Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13446
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPereira, Caroline Eulino Gonçalves
dc.date.accessioned2023-12-22T02:46:50Z-
dc.date.available2023-12-22T02:46:50Z-
dc.date.issued2018-08-30
dc.identifier.citationPereira, Caroline Eulino Gonçalves. Estudo da perda de carga no escoamento de fluidos Newtonianos em coiled tubing. 2018. [136 f.]. Dissertação( Programa de Pós-Graduação em Engenharia Química) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13446-
dc.description.abstractO sistema coiled tubing tem várias utilidades no ramo do petróleo, dentre elas o abandono de poços por meio da cimentação. Esse sistema é composto, principalmente de um tubo de aço longo, contínuo e flexível que tem parte do seu comprimento enrolado em um carretel enquanto outra parte é direcionada ao poço por meio de um injetor e uma mesa rotatória. O uso do coiled tubing no abandono de poços é de suma importância por reduzir o tempo de operação, pelo fato do tubo ser contínuo, o que leva a uma redução do custo. Devido à perda de carga por atrito e troca de calor que ocorre durante o escoamento do fluido nesse sistema, as propriedades físico-químicas e reológicas da pasta de cimento se alteram ao longo do tempo. Para que não haja risco da pasta curar antes de atingir o local desejado, aditivos, como retardador de pega, são adicionados em excesso. Visto isso, destaca-se a importância da previsão da perda de carga dada à sua influência no perfil de temperatura e, consequentemente, nas propriedades reológicas dos fluidos. Além disso, o conhecimento da perda de carga permitirá um melhor planejamento da pressão de bombeio necessária. Porquanto, o objetivo desse trabalho é prever a perda de carga no escoamento de fluidos Newtonianos em sistema coiled tubing. Com o intuito de estudar o escoamento de fluidos no sistema coiled tubing, uma unidade experimental com 375 metros de tubo de cobre enrolado com diâmetro de ½ in e similaridade a um sistema coiled tubing real foi construída. Nessa unidade foram instalados transmissores de pressão a fim de acompanhar a pressão ao longo do comprimento do tubo. Foram realizados testes com escoamento de água, fluido Newtoniano, na faixa de vazão entre 0,05 e 0,65 m3/h, com o objetivo de prever a perda de carga nesse sistema coiled tubing. Os dados de vazão e queda de pressão obtidos na unidade experimental permitiram a avaliação do Reynolds crítico, de correlações de fator de atrito no regime laminar e turbulento e da influência da curvatura e do comprimento do tubo na queda de pressão. Uma metodologia de previsão da perda de carga na região enrolada de um sistema coiled tubing foi proposta e o erro percentual entre os valores de queda de pressão experimentais e calculados foi menor que 5%.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasilpor
dc.description.sponsorshipPetrobráspor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectflexitubospor
dc.subjectperda de cargapor
dc.subjectunidade experimentalpor
dc.subjectcoiled tubingeng
dc.subjectpressure dropeng
dc.subjectpilot-scale uniteng
dc.titleEstudo da perda de carga no escoamento de fluidos Newtonianos em coiled tubingpor
dc.title.alternativeThe study of pressure drop in the flow of Newtonian fluids in coiled tubingeng
dc.typeDissertaçãopor
dc.description.abstractOtherCoiled tubing system has many uses in the oil industry, among them, the plugging and abandonment (P&A) process, by cementing. This system consists mainly of a long, flexible, continuous steel tube that has part of its length wrapped on a reel while another part is directed to the well by an injector and a rotary table. The use of coiled tubing in the P&A process is extremely important due to the fact it lowers operation time, since the pipe is continuous, which leads to a reduction in cost. Due to the frictional pressure loss and heat transfer which occurs during the