Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13466
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlmeida, Núbia Caroline de
dc.date.accessioned2023-12-22T02:47:04Z-
dc.date.available2023-12-22T02:47:04Z-
dc.date.issued2017-05-08
dc.identifier.citationAlmeida, Núbia Caroline de. Síntese de faujasita mesoporosa por síntese direta utilizando soft Template. 2017. 101 f. Dissertação (Programa de Pós-Graduação em Engenharia Química) - Universidade Federal Rural do Rio de Janeiro, [Seropédica - RJ] .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13466-
dc.description.abstractO mineral faujasita é isoestrutural das zeólitas sintéticas X e Y. Enquanto que a faujasita mineral possui composição de rede variável, a zeólita X apresenta razão de Si/Al entre 1,0 a 1,5 e a zeólita Y possui uma razão Si/Al superior a 1,5. A zeólita Y é o componente ativo do catalisador de craqueamento catalítico fluido (FCC), sendo desativada rapidamente pela formação de coque. Deste modo, gerar mesoporos possibilitaria maior rendimento no processo de FCC, pois melhoraria a transferência de massa. Amostras de faujasita mesoporosa foram preparadas por síntese direta utilizando surfactante CTABr como soft template em diferentes concentrações, tempos de cristalização e temperaturas. Para caracterização das amostras produzidas foram utilizadas as técnicas de difração de raios-X (DRX), adsorção/dessorção de N2, dessorção de NH3 à temperatura programada (TPD-NH3), ressonância nuclear magnética (RMN), microscopia eletrônica de varredura (MEV), espectroscopia de absorção no infra vermelho (FTIR), fluorescência de raios-X (FRX). Os resultados indicaram que houve aumento significativo no volume de mesoporos, 0,13 cm³/g, e formação de isotermas do tipo I e IV. As análises de DRX confirmaram a obtenção da estrutura faujasita com alto teor de cristalinidade. A razão de silício/alumínio obtida foi superior a 1,7, confirmando a presença de zeólita Y. Não foram observadas variações significativas na acidez total e houve a formação de apenas um pico de dessorção, caracterizado como acidez fraca. As análises de ressonância nuclear magnética mostraram um alto teor de alumínio octaédrico, associado ao alumínio extra rede. As imagens de microscopia eletrônica de varredura indicaram a formação de zeólita nanométrica. Os valores obtidos para tamanho de célula unitária estão condizentes com o presente na literatura; entre 24,18 e 25Å. As propriedades texturais melhoraram com a introdução do surfactante independente da temperatura de síntese. Os melhores resultados obtidos ocorreram para introdução de 0,5 mol de CTABr. Para amostras sintetizadas em temperaturas superiores, como 110°C, a introdução de surfactante propiciou a formação da estrutura faujasita em detrimento da estrutura hidroxisodalita. Para temperaturas mais elevadas, como 150°C, houve formação de fase contaminante; a zeólita GIS. Observou-se que o tamanho do cristal aumenta com o maior tempo de envelhecimento e é maior para amostras sintetizadas a 110°C. As amostras foram submetidas ainda a avaliação catalítica por meio da reação de craqueamento do n-heptano a 420°C, todavia não apresentaram resultados satisfatórios devido à grande quantidade de alumínio extra-rede.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectmateriais mesoporosospor
