Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/13352
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Santos, Izadora da Silva | |
dc.date.accessioned | 2023-12-22T02:45:45Z | - |
dc.date.available | 2023-12-22T02:45:45Z | - |
dc.date.issued | 2021-07-28 | |
dc.identifier.citation | SANTOS, Izadora da Silva. Estudo de catalisadores mesoporosos visando uso na reação de desidratação do glicerol. 2021. 100 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/13352 | - |
dc.description.abstract | A reação de transesterificação de óleos e gorduras para produção de biodiesel gera como principal subproduto o glicerol, uma matéria-prima de baixo custo e viável para conversão em produtos com alto valor agregado. A reação de desidratação de glicerol é uma alternativa à oxidação parcial do propileno (derivado de material fóssil) para a produção de acroleína e ácido acrílico, que torna sustentável o desenvolvimento comercial da cadeia de valor do biodiesel. Dentre os materiais utilizados, a zeólita ZSM-5 em sua forma ácida e a sílica mesoporosa SBA-15 com sítios ácidos são catalisadores ativos para a reação de desidratação do glicerol e seletivos para a produção da acroleína. Dessa forma, o objetivo do presente trabalho foi sintetizar a zeólita ZSM-5 com estrutura hierárquica de poros por meio de tratamento alcalino de dessilicação na presença de um surfactante e a sílica mesoporosa AlSBA-15 pela da síntese direta utilizando diferentes razões Si/Al para utilização na reação de desidratação do glicerol. As amostras foram caracterizadas por diferentes técnicas para elucidar a influência na reação. A estrutura cristalina das amostras de ZSM-5 foi confirmada por DRX e FTIR. Por DRX e adsorção de N2 foi evidenciada a obtenção de sílica com mesoporos altamente regulares, características da SBA-15. Para a zeólita ZSM-5, mostrou alta área específica e a presença de micro e mesoporos. As amostras de AlSBA-15 apresentaram uma relação direta entre a razão Si/Al com a área específica e o volume de mesoporos, indicando que a presença de alumínio afeta a estrutura do material. A partir dos dados de composição química, foi possível estabelecer a razão Si/Al real das amostras e a acidez teórica. As partículas de ZSM-5 apresentaram formato esférico e cristais em forma de placa e a AlSBA-15 em formato cilíndrico. A análise das propriedades físico-químicas das amostras sintetizadas indica que esses materiais são promissores para uma possível aplicação na reação de desidratação do glicerol. | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Desidratação do glicerol | por |
dc.subject | ZSM-5 | por |
dc.subject | Al-SBA-15 | por |
dc.subject | dessilicação | por |
dc.subject | catalisadores mesoposoros | por |
dc.subject | Dehydration of glycerol | eng |
dc.subject | desilication | eng |
dc.subject | mesoporous catalysts | eng |
dc.title | Estudo de catalisadores mesoporosos visando uso na reação de desidratação do glicerol | por |