flow of the fluid in this system, the physical, chemical, and rheological properties of cement slurries change over time. To avoid the risk of setting the cement slurry before reaching the desired location, additives such as mid-temp retarder is added in excess. As such, the importance of predicting pressure drop is highlighted due to its influence on fluid temperature profile, and, consequently, on the rheological properties of the fluids. Besides that, pressure drop prediction will allow better planning of the required pump pressure. Knowing this, this work focused on predicting pressure drop in the flow of Newtonian fluids in a coiled tubing system. In order to study the fluid flow in coiled tubing system, an experimental unit with 375 meters of wrapped copper tube with ½ in diameter, and similarity to an actual coiled tubing system was built. Pressure transmitters were installed in this unit to monitor pressure along tube length. Tests were carried out with water, Newtonian fluid, in the flow range between 0.05 and 0.65 m3/h, in order to predict pressure drop in this coiled tubing system. Flow rate and pressure drop data obtained in the experimental unit allowed the evaluation of critical Reynolds number, friction factor correlations in laminar and turbulent regime, and the influence of the curvature and tube length on pressure drop. A methodology for predicting pressure drop in the coiled tubing system was proposed and the percentage error between the experimental and calculated pressure drop values was less than 5%.eng
dc.contributor.advisor1Scheid, Cláudia Míriam
dc.contributor.advisor1ID023546317-58por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7777291180260276por
dc.contributor.advisor-co1Calçada, Luís Américo
dc.contributor.referee1Scheid, Cláudia Miriam
dc.contributor.referee2Miranda, Cristiane Richard de
dc.contributor.referee3Silva, Leonardo Duarte Batista da
dc.creator.ID141298987-60por
dc.creator.Latteshttp://lattes.cnpq.br/5861902616811620por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesADLER, M. Striimung in gekriimmten rohren, 2.Angew. Math. Mech. 14, p. 257-275, 1934. AGÊNCIA NACIONAL DO PETRÓLEO (Brasil). Portaria ANP nº 25. Regulamento Técnico nº 2/2002, de 6 de março de 2002. Procedimentos a serem adotados no abandono de poços de petróleo e/ou gás. Disponível em: <http://nxt.anp.gov.br/NXT/gateway.dll/leg/folder_portarias_anp/portarias_anp_tec/2002/mar%C3%A7o/panp%2025%20-%202002.xml>. Acesso em: 10 dez. 2015. ALI, S. Pressure drop correlations for flow through regular helical coil tubes. Fluid Dynamics Research, v. 28, p. 295-310, 2001. ALI, S.; ZAIDI, A. H. Head loss and critical Reynolds number for flow in ascending equiangular spiral tube coils. Ind. Eng. Chem. Process Des. Dev., v. 18, n. 2, p. 349-353, 1979. AZOUZ, I.; SHAH, S. N.; VINOD, P. S.; LORD, D. L. Experimental investigation of frictional pressure losses in coiled tubing. SPE Production & Facilities, p. 91-96, 1998. BAKER HUGHES. Drilling fluids reference manual. Baker Hughes drilling fluis, 2006. BARUA, S. N. On Secondary Flow in Stationary Curved Pipes, The Quarterly Journal of Mechanics and Applied Mathematics, v. 6, pp. 61-77, 1963. Bridge Plugs [20--?]. Disponível em: <http://www.shopbakerhughes.com/completion-tools/plugs-retainers/bridge-plugs.html>. Acesso em: 26 nov. 2015. BRODKEY, R. S. The phenomena of fluid motions. Dover Publications, Inc. New York, 1967. CAMPBELL, K.; SMITH, R. Permanent Well Abandonment. SPE, Tech 101, v. 9, n. 3, p. 25-27, 2013. CASTIGLIA, F.; CHIOVARO, P.; CIOFALO, M.; DI LIBERTO, M.; DI MAIO, P. A.; DI PIAZZA, I.; GIARDINA, M.; MASCARI, F.; MORANA, G.; VELLA, G. Modelling flow and heat transfer in helically coiled pipes. Part 3: Assessment of turbulence models, parametrical study and proposed correlations for fully turbulent flow in the case of zero pitch. Report Ricerca di Sistema Elettrico, Accordo di Programma Ministero dello Sviluppo Economico - ENEA, 2010. Cement Retainers [20--?]