | LOMEU, Alice Azevedo. Cultivo de microalgas em água residuária da bovinocultura: avaliação da aplicação de ozônio e CO2 na produção de biomassa e lipídeos. 2022. 53 f. Dissertação (Mestrado em Engenharia Agrícola e Ambiental) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/13316 | - |
dc.description.abstract | O aumento da demanda por energia acarreta em um aumento do consumo de combustíveis fósseis. Contudo, as jazidas de petróleo do planeta em breve atingirão patamares insustentáveis, abrindo a porta para obtenção de biocombustíveis, como os produzidos a partir de microalgas. Neste estudo, água residuária da bovinocultura (ARB) foi utilizada para o cultivo de um mix de microalgas em fotobiorreatores de coluna. Foram realizadas sete rodadas de experimentos com a adição de CO2 (ControleCO2), aplicação de ozônio por 10, 20 e 30 minutos (O3T10, O3T20 e O3T30) e uma combinação dos dois tratamentos anteriores (O3T10CO2 e O3T20CO2). A massa seca produzida variou de 1,40 a 18,63 g L-1 e biofixação de CO2 de 30,47 a 4.828,68 mg L-1 d - 1 . Alto percentual de lipídios foi registrado, atingindo 48% em O3T30 e O3T20, indicando que houve stress nas microalgas expostas a água residuária ozonizada, culminando na acumulação de lipídios. Carboidratos variaram de 21,67 a 30%. O ácido graxo C16:0 foi o detectado em maiores concentrações em todos os experimentos. O3T30, O3T10CO2 e O3T20CO2 registraram valores menores que 12% para C18:3, enquadrando-se nos requisitos da EN 14214. Remoções de até 100% foram registradas para N-NH3, 99,62% para P, 91,74% para DQO e 98,6% para fenóis. O CO2 foi o fator decisivo na produtividade de biomassa, contudo a aplicação de ozônio foi o fator que influenciou no conteúdo lipídios. Os resultados mostraram que a ARB é uma alternativa promissora para o cultivo de microalgas e a produção de biocombustíveis em quantidade e qualidade expressivamente relevantes frente ao cenário atual de cultivo de microalgas em águas residuárias. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Águas residuárias | por |
dc.subject | Biorremediação | por |
dc.subject | Biodiesel | por |
dc.subject | Ácidos graxos. | por |
dc.subject | Wastewater | eng |
dc.subject | Bioremediation | eng |
dc.subject | Biodiesel | eng |
dc.subject | Fatty acids | eng |
dc.title | Cultivo de microalgas em água residuária da bovinocultura: avaliação da aplicação de ozônio e CO2 na produção de biomassa e lipídeos | por |
dc.title.alternative | Microalgae cultivation in cattle wastewater: evaluation of ozone application and CO2 in the biomass production and lipids | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | The increased demand for energy results in an increase in fossil fuel consumption. However, the planet’s oil deposits will soon reach unsustainable levels, presenting an opportunity for biofuels. In this study, cattle wastewater (CWW) was used to cultivate a microalgae consortium in photobioreactors. Seven rounds of experiments were carried out with the addition of CO2 (ControleCO2), ozone application for 10, 20 and 30 minutes (O3T10, O3T20 and O3T30) and a combination of CO2 and ozone (O3T10CO2 and O3T20CO2). Maximum dry biomass (18.63 g L -1 ) and CO2 biofixation (8,047.79 mg L-1 d -1 ) were obtain in O3T20CO2. 48% of lipid was registered in O3T30 and O3T20, indicating that microalgae were stressed when exposed to ozonized wastewater. C16:0 was detected in higher concentrations in all experiments. O3T30, O3T10CO2 and O3T20CO2 had values for C18:3 in accordance with the requirements of EN 14214. Removals of up to 100% for NH3-N, 99.6% for P and 91.7% for COD were recorded. CO2 was the main factor regarding the biomass productivity, however was the ozone application that influenced the lipid content. The results show that the CWW is a promising alternative to microalgae cultivation and biodiesel production in significantly quantity and quality in comparison to the current scenario of microalgae cultivation. | eng |