dc.subjectsurfactantepor
dc.subjectfaujasitapor
dc.subjectcraqueamento catalíticopor
dc.subjectmesoporous materialseng
dc.subjectsurfactanteng
dc.subjectfaujasiteeng
dc.subjectcatalytic crackingeng
dc.titleSíntese de faujasita mesoporosa por síntese direta utilizando soft Templatepor
dc.title.alternativeSynthesis of mesoporous faujasite by direct synthesis using soft Template.eng
dc.typeDissertaçãopor
dc.description.abstractOtherThe faujasite mineral is isostructural of the synthetic zeolites X and Y. While the mineral faujasite has variable framework composition, the zeolite X has a Si/Al ratio of 1.0 to 1.5 and the zeolite Y has a Si / Al ratio greater than 1,5. Zeolite Y is the active component of the fluid catalytic cracking catalyst (FCC), being deactivated rapidly by the formation of coke. Thus, generating mesopores would allow greater yield in the FCC process, as it would improve mass transfer. Mesoporous faujasite samples were prepared by direct synthesis using CTABr surfactant as soft template at different concentrations, crystallization times and temperatures. For characterization of the produced samples were used the techniques of X-ray diffraction solid state (XRD), N2 adsorption / desorption, temperature programmed dessorption of NH3 (TPD-NH3), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Infra Red Absorption Spectroscopy (FTIR), X-ray fluorescence (FRX). The results indicated there was a significant increase in the volume of mesopores, 0.13 cm³ / g, and formation of isotherms type I and IV. The XRD analyzes confirmed the obtaining of the faujasite structure with high crystallinity content. The Si/Al ratio obtained was higher than 1.7, confirming the presence of Y Zeolite. It was not observed a significant variation in the total acidity and only one desorption peak was formed, characterized as weak acidity. Nuclear magnetic resonance analyzes showed a high content of extra framework aluminum; octahedral. Scanning electron microscopy images indicated the formation of nanometric zeolite. The values obtained for unit cell size are consistent with the literature; between 24.18 and 25Å. The textural properties improved with the introduction of the surfactant independent of the synthesis temperature. The best results were obtained for the introduction of 0.5 mol of CTABr. For samples synthesized at higher temperatures, such as 110°C, the introduction of surfactant led to the formation of the Faujasite structure instead of the structure hydroxysodalite. For higher temperatures, such as 150°C, contaminant phase formation occurred; the GIS zeolite. It has been observed the crystal size increases with the longer aging time and is larger for samples synthesized at 110°C. The samples were also subjected to catalytic evaluation by means of the cracking reaction of n-heptane at 420 ° C, however they did not present satisfactory results due to the large amount of extra-framework aluminum.eng
dc.contributor.advisor1Fernandes, Lindoval Domiciano
dc.contributor.advisor1ID837.359.227-15por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7921814684730923por
