Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/13577
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soares, Isis Capella | |
dc.date.accessioned | 2023-12-22T02:48:31Z | - |
dc.date.available | 2023-12-22T02:48:31Z | - |
dc.date.issued | 2019-12-18 | |
dc.identifier.citation | SOARES, Isis Capella. Avaliação da população de duas espécies diazotróficas associativas em tecidos de braquiária e milho utilizando PCR quantitativa. 2019. 85 f. Dissertação (Mestrado em Fitossanidade e Biotecnologia Aplicada). Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/13577 | - |
dc.description.abstract | Bactérias diazotróficas dos gêneros Azospirillum e Herbaspirillum, em associação com gramíneas como o milho e forrageiras do gênero Brachiaria podem promover efeitos benéficos às plantas, como a fixação biológica de nitrogênio (FBN). A técnica de PCR quantitativa (qPCR) é eficiente no monitoramento de populações de bactérias diazotróficas inoculadas, porém sua aplicabilidade em nível de estirpe necessita de maiores estudos. Este trabalho teve o objetivo de selecionar oligonucleotídeos (primers) para posterior quantificação da população de A. brasilense em tecidos de raiz e colmo de braquiária (Brachiaria spp.) e H. seropedicae em raiz de milho (Zea mays) por qPCR. Os primers desenhados foram avaliados quanto a sua especificidade em nível de estirpe e espécie, por meio de PCR convencional. Já a sensibilidade e eficiência dos primers foram determinadas por reações de qPCR. A quantificação por qPCR estirpeespecífica de A. brasilense e H. seropedicae associadas a tecidos de braquiária e milho foi feita a partir de duas curvas-padrão diferentes. Os resultados obtidos por PCR quantitativa com os pares de primer selecionados foram comparados a contagem por microgota. A quantificação da estirpe A. brasilense Sp245 foi feita a partir do DNA extraído de tecidos de colmo e raiz de cultivares de braquiária inoculada e sem inoculação, crescidas em condições de campo. A população bacteriana das estirpes A. brasilense Sp245 e H. Seropedicae ZAE94 foi quantificada através do DNA genômico de raiz de milho inoculado com cada estirpe-alvo e plantas controle, sem inoculação, crescidas em condições de casa de vegetação com substrato estéril sob duas dosagens de N (3 e 0,3 mM). O par de primer Sp245p10, foi específico para a estirpe Sp245 e os pares de primer ZAEF1R1 e ZAEF2R2 foram específicos para a estirpe ZAE94. A quantificação, por qPCR, das estirpes Sp245 e ZAE94 apresentou resultados similares à contagem por microgota. Em relação ao experimento a campo com braquiária, o número de células bacterianas da estirpe Sp245 foi maior em plantas inoculadas das cultivares Basilik e Piatã. No experimento com milho em casa de vegetação, a dose de 3 mM de N favoreceu a população endógena de bactérias da estirpe Sp245 em plantas do tratamento controle, enquanto que a dose de N não interferiu na população das estirpes Sp245 e ZAE94 nas plantas inoculadas | por |
dc.description.sponsorship | CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Azospirillum brasilense | por |
dc.subject | Herbaspirillum seropedicae | por |
dc.subject | strain-specific primer | por |
dc.subject | Real time PCR | por |
dc.subject | Azospirillum brasilense | eng |
dc.subject | Herbaspirillum seropedicae | eng |
dc.subject | strain-specific primer | eng |
dc.subject | Real time PCR | eng |
dc.title | Avaliação da população de duas espécies diazotróficas associativas em tecidos de braquiária e milho utilizando PCR quantitativa | por |
