Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13557
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBaldez, Fabiana Rodrigues
dc.date.accessioned2023-12-22T02:48:24Z-
dc.date.available2023-12-22T02:48:24Z-
dc.date.issued2018-08-20
dc.identifier.citationBALDEZ, Fabiana Rodrigues. Dinâmica populacional da microbiota associada a decomposição da serapilheira de duas espécies arbóreas da Mata Atlântica. 2018. 54 f. Dissertação (Mestrado em Fitossanidade e Biotecnologia Aplicada) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13557-
dc.description.abstractEm uma floresta tropical, a ciclagem de nutrientes é dependente da microbiota decompositora. Visando entender como se dá a dinâmica populacional desses micro-organismos ao decorrer do tempo e se há alguma influência no grau de decomposição da serapilheira, foi realizado o estudo com duas espécies arbóreas nativas da Mata Atlântica, o pau-brasil (Caesalpinia echinata) e ingá (Inga sp). Foram realizadas coletas durante um período de 365 dias para a avaliação da decomposição da serapilheira, a qual acondicionou-se folhas secas, provenientes das espécies escolhidas, em sacos de polivinil, chamados litter bags, que foram colocados abaixo de suas respectivas copas de árvores, quantificando a taxa de decomposição através de medida de perda de massa ao decorrer do tempo. A fim de diferenciar e quantificar os micro-organismos da serapilheira foi feita a contagem de Unidades Formadoras de Colônia (UFC) atráves do método de cultivo em placas e, biomarcadores por perfil de ácidos graxos de cada amostra. Ao final do experimento comparou a decomposição entre as duas espécies associando-a a sua microbiota, ao seu teor nutricional e aos elementos climáticos (temperatura e umidade). A maior taxa de decomposição, tanto para o pau-brasil quanto para o ingá, ocorreu no período de maior precipitação, e ao final de 365 dias, houve diferença significativa na perda de massa vegetal entre as espécies. O pau-brasil foi a espécie que teve maior predominância da maioria dos grupos de micro-organismos, a espécie também apresentou maior concentração e maior taxa de liberação de N, P e K , maior velocidade de decomposição. Foi observado correlação da taxa de liberação dos nutrientes com os 140 dias de decomposição e correlação entre a maioria dos micro-organismos com 30 dias de decomposição. A taxa de liberação de nitrogênio e fósforo estavam associadas a precipitação. Houve correlação entre fungos e a taxa de liberação de P na decomposição da serapilheira do ingá. O biomarcador de bactérias 17:1 foi o único que teve correlação com a taxa de liberação de N e P.por
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectPaubrasilia echinatapor
dc.subjectInga laurinapor
dc.subjectciclagem de nutrientespor
dc.subjectPaubrasilia echinataeng
dc.subjectInga laurinaeng
dc.subjectnutrient cyclingeng
dc.titleDinâmica populacional da microbiota associada a decomposição da serapilheira de duas espécies arbóreas da Mata Atlânticapor
dc.title.alternativePopulational dynamics of the microbiota associated with the litter of two tree species of the Atlantic Foresteng
dc.typeDissertaçãopor
dc.description.abstractOtherIn a tropical forest, nutrient cycling is dependent on the decomposing microbiota. Aiming to understand how the population dynamics of these microorganisms occur over time and if there is any influence on the degree of decomposition of the litter, the study was carried out with two native species of the Atlantic Forest, pau-brasil (Caesalpinia echinata) and ingá (Inga sp). A total of 365 days were collected for the evaluation of litter decomposition, which were dried leaves from the selected species in polyvinyl bags, called litter bags, placed under their respective tree canopies, quantifying the decomposition rate by measuring mass loss over time. In order to differentiate and quantify the microorganisms from the litter, the counts of colony forming units (CFU) were counted through the plaque culture method and biomarkers by fatty acid profile of each sample. At the end of the experiment it compared the decomposition between the two species, associating it with its microbiota, its nutritional content and the climatic elements (temperature and humidity). The highest rate of decomposition for both pau-brasil and ingá occurred during the period of greatest precipitation, and at the end of 365 days, there was a significant difference in the loss of plant mass among the species. Pau-brasil was the species that had the greatest predominance of most groups of microorganisms, the species also presented higher concentration and higher rate of N,P, and K release, and higher rate of decomposition. Correlation of the nutrient release rate with the 140 days of decomposition and correlation between the majority of microorganisms with 30 days of decomposition was observed. The release rate of nitrogen and phosphorus were associated with precipitation. There was a correlation between fungi and the release rate of P in the decomposition of the ingá litter. The 17: 1 bacterial biomarker was the only one that correlated with the release rate of N and P.eng
dc.contributor.advisor1Fraga, Marcelo Elias