dc.contributor.referee1Passos, Fabio Barboza
dc.contributor.referee2Machado Junior, Hélio Fernandes
dc.creator.ID110.028.327-30por
dc.creator.Latteshttp://lattes.cnpq.br/4732661829009171por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Tecnologiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Engenharia Químicapor
dc.relation.referencesABBOT, J., Active Sites and Intermediates for Isomerization and Cracking of Cyclohexane on HY. Journal of Catalysis, v. 123, p. 383–395, 1990. ADDISON, S. W. et al. Role of Zeolite Non-Framework Catalytic Cracking Aluminium in. Applied Catalysis A: General, v. 45, p. 307–323, 1988. AGUDELO, J. L. et al., On the Effect of EDTA Treatment on the Acidic Properties of USY Zeolite and its Performance in Vacuum Gas Oil Hydrocracking. Applied Catalysis A - General, v. 488, p. 219–230, 2014. ALMEIDA, N. C. DE. Estudo da Acidez de Catalisadores Sapo-34 através da Incorporação de Heteroátomos e Variação de SAR, Trabalho de Conclusão de Curso, Engenharia Química, UFRRJ, 2014. AUERBACH, S., CARRADO, K., DUTTA, P., Handbook Of Zeolite Science and Technology. United States of America: Marcel Dekker INC., 2003. BARRER, R. M.; DAVIES, J. A.; REES, L. V. C., Thermodynamics and Thermochemistry of Cation Exchange in Zeolite Y. Journal of Inorganic and Nuclear Chemistry, v. 30, n. 12, p. 3333–3349, dez. 1968. BARRER, R. M.; DAVIES, J. A.; REES, L. V. C., Comparison Properties of the Ion Exchange of Zeolites X and Y. Inorganic Nuclear Chemistry, v. 31, n. 1966, 1969. BEYER, H. K.; BELENYKAJA, I. T. A., A New Method for the Dealumination of Faujasite-Type Zeolites. Studies in Surface Science and Catalysis, v. 5, p. 203–210, 1980. BOSSMANN, S. H. et al., Ruthenium(II)-tris-bipyridine/titanium Dioxide Codoped Zeolite Y Photocatalysts: II. Photocatalyzed Degradation of the Model Pollutant 2,4-Xylidine, Evidence for Percolation Behavior. Photochemical & Photobiological Sciences, v. 2, n. 5, p. 477–486, 2003. CASTAGNOLA, N. B.; DUTTA, P. K., Nanometer-Sized Zeolite X Crystals : Use as Photochemical Hosts. Journal of Physical Chemistry B, v. 102, n. 98, p. 1696–1702, 1998. CHAVES, T. F.; PASTORE, H. O.; CARDOSO, D., A Simple Synthesis Procedure to Prepare Nanosized Faujasite Crystals. Microporous and Mesoporous Materials, v. 161, p. 67–75, out. 2012. CHENG, Z. et al., Microwave-Assisted Synthesis Of Nanosized FAU-Type Zeolite in Water-In-Oil Microemulsion. Materials Letters, v. 95, p. 193–196, mar. 2013. COLELLA, C., Natural Zeolites. Studies in Surface Science and Catalysis, v. 157, p. 13–40, 2005. 85 CHORKENDORFF, I.; NIEMANTSVERDRIET, J. W., Concepts of Modern Catalysis and Kinetics, 2nd ed., WILEY-VCH Verlag GmbH & Co. KGaA, 2007, 457 p. CORMA, A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, v. 97, p. 1–16, 1997. CORMA, A.; MARTINEZ-TRIGUERO, J. The Use of MCM-22 as a Cracking Zeolitic Additive for FCC. Journal of Catalysis, v. 165, p. 102–120, 1997. CORMA, A. et al., Methylcyclohexane and methylcyclohexene cracking over zeolite Y catalysts, Applied Catalysis, v. 67, p. 307-324, 1990. CSICSERY, S. M., Catalysis by Shape Selective Zeolites — Science and Technology. Pure & Applied Chemistry, v. 58, n. 6, p. 841–856, 1986. CUNDY, C. S.; COX, P. A., The Hydrothermal Synthesis