dc.title.alternative | Population evaluation of two associated diazotrophic species in brachiaria and maize tissues using quantitative PCR | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | Diazotrophic bacteria, from Azospirillum and Herbaspirillum genus, in association with grasses, such as maize and brachiaria, can promote benefits for the plant, such as biological nitrogen fixation (BNF). Quantitative PCR technique (qPCR) is effective in monitoring the endophytic bacterial population, however its applicability at strainspecific level needs further study. This study aimed to select oligonucleotides (primers) for quantification of strains populations of A. brasilense in roots and stems of brachiaria (Brachiaria spp.) and H. seropedicae in root of maize (Zea mays) by strain-specific qPCR. The primers designed were evaluated by conventional PCR for specificity for strain and species. Primers sensitivity and efficiency were determined by qPCR reactions. The quantification by strain-specific qPCR of the A. brasilense and H. seropedicae associated with brachiaria and maize tissues were made by using two different standard curves. The results of quantitative PCR using the selected primers were compared to the microdrop count technique. The strain A. brasilense Sp245 was quantified from DNA extracted from stems and root tissues of inoculated and noninoculated brachiaria cultivars grown under field conditions. The bacterial population of the A. brasilense Sp245 and H. seropedicae ZAE94 strains was quantified by maize root genomic DNA from inoculated and non-inoculated plants. Maize plants were grown under greenhouse conditions with sterile substrate and different N doses (3 and 0.3 mM). The primer Sp245p10 was specific for Sp245 strain, and the primers ZAEF1R1 and ZAEF2R2 were specific for the ZAE94 strain. Quantifications by qPCR of Sp245 and ZAE94 strains presented similar results to micro drop count. In the field-grow brachiaria experiment, the number of Sp245 strain cells was higher in inoculated plants from Basilik and Piatã cultivars. In the greenhouse experiment, the N dose with 3 mM favored the endogenous population of Sp245 bacteria in non-inoculated maize plants, while the N dose did not affect the Sp245 and ZAE94 population in inoculated plants | eng |
dc.contributor.advisor1 | Araújo, Jean Luiz Simões de | |
dc.contributor.advisor1ID | 728.000.464-49 | por |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-7577-4412 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/4344808401973010 | por |
dc.contributor.advisor-co1 | Pacheco, Rafael Sanches | |
dc.contributor.advisor-co1ID | 055.883.557-09 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/2878448197446930 | por |
dc.contributor.referee1 | Pacheco, Rafael Sanches | |
dc.contributor.referee1ID | 055.883.557-09 | por |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/2878448197446930 | por |
dc.creator.ID | 130.389.807-14 | por |
dc.creator.Lattes | http://lattes.cnpq.br/4206441276341228 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Biológicas e da Saúde | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Fitossanidade e Biotecnologia Aplicada | por |
dc.relation.references | ABIEC- ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA EXPORTADORA DE CARNES 2018. Exportações de carne bovina do Brasil; 2018. Disponível em: <http://www.abiec.com.br/controle/uploads/arquivos/sumario2019portugues.pdf>. Acesso em: 14 maio. 2019. ADAM, E. et al. The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant and Soil, v. 422, n. 1–2, p. 35–49, 2018. AGUIRRE, P. F. et al. Forage yield of Coastcross-1 pastures inoculated with Azospirillum brasilense. Acta Scientiarum - Animal Sciences, v. 40, p. 1–8, 2018. AHEMAD, M.; KIBRET, M. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, v. 26, n. 1, p. 1–20, 2014. ALOVISI, A. M. T. et al. Evaluation of Urochloa decumbens cv. Basilisk in Response to Nitrogen Fertilization and Inoculation With Diazotrophic Bacterium. Journal of Agricultural Science, v. 10, n. 12, p. 458, 2018. ALVES, G. C. et al. Differential plant growth promotion and nitrogen fixation in two genotypes of maize by several Herbaspirillum inoculants. Plant and Soil, v. 387, n. 1– 2, p. 307–321, 2014. ANDRADE, A. DE F. et al. Azospirillum brasilense inoculation methods in corn and sorghum. Pesquisa Agropecuária Tropical, v. 49, p. 1–9, 2019. ANDREA, M. C. DA S. et al. Variability and limitations of maize production in Brazil: Potential yield, water-limited yield and yield gaps. Agricultural Systems, v. 165, n. July, p. 264–273, 2018. ANGELIS, D. F.; VALSECHI, O. A. II Curso de monitoramento teórico e prático da fermentação etanólica. Disponível em: <http://www.cca.ufscar.br/~vico/2 monitoramento/apostila_1.pdf>. Acesso em: 31 out. 2019. ANTONIO, C. D. S. et al. Diazotrophic bacteria associated to sugarcane varieties cropped at Northeast Region of Brazil. Revista Brasileirade Ciencias Agrarias, v. 11, n. 4, p. 272–280, 2016. ANTUNES, G. D. R. et al. Associative diazotrophic bacteria from forage grasses in the Brazilian semi-arid region are effective plant growth promoters. Crop and Pasture Science, v. 70, n. 10, p. 899–907, 2019. APPLIED BIOSYSTEMS. Real-time PCR handbook. Disponível em: <https://www.thermofisher.com/content/dam/LifeTech/global/Forms/PDF/real-timepcr- handbook.pdf>. Acesso em: 2 dez. 2019. ARAUJO, E. DE O. et al. Diazotrophic bacteria inoculation associates with acids and nitrogen in corn. African Journal of Plant Science, v. 10, n. 8, p. 162–166, 2016. AZEVEDO, M. DE O.; FELIPE, M. S. S.; BRÍGIDO, M. DE M. Técnicas básicas em biologia molecular. p. 212, 2003. BALDANI, J, I. et al. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, v. 29, n. 5–6, p. 911–922, maio 1997. BALDANI, J. I. et al. Characterization of Herbaspirillurn seropedicae gen. nov. sp. nov. a Root- Associated Nitrogen-Fixing Bacterium. International Journal of Systematic Bacteriology, v. 36, n. 1, p. 86–93, 1986a. 54 BALDANI, J. I. et al. Base de dados genômica de estirpes que compõem o inoculante de cana-de-açúcar e milho. Seropédica, Rio de Janeiro, 2011. (Embrapa Agrobiologia. Documentos, 282). BALDANI, J. I. et al. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, v. 384, n. 1–2, p. 413–431, 2014. BALDANI, J. I.; BALDANI, V. L. D. History on the biological nitrogen fixation research in graminaceous plants: Special emphasis on the Brazilian experience. Anais da Academia Brasileira de Ciencias, v. 77, n. 3, p. 549–579, 2005. BALDANI, V. L. D. et al. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil, v. 90, n. 1–3, p. 35–46, 1986b. BALDANI, V. L. D.; BALDANI, J. I.; DÖBEREINER, J. Inoculation of field-grown wheat (Triticum aestivum) with Azospirillum spp. in Brazil. Biology and Fertility of Soils, v. 4, n. 1–2, p. 37–40, 1987. BALDANI, V. L. D.; BALDANI, J. I.; DÖBEREINER, J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, v. 30, n. 5–6, p. 485–491, 2000. BALSANELLI, E. et al. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environmental Microbiology, v. 12, n. 8, p. 2233–2244, 2010. BARBOSA, E. A.; PERIN, L.; REIS, V. M. Uso de diferentes fontes de carbono por estirpes de Gluconacetobacter diazotrophicus isoladas de cana-de-açúcar. Pesquisa Agropecuaria Brasileira, v. 41, n. 5, p. 827–833, 2006. BARCELLOS, A. DE O. et al. Potencial e uso de leguminosas forrageiras dos gêneros Stylosanthes, Arachis e Leucaena. Simpósio sobre Manejo da Pastagem, v. 17, p. 297–357, 2000. BASTIÁN, F. et al. Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation, v. 24, n. 1, p. 7–11, 1998. BAUDOIN, E. et al. Applicability of the 16S-23S rDNA internal spacer for PCR detection of the phytostimulatory PGPR inoculant Azospirillum lipoferum CRT1 in field soil. Journal of Applied Microbiology, v. 108, n. 1, p. 25–38, 2010. BEDOYA, C. A. et al. Genetic diversity and population structure of native maize populations in Latin America and the Caribbean. PLoS ONE, v. 12, n. 4, p. 1–21, 2017. BERGKVIST, A. et al. A Technical Guide PCR TECHNOLOGIES: PCR, RT-PCR; qPCR, RT-qPCR, dPCR. Sigma-Aldrich, 2014. BHATTACHARYYA, P. N.; JHA, D. K. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology, v. 28, n. 4, p. 1327–1350, 2012. BOA SORTE, P. M. F. Utilização de Diferentes Técnicas para Monitorar a Colonização e Estabelecimento de Bactérias Diazotróficas Endofíticas em Plantas de Cana-deaçúcar. UFRRJ, 2013. BOA SORTE, P. M. F. et al. Development of a real-time PCR assay for the detection and quantification of Gluconacetobacter diazotrophicus in sugarcane grown under field conditions. African Journal of Microbiology Research, v. 8, n. 10, p. 1–12, 2014. BODDEY, R. M. et al. Endophytic nitrogen fixation in sugarcane: Present knowledge and future applications. Plant and Soil, v. 252, n. 1, p. 139–149, 2003. BODDEY, R. M.; DOBEREINER, J. Nitrogen fixation associated with grasses and cereals: 55 Recent results and perspectives for future research. Plant and Soil, v. 108, n. 1, p. 53– 65, 1988. BOGDAN, A. V. Tropical pasture and fodder plants. Longman., 1977. BRASIL, M. DA S. et al. Efeitos da inoculação de bactérias diazotróficas em gramíneas forrageiras do Pantanal. Pasturas Tropicales, v. 27, n. 3, p. 2–77, 2005. BRAUN-KIEWNICK, A. et al. Development of species-, strain- and antibiotic biosynthesisspecific quantitative PCR assays for Pantoea agglomerans as tools for biocontrol monitoring. Journal of Microbiological Methods, v. 90, n. 3, p. 315–320, 2012. BREDA, F. A. DA F. et al. Modulation of nitrogen metabolism of maize plants inoculated with Azospirillum brasilense and Herbaspirillum seropedicae. Archives of Microbiology, v. 201, n. 4, p. 547–558, 2019. BRIDGES, A. The impact of GMO grains. Disponível em: <https://www.millingjournal.com/>. Acesso em: 22 nov. 2019. BRUSAMARELLO-SANTOS, L. C. et al. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense. PLoS ONE, v. 12, n. 3, p. 1– 19, 2017. BULEGON, L. G. et al. Physiological responses of Urochloa ruziziensis inoculated with Azospirillum brasilense to severe drought and rehydration conditions. Australian Journal of Crop Science, v. 11, n. 10, p. 1283–1289, 2017. BULGARELLI, D. et al. Structure and Functions of the Bacterial Microbiota of Plants. Annual Review of Plant Biology, v. 64, n. 1, p. 807–838, 2013. CALVO, P. et al. Effect of microbial-based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science, v. 180, n. 1, p. 56–70, 2017. CANFIELD, D. E.; GLAZER, A. N.; FALKOWSKI, P. G. The Evolution and Future of Earth ’s. Science, v. 330, n. 6001, p. 2–6, 2010. CARDOZO, A. M. Inoculação de Azospirillum brasilense : efeito sobre crescimento de Zea mays em solo não estéril e quantificação de DNA bacteriano. Universidade Federal de Santa Catarina, 2017. CASSÁN, F. D.; OKON, Y.; CREUS, C. M. Handbook for Azospirillum. Springer, 2015. CERRI, CARLOS CLEMENTE MOREIRA, C. S. et al. Assessing the carbon footprint of beef cattle in Brazil: a case study with 22 farms in the State of Mato Grosso. Journal of Cleaner Production, v. 112, p. 2593–2600, 2015. CHAPARRO, J. M. et al. Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions. PLoS ONE, v. 8, n. 2, p. 1–10, 2013. COELHO, A. M. Manejo da adubação nitrogenada na cultura do milho. Sete Lagoas: Embrapa Milho e Sorgo, 2007. (Embrapa Milho e Sorgo. Circular Técnica, 96). CONAB- COMPANHIA NACIONAL DE ABASTECIMENTO 2016. Pesquisa de safras e informações geográficas da agricultura brasileira. Disponível em: <http://www.conab.gov.br/conteudos.php?a=1534&t=2>. Acesso em: 21 out. 2019. CORDIER, C. et al. SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. Journal of Microbiological Methods, v. 68, n. 1, p. 60–68, 2007. COSTA, K. A. DE P.; OLIVEIRA, I. P. DE; FAQUIN, V. Adubação Nitrogenada para Pastagens do Gênero Brachiaria em Solos do Cerrado. Santo Antônio de Goás: Embrapa Arroz e Feijão , 2006. (Embrapa Arroz e Feijão. Documentos, 192). 56 COUILLEROT, O. et al. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. Journal of Applied Microbiology, v. 109, n. 2, p. 528–538, 2010a. COUILLEROT, O. et al. Development of a real-time PCR method to quantify the PGPR strain Azospirillum lipoferum CRT1 on maize seedlings. Soil Biology and Biochemistry, v. 42, n. 12, p. 2298–2305, 2010b. CURATTI, L.; RUBIO, L. M. Challenges to develop nitrogen-fixing cereals by direct nifgene transfer. Plant Science, v. 225, p. 130–137, 2014. DA SILVA, C. G. Uso da Técnica de PCR em Tempo Real para Quantificação de Bactérias Diazotróficas Endofíticas em Tecidos de Cana-de-açúcar. UFRRJ, 2017. DA SILVA, M. F.; REIS, V. M. Produção, caracterização e aplicação de anticorpo policlonal contra Azospirillum amazonense estirpe AM15. Bragantia, v. 68, n. 1, p. 1–11, 2009. DALL’ASTA, P. et al. Tools to evaluate Herbaspirillum seropedicae abundance and nifH and rpoC expression in inoculated maize seedlings grown in vitro and in soil. Plant Growth Regulation, v. 83, n. 3, p. 397–408, 2017. DALL’ASTA, P. et al. Herbaspirillum seropedicae promotes maize growth but fails to control the maize leaf anthracnose. Physiology and Molecular Biology of Plants, v. 25, n. 1, p. 167–176, 2019. DARTORA, J. et al. Maize response to inoculation with strains of plant growth-promoting bactéria. Revista Brasileira de Engenharia Agrícola e Ambiental, v. 20, n. 7, p. 606– 611, 2016. DAVISON, J. Plant beneficial bacteria. Bio/technology, v. 6, n. 3, p. 282, 1988. DE ARAUJO, F. F. et al. Híbridos e variedades de milho submetidos à inoculação de sementes com Herbaspirillum seropedicae. Semina:Ciencias Agrarias, v. 34, n. 3, p. 1043–1054, 2013. DE MORAIS, R. F. et al. Contribution of biological nitrogen fixation to Elephant grass (Pennisetum purpureum Schum.). Plant and Soil, v. 356, n. 1–2, p. 23–34, 2012. DE OLIVEIRA, A. L. M. et al. Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Brazilian Journal of Microbiology, v. 34, p. 59–61, 2003. DE OLIVEIRA, E. P.; DA SILVA, M. G.; TEODORO, P. E. Crescimento inicial do milho em função da inoculação de Azospirillum brasilense e doses de nitrogênio. Bioscience Journal, v. 33, n. 5, p. 1242–1248, 2017. DE SOUZA, R. S. C. et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports, v. 6, n. 1, p. 1–15, 30 set. 2016. DIAS-FILHO, M. B. Diagnóstico das Pastagens no Brasil. Belém: Embrapa Amazônia Oriental, 2014. (Embrapa Amazônia Oriental. Documentos 402). DING, L.; YOKOTA, A. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of Pseudomonas huttiensis, Pseudomonas lanceolata, Aquaspirillum delicatum and Aquaspirillum autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. International Journal of Systematic and Evolutionary Microbiology, v. 54, n. 6, p. 2223–2230, 2004. DIXON, R.; KAHN, D. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, v. 2, n. 8, p. 621–631, 2004. DOBBELAERE, S. et al. Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. 57 Biology and Fertility of Soils, v. 36, n. 4, p. 284–297, 2002. DOEBLEY, J. The Genetics of Maize Evolution. Annual Review of Genetics, v. 38, n. 1, p. 37–59, 2004. DOS REIS, F. B. et al. Inoculação de Azospirillum amazonense em dois genótipos de milho sob diferentes regimes de nitrogênio. Revista Brasileira de Ciencia do Solo, v. 32, n. 3, p. 1139–1146, 2008. DOS SANTOS, C. L. R. et al. Contribution of a mixed inoculant containing strains of Burkholderia spp. and Herbaspirillum ssp. to the growth of three sorghum genotypes under increased nitrogen fertilization levels. Applied Soil Ecology, v. 113, p. 96–106, 2017. DOS SANTOS, P. R. et al. Desempenho de genótipos de milho (Zea mays l.) submetidos a dois tipos de adubação. Revista Verde de Agroecologia e Desenvolvimento Sustentável, v. 9, n. 1, p. 210–215, 2014. DOYLE, J. J.; DOYLE, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, v. 19, p. 11–15, 1987. ELMERICH, C. Historical Perspective: From Bacterization to Endophytes BT - Associative and Endophytic Nitrogen-fixing Bacteria and Cyanobacterial Associations. In: ELMERICH, C.; NEWTON, W. E. (Eds.). . Nitrogen Fixation: Origins, Applications, and Research Progress. 