dc.contributor.advisor1ID912.640.147-91por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2870225310866138por
dc.contributor.referee1Fraga, Marcelo Elias
dc.contributor.referee2Silva, Cristiane Figueira da
dc.contributor.referee3Araújo, Ednaldo da Silva
dc.creator.ID131.025.317-09por
dc.creator.Latteshttp://lattes.cnpq.br/3017209605861974por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitossanidade e Biotecnologia Aplicadapor
dc.relation.referencesADUAN, R. E.; VILELA, M. de F.; KLINK, C. A. Ciclagem de carbono em ecossistemas terrestres: o caso do Cerrado brasileiro. Planaltina, DF: Embrapa Cerrados, 2003. ALEXANDER, M. Introducción a la microbiologia del suelo. México, DF, México: AGT editor, p. 491, 1981. ALEXANDER, M. Introduction to soil microbiology. New York: J. Wiley, p. 467, 1977. ALLISON, S. D.; Lu, Y.; WHEIHE, C.; GOULDEN, M. L.; MARTINY, A.C.; TRESEDER, K.K.; MARTINY, J. B. Microbial abundance and composition influence litter decomposition response to environmental change. Ecology, v. 94, n. 3, p. 714-725, 2013. ÁLVAREZ, J. C.; SERRANO, R. P; OSPINA, L. F.; LÓPEZ, L. A. A. Actividad biológica de las saponinas de la corteza de Inga marginata Willde. Revista Colombiana de Ciências Químico-Farmacéuticas, v. 27, n. 1, p. 17-19, 1998. AMIR, S.; ABOUELWAFA, R.; MEDDICH, A.; SOUABI, S.; WINTERTON, P.; MERLINA, G.; REVEL, J.; PINELLI, E.; HAFIDI, M. PLFAs of the microbial communities in composting mixtures of agro-industry sludge with different proportions of household waste. International Biodeterioration and Biodegradation, v. 64, n. 7, p. 614-621, 2010. ANDERSON, J. M.; SWIFT, J. S. I. Decomposition in tropical forest. In: SUTTON, S. L. (eds.) Tropical rain forest: ecology and management. London: Blackwell Scientific, p. 287-309, 1983. ANVISA, Brasília; 2004. Descrição dos meios de cultura empregados nos exames microbiológicos. Disponível em: http://www.anvisa.gov.br/servicosaude/microbiologia/mod_4_2004.pdf. Acesso em: Setembro. 2016 ARAÚJO, T.M.; CARVALHO Jr., J.A.; HIGUCHI, N.; BRASIL, Jr., A.C.P.; MESQUITA, A.L.A. A tropical rainforest clearing experiment by biomass burning in the State of Pará, Brazil. Atmospheric Environment, v. 33, n. 13, p. 1991-1998, 1999. 35 ARIFUZZAMAN, M.; KHATUN, M.R.; RAHMAN, H. Isolation and screening of actinomycetes from Sundarbans soil for antibacterial activity. African Journal of Biotechnology, v. 9, n.29, p. 4615-4619, 2010. AUER, C. G.; AMARO, T.; PIMENTEL, I. C.; ROCIO, P. Atividades degradativas de celulose e de fenóis por fungos isolados de acículas de Pinus taeda. Floresta, v. 44, n. 2, p. 179-184, 2014 AUSTIN, A. T.; VITOUSEK, P. M. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawaii. Journal of Ecology, v. 88, n. 1, p. 129-138, 2000. BARBOSA, J. H.C.; de FARIA, S. M. Aporte de serrapilheira ao solo em estágios sucessionais florestais na reserva biológica de Poço das Antas, Rio de Janeiro, Brasil. Rodriguésia, p. 461-476, 2006. BARNARD, R. L.; OSBORNE, C. A.; FIRESTONE, M. K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME journal, v. 7, n. 11, p. 2229, 2013. BASSO, T. P.; GALLO, C. R.; BASSO, L. C. Atividade celulolítica de fungos isolados de bagaço de cana-de-açúcar e madeira em decomposição. Pesquisa agropecuária brasileira, v. 45, n. 11, p. 1282-1289, 2011. BERG, B. Litter decomposition and organic matter turnover in northern forest soils. Forest ecology and Management, v. 133, n. 1-2, p. 13-22, 2000. BERG, B.; MC CLOUGHERTY, C. Plant litter: Decomposition, humus formation, carbon sequestration. Springer, Berlin, p. 53-83, 2008. BERG, G.; SMALLA, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS microbiology ecology, v. 68, n. 1, p. 1-13, 2009. BERLEMONT, R.; ALISSON, S. D.; WEHE, C.; LU, Y.; BRODIE. E. L.; MARTINY, J. B.; MARTINY, A. C. Cellulolytic potential under environmental changes in microbial communities from grassland litter. Frontiers in microbiology, v. 5, p. 639, 2014. 36 BERLEMONT, R.; MARTINY, A. C. Phylogenetic distribution of potential cellulases in bacteria. Applied and environmental microbiology, p. AEM. 03305-12, 2012. BHATTACHARYYA, P. N.; JHA, D. K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, v. 28, n. 4, p. 1327-1350, 2012. BIANCHIN, J. E.; MARQUES, R.; BRITEZ, R.M.; CAPRETZ, R. L. Deposição de fitomassa em formações secundárias na Floresta Atlântica do Paraná. Floresta e Ambiente, v. 23, n. 4, p. 524-533, 2016. BISHOP, A.; FIELDING, S.; DYSON, P.; HERRON, P. Systematic insertional mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome research, v. 14, n. 5, p. 893-900, 2004. BLAGODATSKAYA, Е.; KUZYAKOV, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils, v. 45, n. 2, p. 115-131, 2008. BORGES, A. V. P. Estoque de serapilheira em uma área de restauração florestal no litoral do Paraná. 2016. BOSSIO, D. A.; SCOW, K. M. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microbial ecology, v. 35, n. 3-4, p. 265-278, 1998. BOUSKILL, N. J.; LIM, H. C.; BORGLIN, S.; SALVE, R.; WOOD, T. E.; SILVER, W. L.; BRODIE, E. L. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. The ISME journal, v. 7, n. 2, p. 384, 2013. BOUSKILL, N. J.; WOOD, T. E.; BARAN, R.; YE, Z., BOWEN, B. P.; LIM, H.; ZHOU, J.; NOSTRAND, J.; NICO, P.; NORTHEN, SILVER, W. L.; BRODIE, E. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Frontiers in microbiology, v. 7, p. 525, 2016. CAIRNEY, J.W. G; MEHARG, A. A. Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of 37 organic pollutants in the rhizosphere. Canadian Journal of Botany, v. 80, n. 8, p. 803-809, 2002 CALVI, G. P.; PEREIRA, M. G.; JÚNIOR, A. Produção de serapilheira e aporte de nutrientes em areas de Floresta Atlântica em Santa Maria de Jetibá, ES. Ciência Florestal, v. 19, n. 2, p. 131-138, 2009. CEBRIAN, J. Patterns in the fate of production in plant communities. The American Naturalist, v. 154, n. 4, p. 449-468, 1999. CHAN, E. C. S.; KRIEG, N. R.; PELCZAR JÚNIOR, M. J. Microbiologia: conceitos e aplicações. 1996. CHAZDON, R. L. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, evolution and systematics, v. 6, n. 1-2, p. 51-71, 2003. COBO, J.; BARRIOS, E.; KASS, D. C; THOMAS, R. Nitrogen mineralization and crop uptake from surface-applied leaves of green manure species on a tropical volcanic-ash soil. Biology and fertility of soils, v. 36, n. 2, p. 87-92, 2002. COOK, E. R.; WOODHOUSE, C. A.; EAKIN, C. M.; MEKO, D. M.; STAHLE, D. W. Long-term aridity changes in the western United States. Science, v. 306, n. 5698, p. 1015-1018, 2004. COSTA, G. S.; GAMA-RODRIGUES, A. D.; CUNHA, G. D. M. Decomposição e liberação de nutrientes da serapilheira foliar em povoamentos de Eucalyptus grandis no norte fluminense. Revista Árvore, v. 29, n. 4, p. 563-570, 2005. COSTA, U. O. Efeitos da precipitação e da exposição à radiação solar na decomposição da serrapilheira em um ecossistema no semiárido brasileiro. 2016. COURTY, P. E.; BUÉE, M.; DIEHIOU, A. G.; FREY-KLETT, P.; LE TACON, F.; RINEAU, F.; TURPAULT, S. U.; UROZ, S. GARBAYE, J. The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biology and Biochemistry, v. 42, n. 5, p. 679-698, 2010. 38 CRAINE, J. M.; MORROW, C.; FIERER, N. Microbial nitrogen limitation increases decomposition. Ecology, v. 88, n. 8, p. 2105-2113, 2007. CROWTHER, T. W.; MAYNARD, D. S.; LEFF, J. W.; OLDFIELD, E. E.; MC CULLEY, R. L.; FIERER, N.; BRADFORD, M. A. Predicting the responsiveness of soil biodiversity to deforestation: a cross‐biome study. Global change biology, v. 20, n. 9, p. 2983-2994, 2014. DAVET, P.; ROUXEL, F. Detecting and isolating soil fungi. Institut National de la Recherche Agronomique (INRA), 1997. DE ANDRADE, A. G.; CABALLERO, S. S. U.; DE FARIA, S. M. Ciclagem de nutrientes em ecossistemas florestais. Embrapa Solos-Documentos (INFOTECA-E), 1999. DESVILETTES, C. H.; BOURDIER, G.; AMBLARD, C. H.; BARTH, B. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology, v. 38, n. 3, p. 629-637, 1997. DJUKIC, I.; ZEHETNER, F.; MENTLER, A.; GERZABEK, M. H. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, v. 42, n. 2, p. 155-161, 2010. DUARTE, E. M.; CARDOSO, I. M.; MENDONÇA, M. A.; STIJNEN, T. Pesquisadores e agricultores investigam a ciclagem de nutrientes de árvores da Mata Atlântica. Cadernos de Agroecologia, v. 4, n. 1, 2009. EHRLICH, H. L. Geomicrobiology: relative roles of bacteria and fungi as geomicrobial agents. Fungi in biogeochemical cycles, p. 1-27, 2006. EL ZAHAR HAICHAR, F.; ACHOUAK, W.; CHRISTEN, R.; HEULIN, T.; MAROL, C.; MARAIS, M. F.; MOUGEL, C.; RANJARD, L.; BALESDENT, J.; BERGE, O. Identification of cellulolytic bacteria in soil by stable isotope probing. Environmental Microbiology, v. 9, n. 3, p. 625-634, 2007. EMBRAPA. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2nd ed. Rio de Janeiro, Embrapa, 212 p., 1997. EMBRAPA. Métodos de análises de solos. Rio de Janeiro: SNLCS, Embrapa. s.n.p., 1979 39 FASIM, F.; AHMED, N.; PARSONS, R.; GADD, G. M. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS microbiology letters, v. 213, n. 1, p. 1-6, 2002. FENN, M. E.; ALLEN, E. B; WEISS, S. B.; JOVAN, S.; GEISER, L. H.; TONNESEN, G. S.; JOHNSON, L. E.; RAO, B. S.; GIMENO, F.; YUAN, T.; MEIXNER, T. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management, v. 91, n. 12, p. 2404-2423, 2010. FERNANDES, M. M.; PEREIRA, M. G.; MAGALHÃES, L. M. S.; CRUZ, A. R.; GIÁCOMO, R. G. Aporte e decomposição de serapilheira em áreas de floresta secundária, plantio de sabiá (Mimosa caesalpiniaefolia Benth.) e andiroba (Carapa guianensis Aubl.) na Flona Mário Xavier, RJ. Ciência Florestal, Santa Maria, v. 16, n. 2, p. 163-175, jul/dez. 2006. FIERER, N.; JACKSON, R. B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, v. 103, n. 3, p. 626-631, 2006. FIERER, N.; STRICKLAND, M. S.; LIPTZIN, D.; BRADFORD, M. A.; CLEVELAND, C. C. Global patterns in belowground communities. Ecology letters, v. 12, n. 11, p. 1238-1249, 2009. FILKER, S.; SOMMARUGA, R.; VILA, I.; STOECK, T. Microbial eukaryote plankton communities of high‐mountain lakes from three continents exhibit strong biogeographic patterns. Molecular ecology, v. 25, n. 10, p. 2286-2301, 2016. FOLCH, J.; LEES, M.; SLOANE, S. G. H. A simple method for the isolation and purification of total lipids from animal tissues. J biol Chem, v. 226, n. 1, p. 497-509, 1957. FONTAINE, S.; MARIOTTI, A.; ABBADIE, L. The priming effect of organic matter: a question of microbial competition. Soil Biology and Biochemistry, v. 35, n. 6, p. 837-843, 2003. FRAGA, M. E.; BRAZ, D. M.; ROCHA, J. F.; PEREIRA, M. G.; FIGUEIREDO, D. V. Interação microrganismo, solo e flora como condutores da diversidade na Mata Atlântica Interaction of microorganisms, soil and flora as drivers of diversity in the Atlantic Forest. Acta botanica brasilica, v. 26, n. 4, p. 857-865, 2012. 