of Zeolites: Precursors, Intermediates and Reaction Mechanism. Microporous and Mesoporous Materials, v. 82, n. 1–2, p. 1–78, jul. 2005. DIMITRIJEVIC, R.; LUTZ, W.; RITZMANN, A., Hydrothermal Stability of Zeolites : Determination of Extra-Framework Species of H-Y faujasite-Type Steamed Zeolite. Journal of Physics and Chemistry of Solids, v. 67, p. 1741–1748, 2006. DUTTA, P. K.; BRONIC, J., Mechanism of Zeolite Formation - Seed Gel Interaction. Zeolites, v. 14, n. 4, p. 250–255, 1994. FERNANDES, L. D., Influência de Desaluminizações Cíclicas sobre as Propriedades da Mordenita, Tese de Mestrado, Engenharia Química, UFRJ, 1992. FLANIGEN, E. M., Zeolites and Molecular Sieves: an Historical Perspective. Studies in Surface Science and Catalysis, v. 137, p. 11–35, 2001. GARCÍA-MARTÍNEZ, J. et al. Mesostructured Zeolite Y—High Hydrothermal Stability and Superior FCC Catalytic Performance. Catalysis Science & Technology, v. 2, n. 5, p. 987, 2012. GARRALÓN, G.; CORMA, A.; FORNÉS, V. Evidence for the Presence of Superacid Nonframework Hydroxyl Groups in Dealuminated HY Zeolites. Zeolites, v. 9, p. 84–86, 1989. GEON, J. K.; WHA, S. A., Synthesis and Characterization of Iron-Modified ZSM-5. Applied Catalysis, v. 71, n. 1, p. 55–68, 12 abr. 1991. GOLA, A. et al., Efect of Leaching Agent in the Dealumination of Stabilized Y Zeolites. Microporous and Mesoporous Materials, v. 40, p. 73–83, 2000. GOMES, A. D. C. L., Efeito do Tratamento Ácido nas Zeólitas Y Ultra-Estáveis (USY) Sobre o Desproporcionamento do Etilbenzeno, Tese de Mestrado, Engenharia Química, UFSCAR, SP, 1992. GROSS, T. et al., Surface Composition of Dealuminated Y Zeolites Studied by X-ray Photoelectron Spectroscopy. Zeolites, v. 4, p. 25–29, 1984. 86 GROTEN, W. A.; WOJCIECHOWSKI, B. W.; HUNTERT, B. K., Coke and Deactivation II. Formation of Coke and Minor Products in the Catalytic Cracking of n-Hexene on USHY Zeolite. Journal Of Catalysis, v. 125, p. 311–324, 1990. HOLMBERG, B. A. et al. Controlling Size and Yield of Zeolite Y Nanocrystals Using Tetramethylammonium Bromide. Microporous and Mesoporous Materials, v. 59, n. 1, p. 13–28, abr. 2003. HRILJAC, J. A. et al. Powder Neutron Diffraction and 29Si MAS NMR Studies of Siliceous Zeolite-Y. Journal of Solid State Chemistry, v. 106, n. 1, p. 66–72, set. 1993. INAYAT, A. et al., Assemblies of Mesoporous FAU-Type Zeolite Nanosheets. Zeolites, v. 51, p. 1962–1965, 2012. IUPAC – Catalyst – IUPAC Compendium of Chemical Terminology, Book section, v. 2291, p. 2293, 2014. IZA - International Zeolite Association. Structura databeses. Powder patterns. Disponível em < http://www.iza-online.org/> Acessado em: 23/01/2016 JACQUINOT, E. et al., Evaluation of Non-Commercial Modified Large Pore Zeolites in FCC. Zeolites as Catalysts, Sorbents and Detergent Builders, v. 46, p. 115, 1989. JANIN, A. et al., FTIR Study of the Silanol Groups in Dealuminated HY Zeolites: Nature of the Extraframework Debris. Zeolites, v. II, p. 391–396, 1991. JIAO, W. Q. et al., Preparation of Y Zeolite Composites with Adjustable, Highly Dispersed Intra-Crystal Mesoporosity: Effect of Lactic Acid Treatment in CTAB-Assisted Two-Step Approach. Microporous and Mesoporous Materials, V. 228, P. 237–247, Jul. 