Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13356
Full metadata record
DC FieldValueLanguage
dc.contributor.authorValente, Tainá Dias
dc.date.accessioned2023-12-22T02:45:47Z-
dc.date.available2023-12-22T02:45:47Z-
dc.date.issued2015-12-17
dc.identifier.citationVALENTE, Tainá Dias. Síntese da mordenita a partir da Al-SBA-15. 2015. 74 f. Tese (Doutorado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2015.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13356-
dc.description.abstractNo presente trabalho foi realizado o estudo da síntese da peneira molecular mesoporosa Al-SBA-15 a partir da síntese direta em reator agitado apresentando a seguinte proporção molar: 14 SiO2: 1 Al2O3: 0,235 P123: 1800 H2O. Inicialmente, foi feito um estudo visando otimizar a síntese da Al-SBA-15. Através deste estudo, foi verificado que as condições operacionais que resultaram na amostra de SBA-15 com maior grau de ordenamento foram com tempo de envelhecimento do gel de síntese igual a 15 horas a 40°C e depois a 100°C por 8 horas. Estas condições otimizadas foram utilizadas para efetuar o aumento de escala para o reator de 5 galões. As amostras de Al-SBA-15 foram submetidas a carbonização com o objetivo de preencher os poros da SBA-15 com material carbonáceo e evitar o colapso de sua estrutura. As amostras carbonizadas foram utilizadas como fonte de sílica para a síntese da mordenita em meio seco utilizando a técnica de transporte em fase vapor (VPT). O objetivo deste procedimento foi a obtenção de mordenita tendo mesoporos. Para o preparo da mordenita por VPT, várias condições foram utilizadas, variando o tempo de síntese e forma de adição dos reagentes, presença ou ausência de um direcionador orgânico. As amostras obtidas foram caracterizadas por difração de raios X e adsorção de nitrogênio. Foi observado que na maioria dos experimentos não houve a formação da fase mordenita. Nos experimentos em que esta fase foi obtida, não foi observada formação de mesoporosidade significativa. Aparentemente, a presença de material carbonáceo não foi suficiente para preservar a estrutura mesoporosa da SBA-15. Palavras chave:por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectmicroporous, ,eng
dc.subjectmesoporouseng
dc.subjectagitation.eng
dc.subjectmicroporospor
dc.subjectmesoporospor
dc.subjectagitaçãopor
dc.titleSíntese da mordenita a partir da Al-SBA-15por
dc.title.alternativeSynthesis of mordenite from the Al-SBA-15eng
dc.typeTesepor
dc.description.abstractOtherIn the present dissertation it was conducted the study of the synthesis of mesoporous molecular sieve Al-SBA-15 by direct synthesis in agitated reactor having the following molar ratio: 14 SiO2: 1 Al2O3: 0.235 P123: 1800 H2O. Initially, a study was done to optimize the synthesis of Al-SBA-15. Through this study, it was found that the operating conditions that resulted in the SBA-15 sample with a higher degree of ordering were gel aging time equal to 15 hours at 40 ° C and then at 100 ° C for 8 hours. These optimal conditions were used to perform scaling up to 5 gallon reactor. Samples of Al-SBA-15 were subjected to carbonization in order to fill the pores of SBA-15 with carbonaceous material and prevent the collapse of its structure. The carbonized samples were used as a source of silica for the synthesis of mordenite in dry medium using the transmission technique in the vapor phase (VPT). The purpose of this procedure was to obtain the mordenite having mesopores. For the preparation of the mordenite by VPT, several conditions were used, varying the synthesis time and form of addition of the reactants, presence or absence of an organic driver. The samples were characterized by X-ray and nitrogen adsorption. It was observed that in most of the experiments, there was no formation of mordenite phase. In the experiments in this phase was obtained, there was no significant mesoporosity training. Apparently, the presence of carbonaceous material was not sufficient to preserve the mesoporous structure of SBA-15. Keyeng