40 FRAGA, M. E.; PEREIRA, M. G. Diversidade de Trichocomaceae isolada de solo e serrapilheira de Floresta Atlântica. Floresta e Ambiente, v. 19, n. 4, p. 405-413, 2012. FREY, S. D.; LEE, J.; MELILLO, J. M.; SIX, J. The temperature response of soil microbial efficiency and its feedback to climate. Nature Climate Change, v. 3, n. 4, p. 395, 2013. FROSTEGÅRD, Å.; BÅÅTH, E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, v. 22, n. 1-2, p. 59-65, 1996. FROUFE, L.; FRANCO, A.; FARIA, S. D.; CAMPELLO, E. Produção de serapilheira e ciclagem de nitrogênio, fósforo e potássio em plantios puros e consorciados de Eucalyptus grandis e Albizia guachapele. Simpósio Nacional de Recuperação de Áreas Degradadas–SINRAD, III, p. 205-214, 1997. GALLARDO, A.; MERINO, A.J. Leaf decomposit;on in two Mediterranean ecosystems Southwest Spain: influente of substrate quality. Ecology, v.74, n. l, p.152-161, 1993. GAMA-RODRIGUES, A. D.; SANTOS, M. L.; BARROS, N. F. Decomposição e liberação de nutrientes do folhedo de espécies florestais nativas em plantios puros e mistos no sudeste da Bahia. Revista brasileira de ciência do solo, v. 27, n. 6, p. 1021-1031, 2003. GHOSH, U. K.; PRASAD, B. Optimization of carbon, nitrogen sources and temperature for hyper growth of antibiotic producing strain Streptomyces kanamyceticus MTCC 324. Bioscan, v. 5, n.1, p. 157-158, 2010. GOLDFARB, K. C.; KARAOZ, U.; HANSON, C. A.; SANTEE, C. A., BRADFORD, M. A., TRESEDER, K. K.; WALLENSTEIN, M. D.; BRODIES, E. L. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in microbiology, v. 2, p. 94, 2011. GOLDSTEIN, A. H. Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. Proceedings of the 4th International Fertilizer Association Technical Conference, IFA, Paris. 2000. GRACE, J. MALHI, Y.; HIGUCHI, N.; MEIR, P. Productivity of tropical rain forests. Terrestrial global productivity, p. 401-426, 2001. 41 GUYONNET, J. P.; VAUTRIN, F.; MEIFFREN, G.; LABOIS, C.; CANTAREL, A. A., MICHALET, S.; COMTE, G.; HAICHAR, F. E. Z. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS microbiology ecology, v. 93, n. 4, 2017. HAYATSU, M.; TAGO, K.; SAITO, M. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science and Plant Nutrition, v. 54, n. 1, p. 33-45, 2008. HAYNES, R. J. Soil acidification induced by leguminous crops. Grass and Forage Science, v. 38, n. 1, p. 1-11, 1983. HEAL, O. W. Plant litter quality and decomposition: an historical overview. Driven by nature, plant litter quality and decomposition, 1997. HELFRICH, M.; LUDWING, B.; THOMS, C.; GLEIXNER, G., FLESSA, H. The role of soil fungi and bacteria in plant litter decomposition and macroaggregate formation determined using phospholipid fatty acids. Applied Soil Ecology, v. 96, p. 261-264, 2015. HEUER, H.; WIELAND, G.; SCHONFELD, J.; SCHONWALDER, A.; GOMES, N. C. M.; SMALLA, K. Bacterial community profiling using DGGE or TGGE analysis. Environmental molecular microbiology: protocols and applications, v. 9, p. 177-190, 2001. HIRAISHI, A.; KISHIMOTO, N.; KOSAKO, Y.; WAKAO, N.; TANO, T. Phylogenetic position of the menaquinone-containing acidophilic chemo-organotroph Acidobacterium capsulatum. FEMS microbiology letters, v. 132, n. 1-2, p. 91-94, 1995. HOBBIE, S. E. Nitrogen effects on decomposition: A five‐year experiment in eight temperate sites. Ecology, v. 89, n. 9, p. 2633-2644, 2008. HOULTON, B. Z.; SIGMAN, D. M.; HEDIN, L. O. Isotopic evidence for large gaseous nitrogen losses from tropical rainforests. Proceedings of the National Academy of Sciences, v. 103, n. 23, p. 8745-8750, 2006. JOERGENSEN, R. G.; WICHERN, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biology and Biochemistry, v. 40, n. 12, p. 2977-2991, 2008. 42 JOHRI, J. K.; SURANGE, S.; NAUTIYAL, C. S. Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Current Microbiology, v. 39, n. 2, p. 89-93, 1999. JOLY, C. A.; LEITÃO-FILHO, H. de F.; SILVA, S. M. O patrimônio florístico. Camara, IG Mata Atlântica. São Paulo: Fundação SOS Mata Atlântica, p. 9-128, 1991. KAISER, C.; FRANK, A.; WILD, B.; KORANDA, M.; RICHTER, A. Negligible contribution from roots to soil-borne phospholipid fatty acid fungal biomarkers 18: 2ω6, 9 and 18: 1ω9. Soil Biology and Biochemistry, v. 42, n. 9, p. 1650-1652, 2010. KANG, S. C.; HA, C. G., LEE, T. G.; MAHESHWARI, D. K. Solubilization of insoluble inorganic phosphates by a soil-inhabiting fungus Fomitopsis sp. PS 102. Current science, p. 439-442, 2002. KHAN, M.; ZAIDI, A.; AHEMAD, M.; OVES, M.;WANI, P.A.; Plant growth promotion by phosphate solubilizing fungi–current perspective. Archives of Agronomy and Soil Science, v. 56, n. 1, p. 73-98, 2010. KIELAK, A. M.; SCHEUBLIN, T. R.; MENDES, L. W.; VAN VEEN, J. A.; KURAMAE, E. E. Bacterial community succession in pine-wood decomposition. Frontiers in microbiology, v. 7, p. 231, 2016. KLEBER, M.; EUSTERHUES, K.; KEILUWEIT, M.; MIKUTTA, C.; MIKUTTA, R.; NICO, P. S. Mineral–organic associations: formation, properties, and relevance in soil environments. Advances in agronomy. Academic