2016. JUNIOR, C. A. F. R.; NEVES, R. F.; ANGÉLICA, R. S., Síntese de Zeólita do Tipo Faujasita: Comparação entre Caulim Beneficiado e Caulim Flint. Cerâmica, v. 61, p. 259–268, 2015. KAEDING, W. W.; BUTTER, S. A., Production of Chemicals from Methanol into Low Molecular Weight Olefins. Journal of Catalysis, v. 164, p. 155–164, 1980. KANAZIREV, V.; BORISOVA, N., Temperature Programmed Desorption Studies on the Penetration of Ammonia into the Sodalite Cages of A, X and Y Type Zeolites. Zeolites, v. 2, n. 1, p. 23–28, jan. 1982. KERR, G. T., Chemistry of Crystalline Aluminosilicates VII. Thermal Decomposition Products of Ammonium Zeolite Y. Journal of Catalysis, v. 204, p. 200–204, 1969. KOOHSARYAN, E.; ANBIA, M., Nanosized and Hierarchical Zeolites: A Short Review. Chinese Journal of Catalysis, v. 37, n. 4, p. 447–467, abr. 2016. KWAKYE-AWUAH, B. et al., Antimicrobial Action and Efficiency of Silver-Loaded Zeolite X. Journal of Applied Microbiology, v. 104, n. 5, p. 1516–1524, 2008. 87 LI, Q.; CREASER, D.; STERTE, J., An Investigation of the Nucleation/Crystallization Kinetics of Nanosized Colloidal Faujasite Zeolites. Chemistry of Materials, v. 14, n. 3, p. 1319–1324, mar. 2002. LIU, S. et al., Preformed Zeolite Precursor Route for Synthesis of Mesoporous X Zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 318, n. 1–3, p. 269–274, abr. 2008. LOEWENSTEIN, W., The Distribution of Aluminum in the Tetrahedra of Silicates and Aluminates. American Mineralogist, v. 39, p. 92–96, 1954. LOHSE, U. et al., Hydroxyl Groups of the Non-Framework Aluminium Species in Dealuminated Y Zeolites. Zeolites, v. 7, n. 1, p. 11–13, 1987. LOK, B. M.; MARCUS, B. K.; ANGELL, C. L., Characterization of Zeolite Acidity. II. Measurement of Zeolite Acidity by Ammonia Temperature Programmed Desorption and FTIR. Spectroscopy Techniques. Zeolites, v. 6, n. 3, p. 185–194, maio 1986. LOPES, G. C. D. S., Produção de Mordenita Mesoporosa por Síntese Direta Usando Diferentes Direcionadores, Tese de Mestrado, Engenharia Química, UFRRJ, 2016. LUNA, F. J.; SCHUCHARDT, U., Modificação de Zeólitas para Uso em Catálise. Química Nova, v. 24, n. 6, p. 885–892, 2001. LUTZ, W. Zeolite Y: Synthesis, Modification, and Properties—A Case Revisited. Advances in Materials Science and Engineering, v. 2014, p. 1–20, 2014. LUTZ, W.; RUSCHER, C. H.; HEIDEMANN, D., Determination of the Framework and Non-Framework [ SiO2 ] And [ AlO2 ] Species of Steamed and Leached Faujasite Type Zeolites : Calibration of IR, NMR, and XRD Data by Chemical Methods. Microporous and Mesoporous Materials, v. 55, p. 193–202, 2002. MARKET RESEARCH STORE, Global Zeolite Market Set for Rapid Growth, To Reach Around USD 4.50 Billion by 2020. Disponível em: <http://www.marketresearchstore.com/news/global-isobutanol-market-185>. Acesso em: 30 maio. 2016. MARTENS, J. A.; GROBET, P. J.; JACOBS, P. A., The Chemistry of the Dealumination of Faujasite Zeolites with Silicon Tetrachloride. Studies in Surface Science and Catalysis, v. 63, p. 355–379, 1991. MARTÍNEZ, C.; CORMA, A. Inorganic molecular sieves: Preparation, Modification and industrial Application in Catalytic Processes. Coordination Chemistry Reviews, v. 255, n. 13–14, p. 1558–1580, 2011. MASTERS, A. F.; MASCHMEYER, T., Zeolites - From Curiosity to Cornerstone. Microporous and Mesoporous Materials, v. 142, n. 2–3, p. 423–438, 2011. 