. Disponível em: <http://www.shopbakerhughes.com/completion-tools/plugs-retainers/cement-retainers.html>. Acesso em: 26 nov. 2015. CIONCOLINI, A.; SANTINI, A. An experimental investigation regarding the laminar to turbulent flow transition in helically coiled pipes. Experimental Thermal and Fluid Science, v. 30, p. 367-380, 2006. doi: 10.1016/j.expthermflusci.2005.08.005 77 COILED Tubing Equipment [20--?]. Disponível em: <https://www.emaze.com/@ALZTCZQ>. Acesso em: 9 ago. 2018. CUMING, H. G. The secondary flow in curved pipes. Aeronautical Research Council Reports and Memoranda, 1955. DEAN, W. R. Note on the motion of Fluid in a Curved Pipe. Philosophical Magazine. v. 20, p. 208-223, July 1927. DEAN, W. R. The stream-line motion of fluid in a Curved Pipe. Philosophical Magazine and Journal of Science, v. 5, n. 30, p. 673-695, April 1928. DENNIS, S. C. R. Calculation of the Steady Flow Through a Curved Tube Using a New Finite- Difference Scheme, Journal of Fluid Mechanics, v. 99, pp. 449-467, 1980. DRILLING Formula. Flow Regime and Critical Reynolds Number for Drilling Hydraulics, maio 2012. Disponível em: < http://www.drillingformulas.com/flow-regime-and-critical-reynolds-number-for-drilling-hydraulics/>. Acesso em: 14 ago. 2018 EUSTICE, J. Flow of curved pipes. Proceedings of the Royal Society of London. Series A. Containing Papers of Mathematical and Physical Character, p. 107-118, 1910. EUSTICE, J. Experiments of streamline motion in curved pipes, Proc. R. Soc. A-85, p. 119-131, 1911. FOX, R. W.; MCDONALD, A. T.; PRITCHARD, P. J. Introdução à Mecânica dos Fluidos. 6. ed. Rio de Janeiro: Livros Técnicos e Científicos Editora S.a., 2006. GHOBADI, M.; MUZICHKA, Y.S. A review of heat transfer and pressure drop correlations for laminar flow in curved circular ducts. Heat Transfer Engineering, 2015. doi: 10.1080/01457632.2015.1089735 GHORBANI, N.; TAHERIAN, H.; GORJI, M.; MIRGOLBABAEI, H. An experimental study of thermal performance of shell-and-coil heat exchangers. International Communications in Heat and Mass Transfer, v. 37, p. 775-781, 2010. doi: 10.1016/j.icheatmasstransfer.2010.02.001 GONÇALO, R. Operações Rotineiras numa Sonda [20--?]. Disponível em: < http://www.ebah.com.br/content/ABAAAfjyIAA/operacoes-rotineiras-numa-sonda>. Acesso em: 10 dez. 2015. GRAND DUKE, Drill Pipe. 2015. Disponível em: < http://grandduke-rus.com/en/catalog/oil-pipes/drill-pipe/> Acesso em: 12 ago. 2018. GREEN, D. W.; PERRY, R. H. Perry’s Chemical Engineers’ Handbook. 8. ed. EUA: McGraw-Hill, 2008. 78 GRINDLEY, J.H.; GIBSON, A.H. On the frictional resistance to the ow of air through a pipe. Proc. R. Soc. London, Ser. A 80, p. 114–139, 1908 GROVER, J; BARDEN, A. Coiled tubing offers pre-commissioning tool for deepwater pipelines. 2015. Disponível em: <http://www.offshore-mag.com/articles/print/volume-75/issue-6/pipelines-flowlines/coiled-tubing-offers-pre-commissioning-tool-for-deepwater-pipelines.html> Acesso em: set. 2017. GUAN, F.; MA, W.; TU, Y; ZHOU, C.; FENG, D.; ZHOU, B. An Experimental Study of Flow Behavior of Coiled Tubing Drilling System. Hindawi Publishing Corporation, ID 935159, 2014 HASAN, W. K. Transient three-dimensional numerical analysis of forced convection flow and heat transfer in a curved pipe. IOSR Journal of Mechanical and Civil Engineering, v. 9, n. 5, p. 47-57, 2013. HOQUE, M.; ALAM, M. Effects of Dean number and curvature on fluid flow through a curved pipe with magnetic field. Procedia Engineering, v. 56, p. 245-253, 2013. doi: 10.1016/j.proeng.2013.03.114 ITO, H., Friction Factors for Turbulent Flow in Curved Pipes; Journal of Basic Engineering, pp. 123-134, jun. 1959. ITO, H. Laminar flow in curved pipes. ZAMM, v. 49, n. 11, p. 653-663, 1969. JAIN, S.; SINGHAL, N.; SHAH, S. N. Effect of Coiled Tubing Curvature on Friction Pressure Loss of Newtonian and Non-Newtonian Fluids – Experimental and Simulation Study. SPE, Houston, Texas, set. 2004. KUBAIR, V.; VARRIER, C. B. S. Pressure Drop for Liquid Flow in Helical Coils, Transaction of Indian Institute of Chemical Engineering, vol. 14, pp. 93-97, 1961/2. LIU, S., and MASLIYAH, J. H., A Decoupling Numerical Method for Fluid Flow,International Journal of Numerical Methods Fluids, vol. 16, no. 8, pp. 659-682, 1993. MACHADO, J. C. V. Reologia e escoamento de fluidos. 