dc.contributor.advisor1Fernandes, Lindoval Domiciano
dc.contributor.advisor1ID83735925715por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7921814684730923por
dc.contributor.referee1Fraga, Marco André
dc.contributor.referee2Mota, Izabel de Oliveira
dc.creator.ID12417118793por
dc.creator.Latteshttp://lattes.cnpq.br/2892766840891075por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesALTHOFF, R.; UNGER, K.; SCHUTH, F., Is the formation of a zeolite from a dry powder via a gas phase transport possible?, Microporous Materials, v. 2, p. 557-562, 1994. ARAÚJO, N. F., Estudo das variáveis operacionais na síntese da peneira molecular mesoporosa Al-SBA-15, Dissertação (Mestrado em ciências), Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio Janeiro, 2013. BAJPAI, P. K., Synthesis of mordenite type zeolite, Zeolites, v. 6, p.2-8, 1986. BOVERI, M., et al., Steam and acid dealumination of mordenite Characterization and influence on the catalytic performance in linear alkylbenzene synthesis, Catalysis Today, v. 114, p. 217–225, 2006. BRAGA, A. A. C.; MORGON, N. H., Descrições estruturais cristalinas de zeólitos. Química Nova, v. 30, p. 178-188, 2007. BRECK, D. W., Zeolite Molecular Sieves, Wiley, Nova Iorque, 1974. BUSACCA, C. A. et al., The growing impact of catalysis in the pharmaceutical industry, Advanced Synthesis and Catalysis, v. 353, p. 1825, 2011. CHRISTENSEN, C. H. et al., Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites, Catalysis Today, v. 128, p. 117–122, 2007. CORIOLANO, A. C. F. et al., Development of HZSM-5/AlMCM-41 hybrid micro–mesoporous material and application for pyrolysis of vacuum gasoil, Microporous and Mesoporous Materials, v. 172, p. 206–212, 2013. CUNDY, C. S., Synthesis of zeolites and zeotypes, Studies in Surface Science and Catalysis v. 157, 2005. WILLIAMS, D. B.; CARTER, C. B., Transmission Electron Microscopy. A Text Book for Materials Science, Plenum Press, New York, 1996. DRAGOI, B. et al., Acidic and adsorptive properties of Al modified SBA-15 samples, Zeolites and Related Materials: Trends, Targets and Challenges Proceedings of 4th International FEZA Conference, 2008. DUPONT, J., A CATÁLISE NO BRASIL NOS ÚLTIMOS 25 ANOS: UMA HISTÓRIA DE SUCESSO, Química Nova, v. 25, Supl. 1, p. 12-13, 2002. FECHETE, I.; WANGB Y.; VÉDRINE, J. C., The past, present and future of heterogeneous catalysis, Catalysis Today, v. 189, p. 2– 27, 2012. Dissertação Tainá Dias Valente - 2015 Página 72 FIGUEIREDO, J. I.; RIBEIRO, F. R. (1989). Catálise Heterogênea. Lisboa: Fundação Calouste Gulbenkian. FOGLER, H. S. (2002). Elementos de Engenharia das Reações Químicas. Ed. Livros Técnicos e Científicos, Rio de Janeiro, RJ. Traduzido por Flávio Faria de Moraes e Luismar Marques Porto, da 3a ed. em inglês (1999) Elements of Chemical Reaction. GALAMEAU A. et al., SBA-15 versus MCM-41: are they the same materiais?, Nanoporous Materials III, v. 141, p. 395–402, 2002. GALLETI, S. R., Palestra Introdução a microscopia eletrônica, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Biológico, v.65, p.33-35, 2003. GROEN, J. C. et al., Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions, Journal of Catalysis, v. 251, p. 21-27, 2007. HE, J. et al., Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption, Microporous and Mesoporous Materials, v. 121, p. 173–177, 2009. SILVA, B. S.; RODRIGUES J. A. J.; NONO M. C. A., Caracterização de materiais catalíticos, Tese de doutorado, INPE, 2008. JOO, S. H.; JUN, S.; RYOO, R., Synthesis of ordered mesoporous carbon molecular sieves CMK-1, Microporous and Mesoporous Materials, v. 44, p. 153-158, 2001. JUN, S. et al., Synthesis of new nanoporous carbon with hexagonally ordered mesostructure, Journal of the American Chemical Society, v. 122, p. 10712–3, 2000. KARLSSON, A.; STOCKER, M.; SCHAFER, K., Enhanced Hydrothermal Stability obtained for in situ Synthesized Micro-and Mesoporous MFI / MCM-41 like Phases, Porous Materials in Environmentally Friendly Processes, v. 125, p. 61-67, 1999. KIM, J.; LEE, J.; HYEON, T., Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica/triblock copolymer nanocomposites, Carbon, v. 42, p. 2711–2719, 2004. KIM, M.; LI, H.; DAVIS, M. E., Synthesis of zeolites by water-organic vapor-phase transport, Microporous Materials, v. 1, p. 191-200, 1993. KLIMOVA, T. et al., Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization: effect of support Si/Al ratio, Applied Catalysis, v. 335, p. 159–171, 2008. LI, H. et al., Micro-mesoporous composite molecular sieves H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether: Effect of SiO2/Al2O3 ratio in H-ZSM-5, Applied Catalysis A: General, v. 450, p. 152– 159, 2013. LI, X.; PRINS, R.; BOKHOVEN, J. A., Synthesis and characterization of mesoporous mordenite, Journal of Catalysis, v. 262, p. 257-265, 2009. Dissertação Tainá Dias Valente - 2015 Página 73 LI, Q. et al., Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio, Microporous and Mesoporous Materials, v. 135, p. 95–104, 2010. LIANG, X. et al., Synthesis and characterization of mesoporous Mn/Al-SBA-15 and its catalytic activity for NO reduction with ammonia, Catalysis Communications, v. 8, p. 1901–1904, 2007. LIMA, L. A.; NOGUEIRA, A. C.; RODRIGUES, M. G. F., Síntese e caracterização da Peneira molecular SBA-15 sintetizada a partir da casca de arroz, UFCG/CCT/UAEQ/LABNOV, Campina Grande - Paraíba, Brasil, 2012. LÓPEZ-SANZ, J. et al., New inorganic–organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis, Catalysis Today, v. 187, p. 97– 103, 2012. MATSUKATA, M. et al., Conversion of dry gel to microporous crystals in gas phase, Topics in Catalysis, v. 9, p. 77-92, 1999. MCNAUGHT, A. D.; WILKINSON, A., IUPAC Compendium of Chemical Terminology, 2nd edition, British Royal Society of Chemistry, Cambridge, UK, 1997. MENG, X.; NAWAZ, F.; XIAO, F., Templating route for synthesizing mesoporous zeolites with improved catalytic properties, Nano Today, v. 4, p. 292-301, 2009. MORSLI, A. et al., Microporosity of the amorphous aluminosilicate precursors of zeolites: The case of the gels of synthesis of mordenite, Microporous and Mesoporous Materials, v. 104, p. 209–216, 2007. MORTIER, W. M.; PLUTH, J. J.; SMITH, J. V., Positions of cations and molecules in zeolites with the mordenit-type framework. IV. Dehydrated and rehydrated K-exchanged “ptilolite”. In: Sand L.B., Mumpton F.A. (eds.) Natural Zeolites: occurremce, properties, use. New York, Pergamon Press, p.53-62, 1978. NARAYANAN, S. et al., Characterization and catalytic reactivity of mordenite – Investigation of selective oxidation of benzyl alcohol, Polyhedron, v. 89, p. 289–296, 2015. OGURA, M., et al., Preparation of zeolitic mesoporous aluminosilicate by vapor phase transport method, Studies in Surface and Catalysis, v. 158, p. 493-500, 2005. OGURA, M., et al., Formation of ZMM-n: The composite materials having both natures of zeolites and mesoporous silica materials, Microporous and Mesoporous Materials, v.101, p. 224–230, 2007. OGURA, M., et al., A mechanistic study on the synthesis of MCM-22 from SBA-15 by dry gel conversion to form a micro- and mesoporous composite, Catalysis Today, v. 168, p. 118–123, 2011. Dissertação Tainá Dias Valente - 2015 Página 74 PARMENTIER, J., et al., New carbons with controlled nanoporosity obtained by nanocasting using a SBA-15 mesoporous silica host matrix and different preparation routes, Journal of Physics and Chemistry of Solids, v. 65, p. 139–146, 2004. PAYRA, P.; DUTTA, P. K., Zeolites: A Primer. In: Auerbach, S.M.M., Carraro, K. A., Dutta, P. K., Handbook Of Zoelite Science And Technology, Marcel Dekker Inc., p. 1-17, 2003. PERRY, R.H.; GREEN, D.W., Chemical Engineers Handbook. McGraw-Hill, 7th edition, New York (1999). PIRES, J., C., A.; CARVALHO, M. B., Template synthesis and characterization of mesoporous zeolites, Microporous and Mesoporous Materials, v.43, p. 