dc.contributor.advisor1 | Mendonça, Henrique Vieira de | |
dc.contributor.advisor1ID | 071.472.306-12 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-7242-5110 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8897355054570578 | por |
dc.contributor.referee1 | Mendonça, Henrique Vieira de | |
dc.contributor.referee1ID | 071.472.306-12 | por |
dc.contributor.referee1ID | https://orcid.org/0000-0001-7242-5110 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/8897355054570578 | por |
dc.contributor.referee2 | Salvador, Conan Ayade | |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/9667991641636333 | por |
dc.contributor.referee3 | Assemany, Paula Peixoto | |
dc.contributor.referee3ID | https://orcid.org/0000-0001-7596-7804 | por |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/1498629994153004 | por |
dc.creator.ID | 079.284.126-32 | por |
dc.creator.Lattes | http://lattes.cnpq.br/2780156717889377 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Agrícola e Ambiental | por |
dc.relation.references | ABREU, A. P.; FERNANDES, B.; VICENTE, A. A.; TEIXEIRA, J.; DRAGONE, G. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, v. 118, p. 61–66, 2012. AGGARWAL, M.; REMYA, N. The State-of-the-Art Production of Biofuel from Microalgae with Simultaneous Wastewater Treatment: Influence of Process Variables on Biofuel Yield and Production Cost. BioEnergy Research, v. 15, n. 1, p. 62–76, 2022. AMORIM, T. L.; DUARTE, L. M.; CHELLINI, P. R.; DE OLIVEIRA, M. A. L. A validated capillary electrophoresis method for fatty acid determination in encapsulated vegetable oils supplements. LWT, v. 114, p. 108380, 2019. ANP – AGÊNCIA NACIONAL DE PETRÓLEO E GÁS NATURAL. Biodiesel. .Net, 2021. Disponível em: <https://www.gov.br/anp/pt-br/assuntos/producao-e-fornecimento-de- biocombustiveis/biodiesel>. Acesso em: 01 novembro de 2021. ANP – AGÊNCIA NACIONAL DE PETRÓLEO E GÁS NATURAL (2014). Resolução n° 45 de 25 de agosto de 2014. Dispõe sobre a especificação do biodiesel contida no Regulamento Técnico ANP no 3 de 2014 e as obrigações quanto ao controle da qualidade a serem atendidas pelos diversos agentes econômicos que comercializam o produto em todo o território nacional. In: Diário Oficial da União, Brasília, DF. APHA. Standard Methods for the examination of water and wastewater. 23rd. ed. Washington, DC: American Public Health Association, 2017. ARUTSELVAN, C.; NARCHONAI, G.; PUGAZHENDHI, A.; LEWIS, O.; THAJUDDIN, N. Evaluation of microalgal strains and microalgal consortium for higher lipid productivity and rich fatty acid profile towards sustainable biodiesel production. Bioresource Technology, v. 339, n. July, p. 125524, 2021. BALA AMUTHA, K.; MURUGESAN, A. G. Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment. Bioresource Technology, v. 102, n. 1, p. 194–199, jan. 2011. BARKIA, I.; SAARI, N.; MANNING, S. R. Microalgae for High-Value Products Towards Human Health and Nutrition. Marine Drugs, v. 17, n. 5, p. 304, 2019. BARROS, A.; PEREIRA, H.; CAMPOS, J.; MARQUES, A.; VARELA, J.; SILVA, J. Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Scientific Reports, v. 9, n. 1, p. 1–7, 2019. BEHERA, B.; SELVAM S. M.; DEY, B.; BALASUBRAMANIAN, P. Algal biodiesel production with engineered biochar as a heterogeneous solid acid catalyst. Bioresource Technology, v. 310, n. January, 2020. BICUDO, C. E. M.; MENEZES, M. Gênero de Algas de Águas Continentais no Brasil. 3a ed. São Carlos: RiMa Editora, 2017. BHATT, A.; KHANCHANDANI, M.; RANA, M. S.; PRAJAPATI, S. K. Techno-economic analysis of microalgae cultivation for commercial sustainability: A state-of-the-art review. Journal of Cleaner Production, v. 370, p. 133456, 2022. BRASIL, B. S. A. F.; DE SIQUEIRA, F. G.; SALUM, T. F. C.; ZANETTE, C. M.; SPIER, M. R. Microalgae and cyanobacteria as enzyme biofactories. Algal Research, v. 25, p. 76–89, jul. 2017. 