dc.title.alternative | Study of mesoporous catalysts for use in the glycerol dehydration reaction | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | The reaction of transesterification of oils and fats for biodiesel production generates glycerol as its main by-product, a low-cost and viable raw material for conversion into products with high added value. The glycerol dehydration reaction is an alternative to the partial oxidation of propylene (derived from fossil material) for the production of acrolein and acrylic acid, which makes the commercial development of the biodiesel value chain sustainable. Among the materials used, ZSM-5 zeolite in its acid form and SBA-15 mesoporous silica with natural sites are active catalysts for the glycerol dehydration reaction and selective for the production of acrolein. Thus, the objective of the present work was to synthesize the ZSM-5 zeolite with hierarchical pore structure through the alkaline treatment of desilication in the presence of a surfactant and the mesoporous silica Al-SBA-15 through the direct using different Si/Al to ratios use in the glycerol dehydration reaction. How they were characterized by different techniques to elucidate the influence on the reaction. A crystal structure of the ZSM-5 was confirmed by DRX and FTIR. By XRD and adsorption of N2, it was evidenced the obtainment of silica with highly regular mesopores, characteristic of SBA-15. For ZSM-5 zeolite, highlighted specific area and presence of micro and mesopores. The Al-SBA-15 Al-SBA-15 direct a direct relationship between the Si/Al ratio with a specific area and the volume of mesopores, indicating that the presence of aluminum affects the structure of the material. Through the chemical composition data, it was possible to establish a real Si/Al ratio and the theoretical acidity. ZSM-5 particles are spherical and crystals in plate shape and Al-SBA-15 in a cylindrical shape. The analysis of the physicochemical properties of the synthesized samples indicates that these materials are promising for a possible application in the glycerol dehydration reaction. | eng |
dc.contributor.advisor1 | Fernandes, Lindoval Domiciano | |
dc.contributor.advisor1ID | 837.359.257-15 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7921814684730923 | por |
dc.contributor.referee1 | Fernandes, Lindoval Domiciano | |
dc.contributor.referee2 | Arroyo, Pedro Augusto | |
dc.contributor.referee3 | Machado Junior, Hélio Fernandes | |
dc.creator.ID | 385.854.508-27 | por |
dc.creator.ID | https://orcid.org/0000-0002-5556-5020 | por |
dc.creator.Lattes | http://lattes.cnpq.br/5778858249864254 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Tecnologia | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Engenharia Química | por |
dc.relation.references | ANITHA, M.; KAMARUDIN, S. K.; KOFLI, N. T. The potential of glycerol as a value-added commodity. Chemical Engineering Journal, v. 295, p. 119–130, 2016. ATKINS, P.; JONES, L. Princípios de Química: Questionando a vida moderna e o meio ambienteBookman, 2006. BEN, B. E. N. Relatório Síntese: BEN 2020 - ano base 2019. p. 73, 2020. BHANGE, P.; BHANGE, D. S.; PRADHAN, S.; RAMASWAMY, V. Direct synthesis of well-ordered mesoporous Al-SBA-15 and its correlation with the catalytic activity. Applied Catalysis A: General, v. 400, n. 1–2, p. 176–184, 2011. CATUZO, G. L.; MARTINS, L. Estudo da desativação de zeólitas ZSM-5 na desidratação do glicerol. p. 5–10, 2014. CECILIA, J. A.; GARCÍA-SANCHO, C.; MÉRIDA-ROBLES, J. M.; SANTAMARÍA-GONZÁLEZ, J.; INFANTES-MOLINA, A.; MORENO-TOST, R.; MAIRELES-TORRES, P. Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, v. 83, n. 2, p. 342–354, 2017. CH. BAERLOCHER AND L.B. MCCUSKER. Database of Zeolite Structures. Disponível em: <http://www.iza-structure.org/databases/>. CHIEREGATO, A.; SORIANO, M. D.; BASILE, F.; LIOSI, G.; ZAMORA, S.; CONCEPCIÓN, P.; CAVANI, F.; LÓPEZ NIETO, J. M. One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, v. 150–151, p. 37–46, 2014. CUNDY, C. S.; COX, P. A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, v. 82, n. 1–2, p. 1–78, 2005. CYCHOSZ, K. A.; THOMMES, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, v. 4, n. 4, p. 559–566, 2018. EPE. Analysis Of Biofuels’ Current Outlook 2019. p. 79, 2020. GALADIMA, A.; MURAZA, O. A review on glycerol valorization to acrolein over solid acid catalysts. Journal of the Taiwan Institute of Chemical Engineers, v. 67, p. 29–44, 2016. GÓMEZ-CAZALILLA, M.; MÉRIDA-ROBLES, J. M.; GURBANI, A.; RODRÍGUEZ-CASTELLÓN, E.; JIMÉNEZ-LÓPEZ, A. Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica. Journal of Solid State Chemistry, v. 180, n. 3, p. 1130–1140, 2007. GONZALEZ-ARELLANO, C.; DE, S.; LUQUE, R. Selective glycerol transformations to high value-added products catalysed by aluminosilicate-supported iron oxide nanoparticles. Catalysis Science and Technology, v. 4, n. 12, p. 4242–4249, 2014. HE, Q. (SOPHIA); MCNUTT, J.; YANG, J. Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable and Sustainable Energy Reviews, v. 71, n. December 2016, p. 63–76, 2017. JIA, X.; KHAN, W.; WU, Z.; CHOI, J.; YIP, A. C. K. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology, v. 30, n. 3, p. 467–484, 2019. JIANG, X. C.; ZHOU, C. H.; TESSER, R.; DI SERIO, M.; TONG, D. S.; ZHANG, J. R. Coking of Catalysts in Catalytic Glycerol Dehydration to Acrolein. Industrial and Engineering Chemistry Research, v. 57, n. 32, p. 10736–10753, 2018. JIN, L.; LIU, S.; XIE, T.; WANG, Y.; GUO, X.; HU, H. Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances. Reaction Kinetics, Mechanisms and Catalysis, v. 113, n. 2, p. 575–584, 2014. KATRYNIOK, B.; PAUL, S.; BELLIÈRE-BACA, V.; REY, P.; DUMEIGNIL, F. Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, v. 12, n. 12, p. 2079–2098, 2010. KATRYNIOK, B.; PAUL, S.; DUMEIGNIL, F. Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catalysis, v. 3, n. 8, p. 1819–1834, 2013. KLEINWORT, R.; KESSLER, H.; KLEINWORT, R.; PEREGO, G.; CARATI, A.; GOMARO, U.; FATORE, V.; GROBET, P. J.; MEYER, A. MFI High-Al ZSM-5. v. 24, n. 93, p. 7–8, 2019. KONG, P. S.; AROUA, M. K.; DAUD, W. M. A. W. Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews, v. 63, p. 533–555, 2016. LAGO, C. D.; DECOLATTI, H. P.; TONUTTI, L. G.; DALLA COSTA, B. O.; QUERINI, C. A. Gas phase glycerol dehydration over H-ZSM-5 zeolite modified by alkaline treatment with Na2CO3. Journal of Catalysis, v. 366, p. 16–27, 2018. LI, H.; FANG, Z.; SMITH, R. L.; YANG, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, v. 55, p. 98–194, 2016. LI, S.; LI, J.; DONG, M.; FAN, S.; ZHAO, T.; WANG, J.; FAN, W. Strategies to control zeolite particle morphology. Chemical Society Reviews, v. 48, n. 3, p. 885–907, 2019. LIN, S.; SHI, L.; RIBEIRO CARROTT, M. M. L.; CARROTT, P. J. M.; ROCHA, J.; LI, M. R.; ZOU, X. D. Direct synthesis without addition of acid of Al-SBA-15 with controllable porosity and high hydrothermal stability. Microporous and Mesoporous Materials, v. 142, n. 2–3, p. 526–534, 2011. LIU, H.; XIE, S.; XIN, W.; LIU, S.; XU, L. Hierarchical ZSM-11 zeolite prepared by alkaline treatment with mixed solution of NaOH and CTAB: Characterization and application for alkylation of benzene with dimethyl ether. Catalysis Science and Technology, v. 6, n. 5, p. 1328–1342, 