88 MAVRODINOVA, V. et al., Factors Influencing the Conversions of Alkylaromatic Hydrocarbons on High-Silica Zeolites: Part II. Presence of Extralattice Al. Zeolites, v. 9, n. 3, p. 203–207, 1989. MEYNEN, V.; COOL, P.; VANSANT, E. F., Verified Syntheses of Mesoporous Materials. Microporous and Mesoporous Materials, v. 125, n. 3, p. 170–223, 2009. MILTON, R. M., Molecular Sieve Science and Technology. In: Zeolite Synthesis. Chapter 1, p. 1–10. Washington, DC: American Chemical Society, 1989. MINTOVA, S.; GRAND, J.; VALTCHEV, V., Nanosized Zeolites: Quo Vadis? Comptes Rendus Chimie, v. 19, n. 1–2, p. 183–191, jan. 2016. MÖLLER, K.; BEIN, T., Mesoporosity - A New Dimension For Zeolites. Chemical Society Review, v. 42, p. 3689–3707, 2013. MORALES-PACHECO, P. et al., Synthesis of FAU ( Y ) - and MFI ( ZSM5 ) - Nanosized Crystallites for Catalytic Cracking of 1,3,5-Triisopropylbenzene. Catalysis Today, v. 166, n. 1, p. 25–38, 2011. PAL, N.; BHAUMIK, A., Soft Templating Strategies for the Synthesis of Mesoporous Materials: Inorganic, Organic–Inorganic Hybrid and Purely Organic Solids. Advances in Colloid and Interface Science, v. 189–190, p. 21–41, mar. 2013. PAVOL, H., FCC catalyst - Key Element In Refinery Technolgy. 45th International Petroleum Conference, p. 1–11, 2011. QAMAR, M. et al., Synthesis of Mesoporous Zeolite Y Nanocrystals in Octahedral Motifs Mediated by Amphiphilic Organosilane Surfactant. Chemical Engineering Journal, v. 290, p. 282–289, 2016. QIN, Z. et al., Mesoporous Y Zeolite With Homogeneous Aluminum Distribution Obtained by Sequential Desilication – Dealumination and its Performance in the Catalytic Cracking of Cumene and 1 , 3 , 5-triisopropylbenzene. Journal of Catalysis, v. 278, n. 2, p. 266–275, 2011. RESENDE, N. DAS G. DE A. DA M.; MONTE, M. B. DE M.; PAIVA, P. R. P. DE., CAPÍTULO 39 - Zeolitas Naturais. Rochas e Minerais Industriais – CETEM/2008, 2ª Edição, 1995. RÜSCHER, C. H. et al., Relation Between Growth-Size and Chemical Composition of X and Y Type Zeolites. Microporous and Mesoporous Materials, v. 92, n. 1–3, p. 309–311, jun. 2006. SAMOILOVA, R. I. et al., Observation of Two Paramagnetic Species in Electron Transfer Reactions within Cesium Modified X and Y Zeolites. Chemical Physics Letters, v. 316, n. 5–6, p. 404–410, jan. 2000. SANTOS, E. S.; GAMA, E. M.; FRANÇA, R. DA S.; SOUZA, A. S.; MATOS, R. P. Espectrometria de Fluorescência de Raios-X na Determinação de Espécies Químicas. Enciclopédia Biofera, v. 9, n. 17, p. 3413–3432, 2013. 89 SANTOS, B. P. S. Síntese de Mordenita Mesoporosa Utilizando Surfactante Através Do Método de Conversão Assistida por Vapor, Tese de Mestrado, Engenharia Química, UFRRJ, 2016. SARAIVA, M. S. et al., New Mo(II) Complexes In MCM-41 And Silica: Synthesis And Catalysis, Journal of Organometallic Chemistry, v. 751, p. 443-452, 2014. SCHERZER, J. Dealuminated Faujasite-Type Structures with Si02,/Al203 Ratios over 100. Journal of Catalysis, v. 288, p. 285–288, 1978. SCHWIEGER, W. et al., Hierarchy Concepts: Classification and Preparation Strategies for Zeolite Containing Materials with Hierarchical