35 BRASIL – Ministério Da Agricultura, Pecuária e Abastecimento (2021). Programa Nacional de Produção e Uso do Biodiesel (PNPB). Disponível em:<https://www.gov.br/agricultura/pt- br/assuntos/agricultura-familiar/biodiesel/programa-nacional-de-producao-e-uso-do-biodiesel- pnpb>. Acesso em 01 novembro 2021. CAI, T.; PARK, S. Y.; LI, Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renewable and Sustainable Energy Reviews, v. 19, p. 360–369, 2013. CALIJURI, M. L. SILVA, T. A.; MAGALHÃES, I. B.; PEREIRA, A. S. A. P.; MARANGON, B. B.; ASSIS, L. R.; LORENTZ, J. F. Bioproducts from microalgae biomass: Technology, sustainability, challenges and opportunities. Chemosphere, v. 305, p. 135508, out. 2022. CARDOSO, L. G.; DUARTE, J. H.; COSTA, J. A. V.; DE JESUS, D. A.; LEMOS, P. V. F.; DRUZIAN, J. I . Spirulina sp. as a Bioremediation Agent for Aquaculture Wastewater: Production of High Added Value Compounds and Estimation of Theoretical Biodiesel. BioEnergy Research, v. 14, n. 1, p. 254–264, 2021. CASTRO, J. S.; CALIJURI, M. L.; FERREIRA, J.; ASSEMANY, P. P.; RIBEIRO, V. J. Microalgae based biofertilizer: A life cycle approach. Science of The Total Environment, v. 724, p. 138138, 2020. CHANDRA, R.; PRADHAN, S.; PATEL, A.; GHOSH, U. K. An approach for dairy wastewater remediation using mixture of microalgae and biodiesel production for sustainable transportation. Journal of Environmental Management, v. 297, p. 113210, 2021. CHEGUKRISHNAMURTHI, M.; SHAHABAZUDDIN, M.; SREEVATHSAN, S.; SARADA, R.; MUDLIAR, S. N. Ozonation as non-thermal option for bacterial load reduction of Chlorella biomass cultivated in airlift photobioreactor. Journal of Cleaner Production, v. 276, p. 123029, 2020. CHENG, J.; YE, Q.; XU, J.; YANG, Z.; ZHOU, J.; CEN, K. Improving pollutants removal by microalgae Chlorella PY-ZU1 with 15% CO 2 from undiluted anaerobic digestion effluent of food wastes with ozonation pretreatment. Bioresource Technology, v. 216, p. 273–279, 2016. CHHANDAMA, M. V. L.; SATYAN, K.B.; CHANGMAI, B.; VANLALVENI, C.; ROKHUM, S. L. Microalgae as a feedstock for the production of biodiesel: A review. Bioresource Technology Reports, v. 15, p. 100771, 2021. CHIN-ON, R. C.; BARBOSA, M. J.; WIJFFELS, R. H.; JANSSEN, M. A novel V-shaped photobioreactor design for microalgae cultivation at low latitudes: Modelling biomass productivities of Chlorella sorokiniana on Bonaire. Chemical Engineering Journal, v. 449, p. 137793, 2022. CHISTI, Y. Constraints to commercialization of algal fuels. Journal of Biotechnology, v. 167, n. 3, p. 201–214, 2013. CHOWDHURY, H.; LOGANATHAN, B. Third-generation biofuels from microalgae: a review. Current Opinion in Green and Sustainable Chemistry, v. 20, p. 39–44, 2019. CORREA, D. F.; BEYER, H. L.; POSSINGHAM, H. P.; THOMAS-HALL, S. R.; SCHENK, P. M. Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels. Renewable and Sustainable Energy Reviews, v. 74, p. 1131–1146, 2017. COUTO, E.; CALIJURI, M. L.; ASSEMANY, P.; CECON, P. R. Evaluation of high rate ponds operational and design strategies for algal biomass production and domestic wastewater 36 treatment. Science of The Total Environment, v. 791, p. 148362, 2021. CRAGGS, R.; SUTHERLAND, D.; CAMPBELL, H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. Journal of Applied Phycology, v. 24, n. 3, p. 329–337, 2012. DAHIYA, A. Algae biomass cultivation for advanced biofuel production. In: DAHIYA, A. Bioenergy: Biomass to Biofuels and Waste to Energy, 2a ed, Elsevier, 2020. DAVIS, R.; ADEN, A.; PIENKOS, P. T. Techno-economic analysis of autotrophic microalgae for fuel production. Applied Energy, v. 88, n. 10, p. 3524–3531, 2011. DE CARVALHO, M. A. S.; GONÇALVES, I. S.; AZAMBUJA, S. P. H.; COSTA, S. S.; SILVA, P. G. P.; SANTOS, L. O.; GOLDBECK, R. Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresource Technology, v. 344, p. 126304, 2022. DE MENDONÇA, H. V.; OMETTO, J. P. H. B.;OTENIO, M. H.; MARQUES, I. P. R.; DOS REIS, A. J. D. Microalgae-mediated bioremediation and valorization of cattle wastewater previously digested in a hybrid anaerobic reactor using a photobioreactor: Comparison between batch and continuous operation. Science of The Total Environment, v. 633, p. 1–11, ago. 2018. DE MENDONÇA, H. V.; ASSEMANY, P.; ABREU, M.; COUTO, E.; MACIEL, A. M.; DUARTE, R. L.; DOS SANTOS, M. G. B.; REIS, A. Microalgae in a global world: New solutions for old problems? Renewable Energy, v. 165, p. 842–862, 2021. DE MENDONÇA, H. V.; OMETTO, J. P. H. B.; OTENIO, M. H. Production of Energy and Biofertilizer from Cattle Wastewater in Farms with Intensive Cattle Breeding. Water, Air, & Soil Pollution, v. 228, n. 2, p. 72, 2017. DE MENDONÇA, H. V.; OTENIO, M. H.; MARCHÃO, L.; LOMEU, A.; DE SOUZA, D. S.; REIS, A. Biofuel recovery from microalgae biomass grown in dairy wastewater treated with activated sludge: The next step in sustainable production. Science of The Total Environment, v. 824, p. 153838, 2022. DE MENDONÇA, H. V.; OMETTO, J. P. H. B.; OTENIO, M. H. Production of Energy and Biofertilizer from Cattle Wastewater in Farms with Intensive Cattle Breeding. Water, Air, & Soil Pollution, v. 228, n. 2, p. 72, 2017. DE OLIVEIRA, M. A. L.; SOLIS, V. E. S.; GIOIELLI, L. A.; POLAKIEWICZ, B.; TAVARES, M. F. M. Method development for the analysis of trans-fatty acids in hydrogenated oils by capillary electrophoresis. ELECTROPHORESIS, v. 24, n. 10, p. 1641–1647, 2003. DE OLIVEIRA, M.; PORTO, B.; FARIA, I.; DE OLIVEIRA, P.; DE CASTRO, P. B.; CASTRO, R.; SATO, R. 20 Years of Fatty Acid Analysis by Capillary Electrophoresis. Molecules, v. 19, n. 9, p. 14094–14113, 2014. DE SOUZA, D. S.; MACIEL, A. M.; OTENIO, M. H.; DE MENDONÇA, H. V. Optimization of Ozone Application in Post-Treatment of Cattle Wastewater from Organic Farms. Water, Air, and Soil Pollution, v. 231, n. 7, 2020. DE SOUZA, D. S.; VALADÃO, R. C.; DE SOUZA, E. R. P.; BARBOSA, M. I. M. J.; DE MENDONÇA, H. V. Enhanced Arthrospira platensis Biomass Production Combined with Anaerobic Cattle Wastewater Bioremediation. Bioenergy Research, v. 15, n. 1, p. 412–425, 2021. DE SOUZA, J. C. Q.; CHELLINI, P. R.; VIÇOSA, A. L.; DE SOUZA, M. V. N.; DE 37 OLIVEIRA, M. A. L. Simultaneous separation of artesunate and mefloquine in fixed-dose combination tablets by CZE-UV. Analytical Methods, v. 12, n. 47, p. 5709–5717, 2020. DEBNATH, C.; BANDYOPADHYAY, T. K.; BHUNIA, B.; MISHRA, U.; NARAYANASAMY, S.; MUTHURAJ, M. Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production. Renewable and Sustainable Energy Reviews, v. 150, p. 111464, 2021. DENNY, D. M. T. Competitive renewables as the key to energy transition—RenovaBio: the Brazilian biofuel regulation. In: The Regulation and Policy of Latin American Energy Transitions. INC, 2020, p. 223–242. DEVI, M P.; MOHAN, S V. CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: Effect of sparging period and interval. Bioresource Technology, v. 112, p. 116–123, 2012. DEY, S.; REANG, N. M.; DAS, P. K.; DEB, M. A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. Journal of Cleaner Production, v. 286, p. 124981, 2021. DIANURSANTI; PRAMADHANTI, D. Utilization of miroalgae Spirulina platensis as anti- bacterial compound in soap. AIP Conference Procedings, v. 2255, p. 040020, 2020. DÍAZ, V. LEYVA-DÍAZ, J. C.; ALMÉCIJA, M. C.; POYATOS, J. M.; DEL MAR MUÑÍO, M.; MARTÍN-PASCUAL, J. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. Bioresource Technology, v. 363, p. 127968, 2022. DI CAPRIO, F.; ALTIMARI, P.; PAGNANELLI, F. Integrated microalgae biomass production and olive mill wastewater biodegradation: Optimization of the wastewater supply strategy. Chemical Engineering Journal, v. 349, p. 539–546, 2018. DOMINGUEZ-FAUS, R.; POWERS, S. E.; BURKEN, J. G; ALVAREZ, P. J. The Water Footprint of Biofuels: A Drink or Drive Issue? Environmental Science & Technology, v. 43, n. 9, p. 3005–3010, 2009. DUARTE, J. H.; FANKA, L. S.; COSTA, J. A. V. CO2 Biofixation via Spirulina sp. Cultures: Evaluation of Initial Biomass Concentration in Tubular and Raceway Photobioreactors. BioEnergy Research, v. 13, n. 3, p. 939–943, 4 set. 2020. DUBOIS, M..; GILLES, K. A.; HAMILTON, J. K.; REBERS, P. A.; SMITH, F. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, v. 28, n. 3, p. 350–356, 1956. EIA - U.S. ADMINISTRAÇÃO DE INFORMAÇÕES SOBRE ENERGIA. EIA projects 28% increase in world energy use by 2040. .Net, 2017. Disponível em: <https://www.eia.gov/todayinenergy/detail.php?id=32912>. Acesso em: 17 fevereiro 2022. FAGODIYA, R. K.; PATHAK, H.; KUMAR, A.; BHATIA, A.; JAIN, N. Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. Scientific Reports, v. 7, n. 1, p. 44928, 21 abr. 2017. FAO - ORGANIZAÇÃO DAS NAÇÕES UNIDAS PARA ALIMENTAÇÃO E AGRICULTURA. Dairy Market Review. .Net, 2021. Disponível em: <https://www.fao.org/3/cb7982en/cb7982en.pdf >. Acesso em: 28 junho 2021. FERRUZZI, M. G.; BLAKESLEE, J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutrition Research, v. 27, n. 1, p. 1–12, jan. 2007. 38 GAN, K., XIAOQING M., XU, Y., WANG, H. Application of ozonated piggery wastewater for cultivation of oil-rich Chlorella pyrenoidosa. Bioresource Technology, v. 171, p. 285– 290, nov. 2014. GANESAN, R. MANIGANDAN, S.; SAMUEL, M. S.; SHANMUGANATHAN, R.; BRINDHADEVI, K.; LAN CHI, N. T.; DUC, P. A.; PUGAZHENDHI, A. A review on prospective production of biofuel from microalgae. Biotechnology Reports, v. 27, p. e00509, 2020. GANGULY, P.; SARKHEL, R.; DAS, P. The second- and third-generation biofuel technologies: comparative perspectives. Sustainable Fuel Technologies Handbook, p. 29– 50, 2021. GANTAR, M.; SVIRČEV, Z. MICROALGAE AND CYANOBACTERIA: FOOD FOR THOUGHT. Journal of Phycology, v. 44, n. 2, p. 260–268, abr. 2008. GAO, K.; LIU, Q.; GAO, Z.; Xue, C.; QIAN, P.; DONG, J.; GAO, Z.; DENG, X. A dilution strategy used to enhance nutrient removal and biomass production of Chlorella sorokiniana in frigon wastewater. Algal Research, v. 58, p. 102438, 2021. GRANGEIA, C.; SANTOS, L.; LAZARO, L. L. B. The Brazilian biofuel policy (RenovaBio) and its uncertainties: An assessment of technical, socioeconomic and institutional aspects. Energy Conversion and Management: X, v. 13, p. 100156, 2022. HOSSAIN, N.; ZAINI, J.; INDRA MAHLIA, T. M. Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country. Renewable and Sustainable Energy Reviews, v. 115, p. 109371, nov. 2019. IEA - INTERNATIONAL ENERGY AGENCY. World Energy Outlook. .Net, 2019. Disponível em: <https://iea.blob.core.windows.net/assets/98909c1b-aabc-4797-9926- 35307b418cdb/WEO2019-free.pdf>. Acesso em: 28 junho 2021. IEA - INTERNATIONAL ENERGY AGENCY. Data and statistics. .Net, 2020. Disponível em:<https://www.iea.org/data-and- statistics?country=WORLD&fuel=Energy_supply&indicator=TPESbySource>. Acesso em: 26 outubro 2020. JANSSEN, M.; WIJFFELS, R. H.; BARBOSA, M. J. Microalgae based production of single- cell protein. Current Opinion in Biotechnology, v. 75, p. 102705, 2022. JEBALI, A.; ACIÉN, F. G.; RODRIGUEZ, E. B,; OLGUÍN, E. J.; SAYADI, S.; MOLINA, E. G. Pilot-scale outdoor production of Scenedesmus sp. in raceways using flue gases and centrate from anaerobic digestion as the sole culture medium. Bioresource Technology, v. 262, p. 1–8, 2018. JIN, X.; GONG, S.; CHEN, Z.; XIA, J.; XIANG, W . Potential microalgal strains for converting flue gas CO2 into biomass. Journal of Applied Phycology, v. 33, n. 1, p. 47–55, 2021. KATIYAR, R.; GURJAR, B R; BISWAS, S.; PRUTHI, V.; KUMAR, N.; KUMAR, P. Microalgae: An emerging source of energy based bio-products and a solution for environmental issues. Renewable and Sustainable Energy Reviews, v. 72, p. 1083–1093, 2017. KERSHAW, E. H.; HARTLEY, S.; MCLEOD, C.; POLSON, P. The Sustainable Path to a Circular Bioeconomy. Trends in Biotechnology, v. 39, n. 6, p. 542–545, 2021. KHAN, S. A.; SHARMA, G. K.; MALLA, F. A.; KUMAR, A.; RASHMI GUPTA, N. 39 Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. Journal of Cleaner Production, v. 211, p. 1412–1419, 2019. KHOLSSI, R. RAMOS, P. V.; MARKS, E. A. N.; MONTERO, O.; RAD, C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. Biocatalysis and Agricultural Biotechnology, v. 36, p. 102114, set. 2021. KINGS, A. J.; RAJ, R. E.; MIRIAM, L. R. M.; VISVANATHAN, M. A. Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Conversion and Management, v. 141, p. 224–235, jun. 2017. KONG, W.; SHEN, B.; LYU, H.; KONG, J.; MA, J.; WANG, Z.; FENG, S. Review on carbon dioxide fixation coupled with nutrients removal from wastewater by microalgae. Journal of Cleaner Production, v. 292, p. 125975, 2021. LEDDA, C.; IDÀ, A.; ALLEMAND, D.; MARIANI, P.; ADANI, F. Production of wild Chlorella sp. cultivated in digested and membrane-pretreated swine manure derived from a full-scale operation plant. Algal Research, v. 12, p. 68–73, 2015. LEONG, Y. K.; HUANG, C.; CHANG, J. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS). Journal of Environmental Management, v. 296, p. 113193, 2021. LI, K.; LIU, Q.; FANG, F.; LUO, R.; LU, Q.; ZHOU, W.; HUO, S.; CHENG, P.; LIU, J.; ADDY, M.; CHEN, P.; CHEN, D.; RUAN, R. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, v. 291, p. 121934, 2019. LINDNER, A. V.; PLEISSNER, D. Utilization of phenolic compounds by microalgae. Algal Research, v. 42, p. 101602, 2019. LIU, X.; CHEN, G.; TAO, Y.; WANG, J. Application of effluent from WWTP in cultivation of four microalgae for nutrients removal and lipid production under the supply of CO2. Renewable Energy, v. 149, p. 708–715, 2020. LU, W.; ALAM, M. A.; LIU, S.; XU, J.; SALDIVAR, R. P. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO2 from livestock farms: A review. Science of The Total Environment, v. 716, p. 135247, 2020. LV, J.; LIU, Y.; FENG, J.; LIU, Q.; NAN, F.; XIE, S. Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment. Bioresource Technology, v. 264, p. 311–318, 2018. MARKOU, G.; VANDAMME, D.; MUYLAERT, K. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresource Technology, v. 166, p. 259–265, 2014. MARONEZE, M. M.; BARIN, J. S.; DE MENEZES, C. R.; QUEIROZ, M. I.; ZEPKA, L. Q.; JACOB-LOPES, E. Treatment of cattle-slaughterhouse wastewater and the reuse of sludge for biodiesel production by microalgal heterotrophic bioreactors. Scientia Agricola, v. 71, n. 6, p. 521–524, 2014. MATA, T. M.; MARTINS, A. A.; CAETANO, N. S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, v. 14, n. 1, p. 217–232, 2010. MEGAWATI; BAHLAWAN, Z. A. S.; DAMAYANTI, A.; PUTRI, R. D. A.; TRIWIBOWO, 40 B.; PRASETIAWAN, H.; AJI, S. P. K.; PRAWISNU, A. Bioethanol production from glucose obtained from enzymatic hydrolysis of Chlorella microalgae. Materials Today: Proceedings, v. 63, p. S373–S378, 2022. MONDAL, M.; GOSWAMI, S.; GHOSH, ASHMITA; O. G.; TIWARI, O. N.; DAS, P.; GAYEN, K.; MANDAL, M. K.; HALDER, G. N. Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech, v. 7, n. 2, p. 99, 2017. MONDAL, S.; BERA, S.; MISHRA, R.; ROY, S. Redefining the role of microalgae in industrial wastewater remediation. Energy Nexus, v. 6, n. April, p. 100088, 2022. MOUSAVI, S.; NAJAFPOUR, G. D.; MOHAMMADI, M.; SEIFI, M. H. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO2 fixation, lipid production and wastewater treatment. Bioprocess and Biosystems Engineering, v. 41, n. 4, p. 519–530, 2018. PATEL, A. K.; JOUN, J.; SIM, S. J. A sustainable mixotrophic microalgae cultivation from dairy wastes for carbon credit, bioremediation and lucrative biofuels. Bioresource Technology, v. 313, p. 123681, 2020. PAWAR, S. Effectiveness mapping of open raceway pond and tubular photobioreactors for sustainable production of microalgae biofuel. Renewable and Sustainable Energy Reviews, v. 62, p. 640–653, 2016. PEREIRA, H.; SARDINHA, M.; SANTOS, T.; GOUVEIA, L.; BARREIRA, L.; DIAS, J.; VARELA, J. Incorporation of defatted microalgal biomass (Tetraselmis sp. CTP4) at the expense of soybean meal as a feed ingredient for juvenile gilthead seabream (Sparus aurata). Algal Research, v. 47, p. 101869, maio 2020. PRADO, T. L. A.; PORTO, B. L. S.; OLIVEIRA, M. A. L. Method optimization for trans fatty acid determination by CZE-UV under direct detection with a simple sample preparation. Analytical Methods, v. 9, n. 6, p. 958–965, 2017. PURBA, L. D. A.; OTHMAN, F. S.; YUZIR, MOHAMAD, S. E.; IWAMOTO, K.; ABDULLAH, N.; SHIMIZU, K.; HERMANA, J. Enhanced cultivation and lipid production of isolated microalgae strains using municipal wastewater. Environmental Technology & Innovation, v. 27, p. 102444, 2022. RAEESOSSADATI, M J; AHMADZADEH, H; MCHENRY, M P; MOHEIMANI, N. R. CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, v. 6, p. 78–85, 2014. REN, Q.; CHEN, X.; YUMMINAGA, Y.; WANG, N.; YAN, W.; LI, Y.; LIU, L.; SHI, J. Effect of operating conditions on the performance of multichannel ceramic ultrafiltration membranes for cattle wastewater treatment. Journal of Water Process Engineering, v. 41, p. 102102, 2021. RODRIGUES, A. C.C. Policy, regulation, development and future of biodiesel industry in Brazil. Cleaner Engineering and Technology, v. 4, p. 100197, 2021. RUIZ, J.; WIJFFELS, R. H.; DOMINGUEZ, M.; BARBOSA, M. J. Heterotrophic vs autotrophic production of microalgae: Bringing some light into the everlasting cost controversy. Algal Research, v. 64, p. 102698, 2022. SATO, R. T.; ALVES, J. B.; AMORIM, T. L.; OLIVEIRA, M. A. L. A capillary electrophoresis method for free fatty acids screening and acidity determination in biodiesel. ELECTROPHORESIS, v. 42, n. 9–10, p. 1135–1142, 2021. 41 SEARCHINGER, T.; HEIMLICH, R.; HOUGHTON, R A; DONG, F.; ELOBEID, A.; FABIOSA, J.; TOKGOZ, S.; HAYES, D.; YU, T. H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science, v. 319, n. 5867, p. 1238–1240, 2008. SIDDIKI, S. Y. A.; MOFIJUR, M.; KUMAR, P. S.; AHMED, S. F.; INAYAT, A.; KUSUMO, F.; BADRUDDIN, I. A.; KHAN, T. M. Y.; NGHIEM, L.D.; ONG, H. C.; MAHLIA, T. M. I. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, v. 307, p. 121782, jan. 2022. SILVEIRA, C. F.; DE ASSIS, L. R.; DE SOUSA OLIVEIRA, A. P. CALIJURI, M. L. Valorization of swine wastewater in a circular economy approach: Effects of hydraulic retention time on microalgae cultivation. Science of The Total Environment, v. 789, p. 147861, 2021. SINGH, R.; KUMAR, A.; SHARMA, Y. C. Biodiesel synthesis from microalgae (Anabaena PCC 7120) by using barium titanium oxide (Ba2TiO4) solid base catalyst. Bioresource Technology, v. 287, p. 121357, set. 2019. SOLOVCHENKO, A.; VERSCHOOR, A. M.; JABLONOWSKI, N. D.; NEDBAL, L. Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnology Advances, v. 34, n. 5, p. 550–564, 2016. SPOLAORE, P.; JOANNIS-CASSAN, C.; DURAN, E.; ISAMBERT, A. Commercial applications of microalgae. Journal of Bioscience and Bioengineering, v. 101, n. 2, p. 87–96, fev. 2006. SUTHERLAND, D. L.; PARK, J.; HEUBECK, S.; RALPH, P. J.; CRAGGS, R. J. Size matters – Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Research, v. 45, p. 101734, 2020. SUTHERLAND, D. L.; HEUBECK, S.; PARK, J.; TURNBULL, M. H.; CRAGGS, R. J. Seasonal performance of a full-scale wastewater treatment enhanced pond system. Water Research, v. 136, p. 150–159, 2018. SUTHERLAND, D. L.; RALPH, P. J. Microalgal bioremediation of emerging contaminants - Opportunities and challenges. Water Research, v. 164, p. 114921, 2019. TAVARES, M. F. M. Eletroforese capilar: conceitos básicos. Química nova, v. 19, 1995. THUY LAN CHI, N.; MATHIMANI, T.; MANIGANDAN, S.; SHANMUGAM, S.; THI, N. H.; CAM, T., N.; ALI, S. A.; CHINNATHAMBI, A.; BRINDHADEVI, K.; CHANASUT, U.; WHANGCHAI, K. Small scale photobioreactor, outdoor open pond cultivation of Chlorella sp. and harvesting at log and stationary growth phase towards lipids and methyl ester production. Fuel, v. 319, p. 123813, 2022. TREDICI, M. R.; RODOLFI, L.; BIONDI, N.; BASSI, N.; SAMPIETRO, G. Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Research, v. 19, p. 253–263, 2016. UNFCCC - UNITED NATIONS CLIMATE CHANGE. The Paris Agreement. .Net, 2021. Disponível em: <https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris- agreement>. Acesso em: 26 junho 2021. UNFCC - UNITED NATIONS CLIMATE CHANGE. The Glasgow Climate Pact – Key Outcomes from COP26. .Net, 2022. Disponível em: < https://unfccc.int/process-and- 42 meetings/the-paris-agreement/the-glasgow-climate-pact-key-outcomes-from- cop26?gclid=CjwKCAjwkaSaBhA4EiwALBgQaISG6kijZSlL2nzwRxCGRSAYWZvwMWE iSWnpSwwa3CVK7POYsynN7RoCCQgQAvD_BwE>. Acesso em: 20 julho 2022. VARGAS-ESTRADA, L.; LONGORIA, A.; OKOYE, P. U; SEBASTIAN, P. J. Energy and nutrients recovery from wastewater cultivated microalgae: Assessment of the impact of wastewater dilution on biogas yield. Bioresource Technology, v. 341, p. 125755, 2021. VIEGAS, C.; NOBRE, C.; MOTA, A.; VILARINHO, C.; GOUVEIA, L.; GONÇALVES, M. A circular approach for landfill leachate treatment: Chemical precipitation with biomass ash followed by bioremediation through microalgae. Journal of Environmental Chemical Engineering, v. 9, n. 3, p. 105187, 2021. WILOSO, E. I.; HEIJUNGS, R.; DE SNOO, G. R. LCA of second generation bioethanol: A review and some issues to be resolved for good LCA practice. Renewable and Sustainable Energy Reviews, v. 16, n. 7, p. 5295–5308, 2012. WOOD, D. A. Microalgae to biodiesel - Review of recent progress. Bioresource Technology Reports, v. 14, 2021. YADALA, S.; CREMASCHI, S. A Dynamic Optimization Model for Designing Open- Channel Raceway Ponds for Batch Production of Algal Biomass. Processes, v. 4, n. 2, p. 10, 2016. YADAV, G.; PANDA, S. P.; SEN, R.. Strategies for the effective solid, liquid and gaseous waste valorization by microalgae: A circular bioeconomy perspective. Journal of Environmental Chemical Engineering, v. 8, n. 6, p. 104518, 2020. YAQOUBNEJAD, P.; RAD, H. A.; TAGHAVIJELOUDAR, M. Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO2 bio-fixation and wastewater treatment. Journal of Environmental Management, v. 298, p. 113482, 2021. YIN, Z.; ZHU, L.; LI, S.; HU, T.; CHU, R.; MO, F.; HU, D.; LIU, C.; LI, B. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, v. 301, p. 122804, 2020. YU, L.; LI, T.; MA, J.; ZHAO, Q.; WENSEL, P.; LIAN, J.; CHEN, S. A kinetic model of heterotrophic and mixotrophic cultivation of the potential biofuel organism microalgae Chlorella sorokiniana. Algal Research, v. 64, p. 102701, 2022. ZANELLA, L.; VIANELLO, F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. Journal of Functional Foods, v. 68, p. 103919, maio 2020. ZHANG, Q.; YU, Z.; ZHU, L.; YE, T.; ZUO, J.; LI, X.; XIAO, B.; JIN, S. Vertical-algal- biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production. Water Research, v. 139, p. 144–157, 2018. | por |
dc.subject.cnpq | Engenharia Agrícola | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/74086/2022%20-%20Alice%20Azevedo%20Lomeu.Pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6772 | |
dc.originais.provenance | Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-07-26T12:10:03Z No. of bitstreams: 1 2022 - Alice Azevedo Lomeu.Pdf: 1215832 bytes, checksum: 18b2db41a641228444e346bb7dde829b (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-07-26T12:10:20Z (GMT). No. of bitstreams: 1 2022 - Alice Azevedo Lomeu.Pdf: 1215832 bytes, checksum: 18b2db41a641228444e346bb7dde829b (MD5) Previous issue date: 2022-12-14 | eng |
Appears in Collections: | Mestrado em Engenharia Agrícola e Ambiental |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Alice Azevedo Lomeu.Pdf | 2022 - Alice Azevedo Lomeu | 1.19 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.