Press, v. 130, p. 1-140, 2015. KORANDA, M.;KAISER, C.; FUCHSLUEGER, L.; KITZLER, B.; SESSITSCH, A.; ZECHMEISTER-BOLTENSTERN, S.; RICHTER, A. Fungal and bacterial utilization of organic substrates depends on substrate complexity and N availability. FEMS microbiology ecology, v. 87, n. 1, p. 142-152, 2014. KUSTER, E.; WILLIAMS, S.T. Selective media for the isolation of Streptomycetes. Nature, v. 202, p. 928-929, 1964 43 LALOR, B. M.; COOKSON, W. R.; MURPHY, D. V. Comparison of two methods that assess soil community level physiological profiles in a forest ecosystem. Soil Biology and Biochemistry, v. 39, n. 2, p. 454-462, 2007. LANZÉN, A.; EPELDE, L.; GARBISU, C.; ANZA, M.; MARTÍN-SANCHÉZ, I.; BLANCO, F.; MIJANGOS, I. The community structures of prokaryotes and fungi in mountain pasture soils are highly correlated and primarily influenced by pH. Frontiers in microbiology, v. 6, p. 1321, 2015. LASHERMES, G.; GAINVORS-CLAISSE, A.; RECOUS, S.; BERTRAND, I. Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots. Frontiers in microbiology, v. 7, p. 1315, 2016. LAUBER, C. L.; STRICKLAND, M. S.; BRADFORD, M. A., FIERER, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, v. 40, n. 9, p. 2407-2415, 2008. LEJON, D.P.; CHAUSSOD, R.; RANGER, J.; RANJARD, L. Microbial community structure and density under different tree species in an acid forest soil (Morvan, France). Microbiology Ecology, 50:614-625, 2005. LEKHA, A.; GUPTA, S. R. Decomposition of Populus and Leucaena leaf litter in an agroforestry system. International Journal of Ecology and Environmental Sciences, v. 15, n. 2, p. 97-108, 1989. LEVY-BOOTH, D. J.; PRESCOTT, C. E.; GRAYSTON, S. J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry, v. 75, p. 11-25, 2014. LIMA, H. C.; GUEDES-BRUNI, R. R. Diversidade de plantas vasculares na Reserva Ecológica de Macaé de Cima. Serra de Macaé de Cima: Diversidade Florística e Conservação em Mata Atlântica. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, p. 29-39, 1997. LUGO, A.E.; CUEVAS, E.: SANCHEZ, M.J. Nutrients and mass in litter and soil of ten tropical tree plantations. Plant and Soil, v. 125, p.263-280, 1990. 44 LUNDQUIST, E. J.; JACKSON, L. E.; SCOW, K. M.; HSU, C. Changes in microbial biomass and community composition, and soil carbon and nitrogen pools after incorporation of rye into three California agricultural soils. Soil Biology and Biochemistry, v. 31, n. 2, p. 221-236, 1999. MALIK, A. A.; CHOWDHURY, S.; SCHLAGER, V.; OLIVER, A.; PUISSANT, J.; VAZQUEZ, P. G.; JEHMLICH, N.; BERGEN, M.; GRIFFITHS, R.; GLEIXNER, G. Soil fungal: bacterial ratios are linked to altered carbon cycling. Frontiers in microbiology, v. 7, p. 1247, 2016. MANZONI, S.; SCHAEFFER, S. M.; KATUL, G.; PORPORATO, A.; SCHIMEL, J. P. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biology and Biochemistry, v. 73, p. 69-83, 2014. MANZONI, S.; TAYLOR, P.; RICHTER, A.; PORPORATO, A.; AGREN, G. I. Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. New Phytologist, v. 196, n. 1, p. 79-91, 2012. MARGULIS, L.; CHAPMAN, M. J. Chapter four–kingdom fungi. Kingdoms and Domains, p. 379-409, 2009. MARON, P.; MOUGEL, C.; RANJARD, L. Soil microbial diversity: methodological strategy, spatial overview and functional interest. Comptes rendus biologies, v. 334, n. 5-6, p. 403-411, 2011. MARSCHNER, H. Functions of mineral nutrients, macronutrients. Mineral nutrition of higher plants, 1997. MARTIN, J. P. Use of acid, rose bengal and streptomycin in the plater method for estimating soil fungi. Soil Science, v. 69, p. 215- 232, 1950. MAYFIELD, C. I.; WILIAMS, S. T.; RUDDICK, S. M.; HATFIELD, H. L. Studies on the ecology of actinomycetes in soil IV. Observations on the form and growth of streptomycetes in soil. Soil Biology and Biochemistry, v. 4, n. 1, p. 79-91, 1972. MCGILL, B. J.; ETIENNE, R. S.; GRAY, J. S.; ALONSO, D.; ANDERSON, M. J.; BENECHA, H. K.; HURLBERT, A. H. Species abundance distributions: moving beyond 45 single prediction theories to integration within an ecological framework. Ecology letters, v. 10, n. 10, p. 995-1015, 2007. MCGILL, B. J.; MAURER, B. A.; WEISER, M. D. Empirical evaluation of neutral theory. Ecology, v. 87, n. 6, p. 1411-1423, 2006. MCGUIRE, K. L.; FIERE, N.; BATEMAN, C.; TRESEDER, K. K.; TURNER, B.L. Fungal community composition in neotropical rain forests: the influence of tree diversity and precipitation. Microbial ecology, v. 63, n. 4, p. 804-812, 2012. MOORHEAD, D. L.; SINSABAUGH, R. L. A theoretical model of litter decay and microbial interaction. Ecological Monographs, v. 76, n. 2, p. 151-174, 2006. MORA-GÓMEZ, J.; ELOSEGI, A.; DUARTE, S.; CÁSSIO, F.; PASCOAL, C. ROMANÍ, A. M. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream. FEMS microbiology ecology, v. 92, n. 8, p. 121, 2016. MOREIRA, F. M. S.; SIQUEIRA, J. O. Transformações bioquímicas e ciclos dos elementos do solo. Microbiologia e bioquímica do solo. Editora UFLA, Lavras. 2002. MORESCHI, J. C. Relação água madeira e sua secagem. Curitiba: UFPR, Curso de Pós-Graduação em Engenharia Florestal, Setor de Ciências Agrárias, 1975. MUELLER, R. C.; BELNAP, J.; KUSKE, C. R. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland. Frontiers in microbiology, v. 6, p. 891, 2015. NAHAS, E. Microrganismos do solo produtores de fosfatases em diferentes sistemas agrícolas. Bragantia, p. 267-275, 2002. NANNIPIERI, P.; ASCHER, J.; CECCHERINI, M.T.; LANDI, L.; PIETRAMELLARA, G.; RENELLAG. Microbial diversity and soil functions. European Journal of Soil Science, v. 68, n. 1, p. 12-26, 2017. NARENDRULA-KOTHA, R.; NKONGOLO, K. K. Microbial response to soil liming of damaged ecosystems revealed by pyrosequencing and phospholipid fatty acid analyses. PloS one, v. 12, n. 1, p. e0168497, 2017. 46 NIE, M.; MENG, H.; LI, K.; WAN, J. R., QUAN, Z. X.; FANG, C.M.; CHEN, J. K.; LI, B. Comparison of bacterial and fungal communities between natural and planted pine forests in subtropical China. Current microbiology, v. 64, n. 1, p. 34-42, 2012 OLSSON, P. A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, v. 29, n. 4, p. 303-310, 1999. O'TOOLE, G. A.; STEWART, P. S. Biofilms strike back. Nature biotechnology, v. 23, n. 11, p. 1378, 2005. PAJARES, S.; BOHANNAN, B. J. M. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Frontiers in microbiology, v. 7, p. 1045, 2016. PAN, Y.; BIRDSEY, R. A.; FANG, J.; HOUGHTON, R.; KAUPPI, P. E.; KURZ, W. A.; PHILLIPS, O. L.; SHVIDENKO, S. L. L.; LEWIS, S. L.; CANADELL, J. G.; CIAIS, P.; JACKSON, R. B.; PACALA, S.; MCGUIRE, A. D.; PIAO, S.; RAUTIAINEM, S. T.; SITCH, S.; HAYES, D. A large and persistent carbon sink in the world’s forests. Science, p. 1201609, 2011. PANKHURST, C. E.; YU, S.; HAWKE, B. G.; HARCH, B. D. Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biology and Fertility of Soils, v. 33, n. 3, p. 204-217, 2001. PARKIN, T. B.; DORAN, J. W.; FRANCO-VIZCAINO, E. Field and laboratory tests of soil respiration. Methods for assessing soil quality/editors, John W. Doran and Alice J. Jones; editorial committee, Richard P. Dick.[et al.]; editor-in-chief SSSA, Jerry M. Bigham; managing editor, David M. Kral; associate editor, Marian K. Viney, 1996. PAUL, E. A.; CLARK, F. E. Dynamics of residue decomposition and soil organic matter turnover. Soil Microbiology and Biochemistry. 2nd ed. San Diego: Academic. p. 158-179, 1996 PEIXOTO, A. L. Vegetação da costa atlântica. S. Monteiro and L. Kaz (coords.) Floresta Atlântica. Rio de Janeiro: Livroarte Editora, p. 33-42, 1992. 47 PENNANEN, T.; FRITZE, H.; VANHALA, P., KIIKKILA, O.; NEUVONEN, S.; BAATH, E. Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain. Applied and Environmental Microbiology, v. 64, n. 6, p. 2173-2180, 1998. PEREIRA, J. C.; NEVES, M. C. P.; DROZDOWICZ, A. Dinâmica das populações bacterianas em solos de cerrados. Pesquisa Agropecuária Brasileira, v. 34, n. 5, p. 801-811, 1999. PHILIPPOT, L.; SPOR, A.; HÉNAULT, C.; BRU, D.; BIZOUARD, F.; JONES, C. M.; Loss in microbial diversity affects nitrogen cycling in soil. The ISME journal, v. 7, n. 8, p. 1609, 2013. RAICH, J. W.; RUSSEL, A. E.; KITAYAMA, K.;PARTON, W. J.; VITOUSEK, P. M. Temperature influences carbon accumulation in moist tropical forests. Ecology, v. 87, n. 1, p. 76-87, 2006. REIS, V. M.; COUTINHO, T. L.; ANDRADE, C.; HILSDORF, P. R. Isolamento de coliformes, estafilococos e enterococos de leite cru provenientes de tanques de refrigeração por expansão comunitários: identificação, ação lipolítica e proteolítica. Ciência e Tecnologia de Alimentos, v. 28, n. 3, 2008. REZENDE, C. D. P.; CANTARUTTI, R. B.; BRAGA, J. M.; GOMIDE, J. A.; PEREIRA, J. M.; FERREIRA, E.; TARRÉ, R.; MACEDO, R.; ALVES, B. J. R.; URQUIAGA, S.; CADISCH, G.; GILLER, K. E.; BODDEY, R. M. Litter deposition and disappearance in Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Nutrient cycling in Agroecosystems, v. 54, n. 2, p. 99-112, 1999. RIBEIRO, M.C.; METZGER, J. P.; MARTENSEN, A. C.; PONZONI, F. J.; HIROTA, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological conservation, v. 142, n. 6, p. 1141-1153, 2009. RINNAN, R.; BÅÅTH, E. Differential utilization of carbon substrates by bacteria and fungi in tundra soil. Applied and environmental microbiology, v. 75, n. 11, p. 3611-3620, 2009. 48 RODRÍGUEZ-ITURBE, I.; PORPORATO, A. Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics. Cambridge University Press, 2007. ROESCH, L. F. W., FULTHORPE, R. R.; RIVA, A., CASELLA, G.; HADWIN, A. K.; KENT, A. D.; DAROUB, S. H.; CAMARGO, F. A. O.; FARMERI, W. G.; TRIPLETT, E. W. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME journal, v. 1, n. 4, p. 283, 2007. ROITMAN, I.; TRAVASSOS, L. R.; AZEVEDO, J. L. Tratado de Microbiologia. São Paulo: Editora Manole, v. 2. 126 p, 1991. ROMANÍ, A. M.; FISHER, H.; MILLE-LINDBLOM, C.; TRANVIK, L. J. Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology, v. 87, n. 10, p. 2559-2569, 2006. ROUSK, J.; BAATH, E.; BROOKES, P. C.; LAUBER, C. L.; LOZUPONE, C.; CAPORASO, J. G.;. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME journal, v. 4, n. 10, p. 1340, 2010. RUBINO, M.; DUNGAIT, J. A. J.; EVERSHED, R. P.; BERTOLINI, T.; DE ANGELIS, P.; D’ONOFRIO, A.; LAGOMARSINO, A.; LUBRITTO, C.; MEROLA, A.; TERRASI, F.; COTRUFO, M. F. Carbon input belowground is the major C flux contributing to leaf litter mass loss: Evidences from a 13C labelled-leaf litter experiment. Soil Biology and Biochemistry, v. 42, n. 7, p. 1009-1016, 2010. SALES, T. D. M. Diversidade de bactérias de solo em clareiras e floresta nativa provenientes de áreas de terra firme alteradas pela exploração de petróleo. Seminário de iniciação científica da embrapa amazônia oriental, v. 12, 2008. SANTANA, J. A. D. S.; Estrutura fitossociológica, produção de serapilheira e ciclagem de nutrientes em uma área de Caatinga no Seridó do Rio Grande do Norte. 