2016. LOWELL, S; SHIELDS, J. E.; THOMAS, M. A.; THOMMES, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. [s.l.] Kluwer Academic Publishers, 2004. LUNA, F. J.; SCHUCHARDT, U. Modificação de zeólitas para uso em catálise. Quimica Nova, v. 24, n. 6, p. 885–892, 2001. MARTINUZZI, I.; AZIZI, Y.; ZAHRAA, O.; LECLERC, J. P. Deactivation study of a heteropolyacid catalyst for glycerol dehydration to form acrolein. Chemical Engineering Science, v. 134, p. 663–670, 2015. MCCUSKER, L. B.; OLSON, D. H.; BAERLOCHER, C. Atlas of Zeolite Framework Types. [s.l: s.n.]. MESA, M.; SIERRA, L.; GUTH, J. L. Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions. Microporous and Mesoporous Materials, v. 112, n. 1–3, p. 338–350, 2008. MEYNEN, V.; COOL, P.; VANSANT, E. F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 125, n. 3, p. 170–223, 2009. MINER, C.; DALTON NN. Glycerine: An Overview. Chem Soc Monogr. 1953, v. 117, n. 212, p. 1–27, 1953. MOCHIZUKI, H.; YOKOI, T.; IMAI, H.; NAMBA, S.; KONDO, J. N.; TATSUMI, T. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Applied Catalysis A: General, v. 449, p. 188–197, 2012. MONTEIRO, M. R.; KUGELMEIER, C. L.; PINHEIRO, R. S.; BATALHA, M. O.; DA SILVA CÉSAR, A. Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, v. 88, n. November 2016, p. 109–122, 2018. MOTA, C. J. A.; SILVA, C. X. A. D.; GONÇALVES, V. L. C. Glycerochemistry: New Products and Processes from Glycerin of Biodiesel Production. Quimica Nova, v. 32, n. 3, p. 639–648, 2009. NEVES, T. M.; FERNANDES, J. O.; LIÃO, L. M.; DEISE DA SILVA, E.; AUGUSTO DA ROSA, C.; MORTOLA, V. B. Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method. Microporous and Mesoporous Materials, v. 275, n. May 2018, p. 244–252, 2019. OGURA, M.; SHINOMIYA, S. Y.; TATENO, J.; NARA, Y.; NOMURA, M.; KIKUCHI, E.; MATSUKATA, M. Alkali-treatment technique - New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A: General, v. 219, n. 1–2, p. 33–43, 2001. OPANASENKO, M. Zeolite constructor kit: Design for catalytic applications. Catalysis Today, v. 304, n. July 2017, p. 2–11, 2018. OTT, L.; BICKER, M.; VOGEL, H. Catalytic dehydration of glycerol in sub- and supercritical water: A new chemical process for acrolein production. Green Chemistry, v. 8, n. 2, p. 214–220, 2006. PENG, P.; WANG, Y.; ZHANG, Z.; QIAO, K.; LIU, X.; YAN, Z.; SUBHAN, F.; KOMARNENI, S. ZSM-5-based mesostructures by combined alkali dissolution and re-assembly: Process controlling and scale-up. Chemical Engineering Journal, v. 302, p. 323–333, 2016. PEREGO, G. Characterization of heterogeneous catalysts by X-ray diffraction techniques. Catalysis Today, v. 41, p. 251–259, 1998. POSSATO, L. G.; CHAVES, T. F.; CASSINELLI, W. H.; PULCINELLI, S. H.; SANTILLI, C. V.; MARTINS, L. The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, v. 289, p. 20–28, 2017. PRASOMSRI, T.; JIAO, W.; WENG, S. Z.; GARCIA MARTINEZ, J. Mesostructured zeolites: Bridging the gap between zeolites and MCM-41. Chemical Communications, v. 51, n. 43, p. 8900–8911, 2015. QUISPE, C. A. G.; CORONADO, C. J. R.; CARVALHO, J. A. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, v. 27, p. 475–493, 2013. ROUQUEROLT, J; AVNIR, D; FAIRBRIDGE, C W; EVERETT, D.H ; HAYNES, J H; PERNICONE, N; RAMSAY, J D F; UNGER, K. S. W. SING; UNGER, K. K. Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, v. 66, n. 8, p. 1739–1758, 1994. SACHSE, A.; GRAU-ATIENZA, A.; JARDIM, E. O.; LINARES, N.; THOMMES, M.; GARCÍA-MARTÍNEZ, J. Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating. Crystal Growth and Design, v. 17, n. 8, p. 4289–4305, 2017. SADOWSKA, K.; WACH, A.; OLEJNICZAK, Z.; KUŚTROWSKI, P.; DATKA, J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, v. 167, p. 82–88, 2013. SCHMIDT, F.; LOHE, M. R.; BÜCHNER, B.; GIORDANINO, F.; BONINO, F.; KASKEL, S. Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Microporous and Mesoporous Materials, v. 165, p. 148–157, 2013. SHAH, M.; DAI, J. J.; GUO, Q. X.; FU, Y. Products and production routes for the catalytic conversion of seed oil into fuel and chemicals: A comprehensive review. Science China Chemistry, v. 58, n. 7, p. 1110–1121, 2015. SHAO, J.; FU, T.; MA, Q.; MA, Z.; ZHANG, C.; LI, Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, v. 273, n. June 2018, p. 122–132, 2019. SHI, L.; XU, Y.; ZHANG, N.; LIN, S.; LI, X.; GUO, P.; LI, X. Direct synthesis of Al-SBA-15 containing aluminosilicate species plugs in an acid-free medium and structural adjustment by hydrothermal post-treatment. Journal of Solid State Chemistry, v. 203, p. 281–290, 2013. SILAGHI, M. C.; CHIZALLET, C.; RAYBAUD, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous and Mesoporous Materials, v. 191, p. 82–96, 2014. SILVESTRE-ALBERO, A.; GRAU-ATIENZA, A.; SERRANO, E.; GARCÍA-MARTÍNEZ, J.; SILVESTRE-ALBERO, J. Desilication of TS-1 zeolite for the oxidation of bulky molecules. Catalysis Communications, v. 44, p. 35–39, 2014. SING, K. S. W.; EVERETT, D. H.; HAUL, R. A. W.; MOSCOU, L.; PIEROTTI, R. A.; ROUQUEROL, J.; SIEMIENIEWSKA, T. REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, v. 57, n. 4, p. 603–619, 1985. SINGH, S.; KUMAR, R.; SETIABUDI, H. D.; NANDA, S.; VO, D. V. N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Applied Catalysis A: General, v. 559, n. April, p. 57–74, 2018. SOCCI, J.; OSATIASHTIANI, A.; KYRIAKOU, G.; BRIDGWATER, T. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A: General, v. 570, n. November 2018, p. 218–227, 2019. SUÁREZ, N.; PÉREZ-PARIENTE, J.; MONDRAGÓN, F.; MORENO, A. Generation of hierarchical porosity in beta zeolite by post-synthesis treatment with the cetyltrimethylammonium cationic surfactant under alkaline conditions. Microporous and Mesoporous Materials, v. 280, n. January, p. 144–150, 2019. SUDARSANAM, P.; ZHONG, R.; VAN DEN BOSCH, S.; COMAN, S. M.; PARVULESCU, V. I.; SELS, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, v. 47, n. 22, p. 8349–8402, 2018. SVELLE, S.; SOMMER, L.; BARBERA, K.; VENNESTRØM, P. N. R.; OLSBYE, U.; LILLERUD, K. P.; BORDIGA, S.; PAN, Y. H.; BEATO, P. How defects and crystal morphology control the effects of desilication. Catalysis Today, v. 168, n. 1, p. 38–47, 2011. SZCZODROWSKI, K.; PRÉLOT, B.; LANTENOIS, S.; DOUILLARD, J. M.; ZAJAC, J. Effect of heteroatom doping on surface acidity and hydrophilicity of Al, Ti, Zr-doped mesoporous SBA-15. Microporous and Mesoporous Materials, v. 124, n. 1–3, p. 84–93, 2009. TALEBIAN-KIAKALAIEH, A.; AMIN, N. A. S.; HEZAVEH, H. Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, v. 40, p. 28–59, 2014. TAN, H. W.; ABDUL AZIZ, A. R.; AROUA, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, v. 27, p. 118–127, 2013. THOMMES, M. Chapter 15 Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. [s.l.] Elsevier B.V., 2007. v. 168 TREACY, M. M. J.; HIGGINS, J. B. Collection of Simulated XRD Powder Patterns for Zeolites. [s.l.] Elsevier, 2007. TSUKUDA, E.; SATO, S.; TAKAHASHI, R.; SODESAWA, T. Production of acrolein from glycerol over silica-supported heteropoly acids. Catalysis Communications, v. 8, n. 9, p. 1349–1353, 2007. UMPIERRE, A. P.; MACHADO, F. Glycerochemistry and glycerol valorization. Revista Virtual de Quimica, v. 5, n. 1, p. 106–116, 2013. VELUTURLA, S.; ARCHNA, N.; SUBBA RAO, D.; HEZIL, N.; INDRAJA, I. S.; SPOORTHI, S. Catalytic valorization of raw glycerol derived from biodiesel: a review. Biofuels, v. 9, n. 3, p. 305–314, 2018. WANG, Y.; SONG, J.; BAXTER, N. C.; KUO, G. T.; WANG, S. Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties. Journal of Catalysis, v. 349, p. 53–65, 2017. WRIGHT, P. A.; LOZINSKA, M. Zeolites and Ordered Porous Solids: Fundamentals and Applications. [s.l: s.n.]. XING, S.; LV, P.; FU, J.; WANG, J.; FAN, P.; YANG, L.; YUAN, Z. Direct synthesis and characterization of pore-broadened Al-SBA-15. Microporous and Mesoporous Materials, v. 239, p. 316–327, 2017. YANG, R. T. Zeolites and Molecular Sieves. Adsorbents: Fundamentals and Applications, v. 1862, p. 157–190, 2003. YARIPOUR, F.; SHARIATINIA, Z.; SAHEBDELFAR, S.; IRANDOUKHT, A. Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. Journal of Natural Gas Science and Engineering, v. 22, p. 260–269, 2015. YOO, W. C.; ZHANG, X.; TSAPATSIS, M.; STEIN, A. Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, v. 149, n. 1, p. 147–157, 2012. YU, D. K.; FU, M. L.; YUAN, Y. H.; SONG, Y. B.; CHEN, J. Y.; FANG, Y. W. One-step synthesis of hierarchical-structured ZSM-5 zeolite. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, v. 44, n. 11, p. 1363–1369, 2016. ZHANG, J.; LI, X.; LIU, J.; WANG, C. A comparative study of MFI zeolite derived from different silica sources: Synthesis, characterization and catalytic performance. Catalysts, v. 9, n. 1, 2019. ZHANG, K.; OSTRAAT, M. L. Innovations in hierarchical zeolite synthesis. Catalysis Today, v. 264, p. 3–15, 2016. ZHENG, X.; DONG, B.; YUAN, C.; ZHANG, K.; WANG, X. Direct synthesis, characterization and catalytic performance of Al-SBA-15 mesoporous catalysts with varying Si/Al molar ratios. Journal of Porous Materials, v. 20, n. 3, p. 539–546, 2013. ZONES, S. I.; YUEN, L. T. Verified Syntheses of Zeolitic Materials. [s.l: s.n.]. ZOU, B.; REN, S.; YE, X. P. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium. ChemSusChem, v. 9, n. 23, p. 3268–3271, 2016. ZOUBIDA, L.; HICHEM, B. The Nanostructure Zeolites MFI-Type ZSM5. In: Nanocrystals and Nanostructures. [s.l.] InTech, 2018. v. 32p. 137–144. | por |
dc.subject.cnpq | Engenharia Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/72922/2021%20-%20Izadora%20da%20Silva%20Santos.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/6510 | |
dc.originais.provenance | Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-04-12T17:07:44Z No. of bitstreams: 1 2021 - Izadora da Silva Santos.pdf: 3504671 bytes, checksum: d904b21a431aa53261bdbaab16fd5f37 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2023-04-12T17:07:44Z (GMT). No. of bitstreams: 1 2021 - Izadora da Silva Santos.pdf: 3504671 bytes, checksum: d904b21a431aa53261bdbaab16fd5f37 (MD5) Previous issue date: 2021-07-28 | eng |
Appears in Collections: | Mestrado em Engenharia Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2021 - Izadora da Silva Santos.pdf | 3.42 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.