Porosity. Chemical Society Review, v. 45, n. 12, p. 3353–3376, 2016. SEO, S. MAN. et al. Determination of Si / Al Ratio of Faujasite-type Zeolite by Single-crystal X-ray Diffraction Technique . Single-crystal Structures of Fully Tl+ - and Partially K+ -exchanged., Bull. Korean. Chemical Society, v. 28, n. 10, p. 1675–1682, 2007. SHERRY, H. S., The Ion-Exchange Properties of Zeolites. I. Univalent Ion Exchange in Synthetic Faujasite. The Journal of Physical Chemistry, v. 70, p. 1–7, 1966. SOBRINHO, E. V., Preparação e Caracterização da Zeólita Y com Alto Teor de Silício Obtida por Desaluminização em Série, Tese de Mestrado, Engenharia Química, UFSCAR, SP, 1993. TAGUCHI, A.; SCHÜTH, F., Ordered Mesoporous Materials in Catalysis. Microporous and Mesoporous Materials, v. 77, p. 1–45, 2005. TEKIN, R. et al., Encapsulation of a Fragrance Molecule In Zeolite X. Microporous And Mesoporous Materials, v. 215, n. october, p. 51–57, 2015. TEKIN, R.; BAC, N., Antimicrobial Behavior Of Ion-Exchanged Zeolite X Containing Fragrance. Microporous and Mesoporous Materials, v. 234, p. 55–60, 2016. TEMPELMAN, C. H. L. et al., Texture, Acidity And Fluid Catalytic Cracking Performance Of Hierarchical Faujasite Zeolite Prepared By An Amphiphilic Organosilane. Fuel Processing Technology, v. 139, p. 248–258, nov. 2015. VAN BROEKHOVEN, E. H. et al., The Effect of Dealumination Procedure on the Acidity and Catalytic Properties of Y Zeolites. In: Studies in Surface Science and Catalysis. v. 49, p. 1291–1300. VAYSSILOV, G. N.; RÖSCH, N., Density Functional Studies of Alkali-Exchanged Zeolites: Basicity and Core-Level Shifts of Framework Oxygen Atoms. Journal of Catalysis, v. 186, n. 2, p. 423–432, set. 1999. VERMEIREN, W.; GILSON, J. P., Impact of Zeolites on the Refining and Petrochemical Industry. Topics in Catalysis, v. 52, p. 1131–1161, 2009. 90 VICENTE, J. G. P., Síntese e Propriedades da Zeólita Faujasita Nanométrica Aplicada à Catálise Básica. Tese de Mestrado, Engenharia Química, UFSCAR, 2015. VICENTE, J. G. P.; LIMA, P. M.; CARDOSO, D., Propriedades E Avaliação Catalítica Da Zeólita X Nanométrica Contendo Cátions Metilamônio. Química Nova, v. 39, n. 6, p. 655–660, 2016. VIEIRA, L. H.; RODRIGUES, M. V.; MARTINS, L. Cristalização Convencional de Zeólitas e Induzida Por Sementes. Química Nova, v. 37, n. 9, p. 1515–1524, 2014. WANG, Q. et al., Advances Different Mesogenous Templates And Their Catalyst Lifespan. Royal Society of Chemistry, v. 4, p. 21479–21491, 2014. WANG, Q.; GIANNETTO, G.; GUISNET, M., Dealumination of zeolites III. Effect Of Extra-Framework Aluminum Species On The Activity, Selectivity, And Stability Of Y Zeolites In N-Heptane Cracking. Journal of Catalysis, v. 130, n. 2, p. 471–482, ago. 1991. WANG, Q. L. et al., D e a l u m i n a t i o n of Zeolites 1 II. Kinetic Study of the Dealumination by Hydrothermal Treatment of a NH4NaY Zeolite. Journal of Catalysis, v. 470, n. 130, p. 459-470, 1991. WANG, X. et al., Nanocrystalline Mesoporous Zeolite X With a Considerable External Surface Area Prepared Via an Ordered Precursor: A Potential Adsorbent. Micro & Nano Letters, v. 11, n. 11, p. 719–721, 1 nov. 2016. WEI, Y. et al., Tailoring and Visualizing The Pore Architecture Of Hierarchical Zeolites. Chemical Society Review, v. 44, n. 20, p. 7234–7261, 2015. WEITKAMP, J., Zeolites and Catalysis. Solid State Ionics, v. 131, n. 1, p. 175–188, 2000. 