2005. SANTOS-GONZÁLEZ, J. C.; FINLAY, R. D.; TEHLER, A. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland. Applied and Environmental Microbiology, v. 73, n. 17, p. 5613-5623, 2007. 49 SARIYILDIZ, T.; ANDERSON, J. M. Interactions between litter quality, decomposition and soil fertility: a laboratory study. Soil Biology and Biochemistry, v. 35, n. 3, p. 391-399, 2003. SAYER, E. J.; HEARD, M. S.; GRANT, H, K.; MARTHEWS, T. R. TANNER, E. V. Soil carbon release enhanced by increased tropical forest litterfall. Nature Climate Change, v. 1, n. 6, p. 304, 2011. SCHELLENBERGER, S.; KOLB, S.; DRAKE, H. L. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil bacteria to oxygen. Environmental microbiology, v. 12, n. 4, p. 845-861, 2010. SCHERLACH, K.; GRAUPNER, K.; HERTWECK, C. Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annual review of microbiology, v. 67, p. 375-397, 2013. SCHIMEL, J.; BALSER, T. C.; WALLENSTEIN, M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology, v. 88, n. 6, p. 1386-1394, 2007. SCHIMEL, J.; SCHAEFFER, S. M. Microbial control over carbon cycling in soil. Frontiers in microbiology, v. 3, p. 348, 2012. SCHNEIDER, T.; KEIBLINGER, K. M.; SCHIMID, E.; STERFLINGER-GLEIXNER, K. ELLERSDORFER, G.; ROSCHITZKI, B.; RICHTER, A.; EBERL, L.; ZECHMEISTER-BOLTENSTERN, S.; RIEDEL, K. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. The ISME journal, v. 6, n. 9, p. 1749, 2012. SCHREEG, L. A.; MACK, M. C.; TURNER, B. L. Nutrient‐specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology, v. 94, n. 1, p. 94-105, 2013. SCHWEITZER, J. A.; BAILEY, J. K.; FISCHER, D. G.; LE ROY, C. J.;LONSDORF, E. V.; WHITHAM, T. G.; HART, S. C. Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology, v. 89, n. 3, p. 773-781, 2008. 50 SELLE, G. L. Ciclagem de nutrientes em ecossistemas florestais. Bioscience Journal, v. 23, n. 4, 2007. SHARMA, S. B.; SAYYED, R. Z.; TRIVEDI, M. H.; GOBI, T. A. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, v. 2, n. 1, p. 587, 2013. SHARMA, S. C. D.; SHOVON, M. S.; JAHAN, M. S.; ASADUZZAMAN, A. K. M.; RAHMAN, M. A.; BISWAS, K. K.; ABE, N.; ROY, N. Antibacterial and cytotoxic activity of Bacillus methylotrophicus-SCS2012 isolated from soil. The Journal of Microbiology, Biotechnology and Food Sciences, v. 2, n. 4, p. 2293, 2013. SHARMA, S. K.; RAMESH, A.; SHARMA, M. P.; JOSHI, O. P.; GOVAERTS, B.; STEENWERTH, K. L.; KARLEN, D. L. Microbial community structure and diversity as indicators for evaluating soil quality. Biodiversity, biofuels, agroforestry and conservation agriculture. Springer, Dordrecht, p. 317-358, 2010. SHOUN, H.; KIM, D. H.; UCHIYAMA, H.; SUGIYAMA, J. Denitrification by fungi. FEMS Microbiology Letters, v. 94, n. 3, p. 277-281, 1992. SILVA, A.C.S.; CHAGAS JUNIOR, A.F.; OLIVEIRA, L.A.; CHAGAS, L.F.B. Ocorrência de bactérias solubilizadoras de fosfato nas raízes de plantas de importância econômica em Manaus e Rio Preto da Eva, Amazonas. Journal of Biotechnology and Biodiversity, v. 2, n.1, p. 37-42, 2011. SILVA, H. F.; BARRETO, P. A. B.; DE OLIVEIRA, G.T. Decomposição da Serapilheira Foliar de Três Diferentes Povoamentos Florestais no Sudoeste da Bahia, 2013. SINGH, B. K.; BARDGETT, R. D.; SMITH, P.; REAY, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, v. 8, n. 11, p. 779, 2010. SINSABAUGH, R. L.; CARREIRO, M. M.; REPERT, D. A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, v. 60, n. 1, p. 1-24, 2002. 51 STEHMANN, J. R. Plantas da floresta Atlântica. Rio de Janeiro: Jardim Botânico do Rio de Janeiro, 2009. SUN, R.; LI, W.; DONG, W.; TIAN, Y.; HU, C; LIU, B. Tillage changes vertical distribution of soil bacterial and fungal communities. Frontiers in Microbiology, v. 9, p. 699, 2018. SZOBOSZLAY, M.; WHITE-MONSANT, A.; MOE, L. A. The effect of root exudate 7, 4′-dihydroxyflavone and naringenin on soil bacterial community structure. PloSone, v. 11, n. 1, p. e0146555, 2016. TAIZ, L.; ZEIGER, E. Fisiologia vegetal. 3.ed. Porto Alegre: Artmed. 719p, 2004. TAUK, S. M. Biodegradação de resíduos orgânicos no solo. Revista Brasileira de Geociências, v. 20, n. 1-4, p. 299-301, 2018. TEDESCO, M. J.; GIANELOO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análises de solo, plantas e outros materiais. Porto Alegre: Ufrgs, 1995. THOMAS, R. J.; ASAKAWA, N. M. Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biology and Biochemistry, v. 25, n. 10, p. 1351-1361, 1993. TUNLID, A. Biochemical analysis of biomass, community structure, nutritional status and metabolic activity of microbial communities in soil. Soil biochemistry, v. 7, p. 229-262, 1992. ULRICH, A.; KLIMKE, G.; WIRTH, S. Diversity and activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application. Microbial ecology, v. 55, n. 3, p. 512-522, 2008. URIARTE, M.; TURNER, B. L.; THOMPSON, J.; ZIMMERMAN, J. K. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecological Applications, v. 25, n. 7, p. 2022-2034, 2015. USHIO, M.; WAGAI, R.; BALSER, T. C.; KITAYAMA, K. Variations in the soil microbial community composition of a tropical montane forest ecosystem: does tree species matter?. Soil Biology and Biochemistry, v. 40, n. 10, p. 2699-2702, 2008. 52 VAN DER WAL, A.; GEYDAN, T. D.; KUYPER, T. W.; DE BOER, W.A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiology Reviews, v. 37, n. 4, p. 477-494, 2013. VARSHA, N. H. H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biology Biochemistry. 32, 559–565, 2002. VOS, M.; WOLF, A. B.; JENNINGS, S. J.; KOWALCHUK, G. A.. Micro-scale determinants of bacterial diversity in soil. FEMS microbiology reviews, v. 37, n. 6, p. 936-954, 2013. WAKSMAN, S. A. Soil microbiology. John Wiley And Sons Inc.; New York, 1952. WALDROP, M. P.; FIRESTONE, M. K. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia, v. 138, n. 2, p. 275-284, 2004. WARING, B. G.; AVERILL, C.; HAWKES, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta‐analysis and theoretical models. Ecology letters, v. 16, n. 7, p. 887-894, 2013. WARING, B. G.; WEINTRAUB, S. R.; SINSABAUGH, R. L. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry, v. 117, n. 1, p. 101-113, 2014. WEBER, C. F.; VILGALYS, R.; KUSKE, C. R. Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon. Frontiers in microbiology, v. 4, p. 78, 2013. WHITAKER, J.; OSTLE, N.; MSNAMARA, N. P.; NOTTINGHAM, A. T.; STOTT, A. W.; BARGETT, R. D.; SALINAS, N.; CCAHUANA, A. J. Q.; MEIR, P. Microbial carbon mineralization in tropical lowland and montane forest soils of Peru. Frontiers in microbiology, v. 5, p. 720, 2014. WHITAKER, J.; OSTLE, N.; NOTTINGHAM, A. T.; CCAHUANA, A.; SALINAS, N.; BARDGETT, R. D.; MEIR, P.; MCNAMARA, N. P. Microbial community composition explains soil respiration responses to changing carbon inputs along an A ndes‐to‐A mazon elevation gradient. Journal of Ecology, v. 102, n. 4, p. 1058-1071, 2014. 53 WHITE, C.; SAYER, J. A.; GADD, G. M. Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS microbiology reviews, v. 20, n. 3-4, p. 503-516, 1997. WICKINGS, K.; GRANDY, A. S.; REED, S, C.; CLEVELAND, C. C. The origin of litter chemical complexity during decomposition. Ecology letters, v. 15, n. 10, p. 1180-1188, 2012. WIEDER, R. K.; WRIGHT, S. J. Tropical forest litter dynamics and dry season irrigation on Barro Colorado Island, Panama. Ecology, v. 76, n. 6, p. 1971-1979, 1995. WIEDER, W. R.; BONAN, G. B.; ALLISON, S. D. Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, v. 3, n. 10, p. 909, 2013. WIEDER, W. R.; CLEVELAND, C. C.; TOWNSEND, A. R. Controls over leaf litter decomposition in wet tropical forests. Ecology, v. 90, n. 12, p. 3333-3341, 2009. XU, S.; LIU, L. L.; SAYER, E. J. Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences, v. 10, n. 11, p. 7423-7433, 2013. YANG, J.K.; ZHANG, J.J.; YU, H.Y.; CHENG, J.W.; MIAO, L.H. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees. Applied Microbiology and Biotechnology, v. 98, n.3, p.1149-1458, 2014. YANG, S.; ZHANG, Y., CONG, J.; WANG, M.; ZHAO, M.; LU, H.; XIE, C.; YANG, C.; YUAN, T.; LI, D.; ZHOU, J.; GU, B.; YANG, Y. Variations of soil microbial community structures beneath broadleaved forest trees in temperate and subtropical climate zones. Frontiers in microbiology, v. 8, p. 200, 2017. YANG, Y.; DOU, Y.; HUANG, Y.; AN, S.. Links between soil fungal diversity and plant and soil properties on the Loess Plateau. Frontiers in microbiology, v. 8, p. 2198, 2017. YAO, H.; WU, F. Soil microbial community structure in cucumber rhizosphere of different resistance cultivars to fusarium wilt. FEMS microbiology ecology, v. 72, n. 3, p. 456-463, 2010. 54 YOU, Y.; WANG, J.; HUANG, X.; TANG, Z.; LIU, S.; SUN, O. J. Relating microbial community structure to functioning in forest soil organic carbon transformation and turnover. Ecology and evolution, v. 4, n. 5, p. 633-647, 2014. ZELLES, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and fertility of soils, v. 29, n. 2, p. 111-129, 1999. ZHANG, D.; HUI, D.; LUO, Y.; ZHOU, G. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, v. 1, n. 2, p. 85-93, 2008. ZHANG, Y. H. P.; HIMMEL, M. E.; MIELENZ, J. R. Outlook for cellulase improvement: screening and selection strategies. Biotechnology advances, v. 24, n. 5, p. 452-481, 2006. ZHU, J.; ZHANG, C.; LYNCH, J. P. The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Functional Plant Biology, v. 37, n. 4, p. 313-322, 2010por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/65415/2018%20-%20Fabiana%20Rodrigues%20Baldez.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4725
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-06-02T00:49:58Z No. of bitstreams: 1 2018 - Fabiana Rodrigues Baldez.pdf: 1153463 bytes, checksum: 423f9960fe5b005e26f225954c90d2db (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-06-02T00:49:58Z (GMT). No. of bitstreams: 1 2018 - Fabiana Rodrigues Baldez.pdf: 1153463 bytes, checksum: 423f9960fe5b005e26f225954c90d2db (MD5) Previous issue date: 2018-08-20eng
Appears in Collections:Mestrado em Fitossanidade e Biotecnologia Aplicada

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Fabiana Rodrigues Baldez.pdf2018 - Fabiana Rodrigues Baldez.pdf1.13 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.