1. ed. Editora Interciência, p. 1-12, 39-44, 95-107, 2002. McCANN, R. C.; ISLAS, C. G. Frictional Pressure Loss During Turbulent Flow in Coiled Tubing. SPE/ICoTA, Texas, SPE 36345, fev.1996. McCONALOGUE, D.J.; SRIVASTAVA, R.S. Motion of a Fluid in a Curved Tube; Proceedings of Royal Society of London, Series A, v. 307, p. 37-53, 1968. 79 MEDJANI, B.; SHAH, S.N. A new approach for predicting frictional pressure losses of non-newtonian fluids in coiled tubing. SPE, Denver, Colorado, SPE 60319, march 2000. MESA Rotativa para Sonda de Perfuração [20--?]. Disponível em: <http://portuguese.alibaba.com/product-gs/zp205-rotary-table-for-drilling-rig-457376327.html>. Acesso em: 10 dez. 2015. MISHRA, P. and GUPTA, S.N., Momentum Transfer in Curved Pipes. I. Newtonian Fluids, II. Non-Newtonian Fluids; Industrial and Engineering Chemistry Process Design and Development, v. 18, pp. 130-42, 1979. MORI, Y.; NAKAYAMA, W. Study on forced convective heat transfer in curved pipes. Int. J. Heat Mass Transfer., v. 8, p. 67-82, 1965. NAPHON, P.; WONGWISES, S. A review of flow and heat transfer characteristics in curved tubes. Renewable and Sustainable Energy Reviews, v. 10, p. 463-490, 2006. doi: 10.1016/j.rser.2004.09.014 NELSON, E. B. Well Cementing, Houston: Schlumberger Educational Services, 1990. NÓBREGA, A. K. C. Formulação de Pastas Cimentícias com Adição de Suspensões de Quitosana para Cimentação de Poços de Petróleo. 2009. 134 f. Tese (Doutorado em Ciência e Engenharia de Materiais) - Curso de Pós-Graduação em Ciência e Engenharia de Materiais , Universidade Federal do Rio Grande do Norte, Natal, 2009. NPC. Plugging and Abandonment of Oil and Gas Wells. NPC North American Resource Development Study, artigo #2-25, 15 set. 2011. Disponível em: < https://www.npc.org/Prudent_Development-Topic_Papers/2-25_Well_Plugging_and_Abandonment_Paper.pdf>. Acesso em: 14 nov. 2015. OCHOA, M.V. Analysis of drilling fluid rheology and tool joint effect to reduce erros in hydraulics calculations. Dissertation (Doctor of Philosophy - Petroleum Engineering) - Texas A&M University, ago. 2006. PACIFIC Northwest National Laboratory. Sensors & Electronics - Macro Property Measurements: Complex Fluid Type Governs Behavior, jul. 2011. Disponível em: <https://technet.pnnl.gov/sensors/macro/projects/es4FIType.stm >. Acesso em: 13 ago. 2018. PARAISO, E. C. H. Estudo do Escoamento de Pasta de Cimento em Dutos Circulares e Anulares Concêntricos. 2011. 110 f. Dissertação (Mestrado em Engenharia Química) - Curso de Pós-Graduação em Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 2011. PATIL, R.H. Experimental studies on heat transfer to newtonian fluids through spiral coils. Experimental Thermal and Fluid Science, 2017. doi: 10.1016/j.expthermflusci.2017.02.002 80 PAWAR, S.S.; SUNNAPWAR, V.K.; TAGALPALLEWAR, A.R. Development of experimental heat transfer correlations using Newtonian fluids in helical coils. Heat Mass Transfer, 2015. doi: 10.1007/00231-015-1544-0 P&A [20--?]