277, 2001. PUJADO, P. R. et al., Industrial catalytic applications of mole-sieves, Catalysis Today, v.13, p.113-141, 1992. RODELLA, C.B. Preparação e caracterização de catalisadores de V2O5 suportado em TiO2, Tese de Doutorado, USP, 2001. RYOO, R.; JOO, S. H.; JUN, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, The Journal of Physical Quemistry, v. 103, nº 37, 1999. SANTOS, E. N.; LAGO, R. M., Publicações na área de catálise envolvendo instituições brasileiras: uma comparação entre os periódicos especializados e os da SBQ, Química Nova, v. 30, Nº. 6, p. 1480-1483, 2007. SILVA, J. B. et al., Caracterização de materiais catalíticos, Qualificação de Doutorado do Curso de Pós-Graduação em Engenharia e Tecnologia Espaciais/Ciência e Tecnologia de Materiais e Sensores, Instituto Nacional de Pesquisas Espaciais, Ministério da Ciência e Tecnologia, 2008. SIMONCIC, P.; ARMBRUSTER T., Peculiarity and defect structure of the natural and sybthetic zeolite mordenite: a single-crystal study, American Mineralogist, v. 89: p. 421-431, 2004. QUINTELLA, S. A., Síntese, caracterização e propriedades catalíticas da peneira molecular nanoestruturada modificada com lantânio, Tese de doutorado, UFRN, 2009. TAGUCHI, F. S, Microporous and Mesoporous Materials v. 77, p. 1, 2005. TAGUSHI, A.; SCHUTH, F.; Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials, v. 77, p. 1-45, 2005. TANEV, P. T.; CHIBWE, M.; PINNAVAIA, T. J.; Titanium-Containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds, Nature, v.368, p.321, 1994. Dissertação Tainá Dias Valente - 2015 Página 75 TEIXEIRA, V. G.; COUTINHO, F. M. B.; GOMES, A. S., Principais métodos de caracterização da porosidade de resinas à base de divinilbenzeno, Química Nova, v. 24, p. 808-818, 2001. THIELEMANN, J. P. et al., Pore structure and surface area of silica SBA-15: influence of washing and scale-up, Beilstein J. Nanotechnol, v. 2, p. 110–118, 2011. VINU, A. et al., Controlling the textural parameters of mesoporous carbon materials, Microporous and Mesoporous Materials, v. 100, p. 20–26, 2007. WANG, J., COPPENS, M., Synthesis of meso-structured silicalite-1 by combining solid phase crystallization and carbon templating, Recent Progress in Mesostructured Materials, p. 503-506, 2007. XU W. et al., A novel method for the preparation of zeolite ZSM-5, Journal of the Chemical Society, 1990. ZHANG C. et al., Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment, Microporous and Mesoporous Materials, v. 62, p. 157–163, 2003. ZHAO D. et al., Using the organic-inorganic interface to define pore and macroscale structure, Mesoporous molecular sieves, Studies in Surface Science and Catalysis, v. 117, 1998. ZHOLOBENKO V. L. et al., Initial stages of SBA-15 synthesis: An overview, Advances in Colloid and Interface Science, v. 142, p. 67–74, 2008por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/5037/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19716/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/26081/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32484/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38874/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/45242/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51592/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/58078/2015%20-%20Tain%c3%a1%20Dias%20Valente.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1352
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-01-03T12:20:02Z No. of bitstreams: 1 2015 - Tainá Dias Valente.pdf: 2209049 bytes, checksum: 5c25bcd5878b607ea484c8dbccb59903 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2017-01-03T12:20:02Z (GMT). No. of bitstreams: 1 2015 - Tainá Dias Valente.pdf: 2209049 bytes, checksum: 5c25bcd5878b607ea484c8dbccb59903 (MD5) Previous issue date: 2015-12-17eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2015 - Tainá Dias Valente.pdf2015 - Tainá Dias Valente2.16 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.