91 WRIGHT, A.; RUPERT, J.; GRANQUIST, W., High-and Low-Silica Faujasites: A Substitutional Series. American Mineralogist, v. 53, n. 7–8, p. 1293–1303, 1968. XU, B. et al., Reversibility of structural Collapse In Zeolite Y : Alkane Cracking And Characterization. Journal of Catalysis, v. 241, p. 66–73, 2006. XU, B. et al., Effect of framework Si/Al Ratio And Extra-Framework Aluminum on The Catalytic Activity of Y Zeolite. Applied Catalysis, v. 333, n. 2, p. 245–253, 2007. YAN, Z. et al. On the Acid-Dealumination of USY Zeolite : A Solid State NMR Investigation. Journal of Molecular Catalysis, v. 194, p. 153–167, 2003. YILMAZ, B.; MULLER, U., Catalytic Applications of Zeolites In Chemical Industry. Topics in Catalysis, v. 52, n. 6–7, p. 888–895, 2009. ZAAROUR, M. et al., Progress in Zeolite Synthesis Promotes Advanced Applications. Microporous and Mesoporous Materials, v. 189, p. 11–21, maio 2014. ZHAN, B.-Z. et al., Control of Particle Size and Surface Properties of Crystals of NaX Zeolite. Chemistry of Materials, v. 14, n. 9, p. 3636–3642, set. 2002. 91 ZHANG, K.; OSTRAAT, M. L., Innovations in Hierarchical Zeolite Synthesis. Catalysis Today, v. 264, p. 3–15, abr. 2016. ZHANG, X. et al., Synthesis of NaX zeolite: Influence of Crystallization Time, Temperature And Batch Molar Ratio SiO2/Al2O3 On The Particulate Properties of Zeolite Crystals. Powder Technology, v. 235, p. 322–328, fev. 2013. ZHAO, J. et al., Synthesis and Characterization of Mesoporous Zeolite Y by Using Block Copolymers As Templates. Chemical Engineering Journal, v. 284, p. 405–411, 2016a. ZHAO, J. et al., Synthesis and Catalytic Cracking Performance of Mesoporous Zeolite Y. Catalysis Comunnications, v. 73, p. 98–102, 2016b. ZHAO, Y. et al., Synthesis, Characterization, and Catalytic Performance Of High-Silica Y Zeolites With Different Crystallite Size. Microporous and Mesoporous Materials, v. 167, p. 102–108, fev. 2013. ZHU, G. et al., An In Situ Approach To Synthesize Pure Phase FAU-Type Zeolite Membranes: Effect Of Aging And Formation Mechanism. Journal of Materials Science, v. 43, n. 9, p. 3279–3288, 11 maio 2008. ZUKAL, A.; PATZELOV, V.; LOHSE, U., Secondary Porous Structure Of Dealuminated Y Zeolites. Zeolites, v. 6, p. 133–por
dc.subject.cnpqEngenharia Químicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/64751/2017%20-%20N%c3%babia%20Caroline%20de%20Almeida.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4568
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-04-20T19:37:37Z No. of bitstreams: 1 2017 - Núbia Caroline de Almeida.pdf: 4735967 bytes, checksum: 6a00a466c1d280509e45a9fcc970f79f (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-04-20T19:37:37Z (GMT). No. of bitstreams: 1 2017 - Núbia Caroline de Almeida.pdf: 4735967 bytes, checksum: 6a00a466c1d280509e45a9fcc970f79f (MD5) Previous issue date: 2017-05-08eng
Appears in Collections:Mestrado em Engenharia Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Núbia Caroline de Almeida.pdf2017 - Núbia Caroline de Almeida4.62 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.