. Disponível em: <http://www.glossary.oilfield.slb.com/Terms/p/pa.aspx>. Acesso em: 25 nov. 2015. RAO, B. Coiled tubing hydraulics modeling. CTES, L.C., Tech Note, 1999. RAO, B.N. Friction factors for turbulent flow on non-newtonian fluids in coiled tubing. SPE, Houston, Texas, SPE 74847, April 2002. SCHMIDT, D. F. Warmeubarang and Druckverlust in Rohrshlangen, Chemical Engineering Technology, vol. 13, pp. 781789, 1967. SHAH, S.; LASAT, M. Development of an Environmentally Friendly and Economical Process for Plugging Abandoned Wells (Phase II). EPA, 2003. Disponível em: <http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract/8743/report/2003>. Acessado em: 25 nov. 2015. SHAH, S.; ZHOU, Y.; BAILEY, M.; HERNANDEZ, J. Correlations to predict frictional pressure loss of hydraulic-fracturing slurry n coiled tubing. SPE Production & Operations, p. 381- 395, August 2009. SHAQLAIH, A.S.; KAMEL, A.H. AIC applications in coiled tubing hydraulics. International Journal of Petroleum and Geoscience Engineering, v. 1, n. 2, p. 62-81, 2013. SHIROMA, P.H. Estudo do comportamento reológico de suspensões aquosas de bentonita e cmc: influência da concentração do NaCl. Dissertação (Mestrado em Engenharia Química) - Universidade de São Paulo, São Paulo, 2012. SILVA, M. G. P.; et al. Avaliação de equações pertinentes aos projetos hidráulicos com fluidos de perfuração, pastas de cimento e fluidos de completação no escoamento tubular e anular, Relatório Técnico Interno, n° 675–12009, Vol.1, CENPES/PETROBRAS, 1989. SILVA, R. A. Engenharia de Perfuração. Santa Catarina, [2009]. Departamento de Automação e Sistemas. Universidade Federal de Santa Catarina. Disponível em: < http://user.das.ufsc.br/~plucenio/DAS5946/aula5/Apr_DrRenato_A_Silva.pdf >. Acesso em: 18 nov. 2015. SRINIVASAN, P.S.; NANDAPURKAR, S.S.; HOLLAND, F.A. Pressure Drop and Heat Transfer in Coils, Chemical Engineering Journal, vol. 218, pp. CE113-CE119, 1968. 81 SRINIVASAN, P.S.; NANDAPURKAR, S.S.; HOLLAND, F.A. Friction Factors for Coils; Transactions of the Institution of Chemical Engineers, v. 48, pp. T156-T161, 1970. WHITE, C.M. Streamline flow through curved pipes. Proc. R. Soc. Lond. A, v. 123, n.792, p. 645-663, 1929. WHITE, C.M. Fluid friction and its relation to heat transfer. Trans. Inst. Chem. Eng. (London) 10, p.66–86,1932. XUEJUN, H.; ZHILIN, Q.; QIMIN, L.; TENGFEI, S. Comparative analysis of the pressure loss from the circulation of drilling fluid during micro hole drilling with the use of coiled tubing. Chemistry and Technology of Fuels and Oils, v. 51, n. 4, p. 361-370, 2015. doi: 10.1007/s10553-015-0613-x ZHOU, Y.; SHAH, S.N. Fluid flow in coiled tubing: a critical review and experimental investigation. Canadian International Petroleum Conference. Paper 2002-225, p. 1-15, 2002a. ZHOU, Y.; SHAH, S.N. Non-newtonian fluid flow in coiled tubing: theoretical analysis and experimental verification. SPE, San Antonio, Texas, SPE 77708, 2002b. ZHOU, Y.; SHAH, S.N. New friction factor correlations for non-newtonian fluid flow in coiled tubing. SPE, Melbourne, Australia, SPE 77960, October 2002c. ZHOU, Y.; SHAH, S.N. Rheological properties and frictional pressure loss of drilling, completion, and stimulation fluids in coiled tubing. Journal of Fluids Engineering, v. 126, p. 153-161, March 2004a. doi: 10.1115/1.1669033 ZHOU, Y.; SHAH, S.N. Fluid flow in coiled tubing: a literature review and experimental investigation. Journal of Canadian Petroleum Technology, v. 43, n. 6, p. 52-61, June 2004b. ZHU, Z.Y. CFD simulation in helical coiled tubing. Journal of Applied Science and Engineering, v. 19, n. 3, p. 267-272, 2016. doi: 10.6180/jase.2016.19.3.04por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65106/2018%20-%20Caroline%20Eulino%20Gon%c3%a7alves%20Pereira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4654
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-05-18T03:24:05Z No. of bitstreams: 1 2018 - Caroline Eulino Gonçalves Pereira.pdf: 8056840 bytes, checksum: 3d4b05b3e09580f929136ed7683019a5 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-05-18T03:24:05Z (GMT). No. of bitstreams: 1 2018 - Caroline Eulino Gonçalves Pereira.pdf: 8056840 bytes, checksum: 3d4b05b3e09580f929136ed7683019a5 (MD5) Previous issue date: 2018-08-30eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Caroline Eulino Gonçalves Pereira.pdf2018 - Caroline Eulino Gonçalves Pereira7.87 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.