5. ed. Springer, 2007. p. 1–20. EMBRAPA- EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA 2015. Cultivo do Milho. Disponível em: <https://www.spo.cnptia.embrapa.br/conteudo?p_p_id=conteudoportlet_WAR_sistemas deproducaolf6_1ga1ceportlet&p_p_lifecycle=0&p_p_state=normal&p_p_mode=view& p_p_col_id=column-2&p_p_col_count=1&p_r_p_- 76293187_sistemaProducaoId=7905&p_r_p_-996514994_topicoId=8>. Acesso em: 21 out. 2019. FALEIRO, A. C. et al. Real time PCR detection targeting nifA gene of plant growth promoting bacteria Azospirillum brasilense strain FP2 in maize roots. Symbiosis, v. 61, n. 3, p. 125–133, 2013. FANCELLI, A. L.; DOURADO NETO, D. Milho: estratégias de manejo para alta produtividade. p. 208, 2003. FAOSTAT- FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS STATISTICS 2017. Ranking: Commodities by country. Disponível em: <http://www.fao.org/faostat/en/#rankings/commodities_by_country>. Acesso em: 21 out. 2019. FELTEN, A. VON; DÉFAGO, G.; MAURHOFER, M. Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strainspecific real-time PCR unaffected by the variability of DNA extraction efficiency. Journal of Microbiological Methods, v. 81, n. 2, p. 108–115, 2010. FERREIRA, D. F. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e agrotecnologia, v. 38, n. 2, p. 109–112, 2014. FILHO, I. A. P.; BORGHI, E. Sementes de Milho no Brasil – A Dominância dos Transgênicos. Sete Lagoas: Embrapa Milho e Sorgo, 2018. (Embrapa Milho e Sorgo. Documentos, 223). FILIPPI, M. C. C. et al. Leaf blast (Magnaporthe oryzae) suppression and growth promotion by rhizobacteria on aerobic rice in Brazil. Biological Control, v. 58, n. 2, p. 160–166, 2011. FISHER, M. J. .; KERRIDGE, P. C. The agronomy and physiology of Brachiaria species. In: 58 MILES, J. W. .; MASS, B. L. D. .; VALLE, C. B. (Eds.). . Brachiaria: biology, agronomy and improvement. Colombia: v. 1p. 43–52. FONTE, S. J. et al. Pasture degradation impacts soil phosphorus storage via changes to aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biology and Biochemistry, v. 68, p. 150–157, 2013. FRANCHE, C.; LINDSTRÖM, K.; ELMERICH, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and soil, v. 321, n. 1–2, p. 35–59, 2009. FUKAMI, J. et al. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express, v. 6, n. 1, p. 1–13, 2016. FURUSHITA, M. et al. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, v. 69, n. 9, p. 5336–5342, 2003. FVM- FDA FOODS AND VETERINARY MEDICINE. Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds. 2015 GENE LINK®. PCR Additives & Enhancers. Disponível em: <https://www.genelink.com/Literature/ps/M40-3021-PCR_Additives_Ver5.1.pdf>. Acesso em: 28 nov. 2019. GLOBAL MARKET INSIGHTS 2014. Biofertilizers market size to reach $1.66 billion by 2022USA, 2014. GONZÁLEZ, A. M. . T.; MORTON, C. M. Molecular and morphological phylogenetic analysis of Brachiaria and Urochloa (Poaceae). Molecular Phylogenetics and Evolution, v. 37, n. 1, p. 36–44, 2005. GRANATO, Í. S. C. et al. Index selection of tropical maize genotypes for nitrogen use efficiency. Bragantia, v. 73, n. 2, p. 153–159, 2014. GRAY, E. J.; SMITH, D. L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry, v. 37, n. 3, p. 395–412, 2005. GRUNENWALD, H. Optimization of Polymerase Chain Reactions. In: BARTLETT, J. M. S.; STIRLING, D. (Eds.). . Methods in Molecular Biology- PCR protocols. 2. ed. Totowa: v. 226p. 89–99. GUERRERO‐MOLINA, M. F. et al. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth‐promoting bacterium Azospirillum brasilense REC3. In: Plant Biology. 3. ed. [s.l.] Wiley Blackwell, 2015. v. 17p. 766–773. HANISCH, A. L.; BALBINOT JR., A. A.; VOGT, G. A. Desempenho produtivo de Urochloa brizantha cv. Marandu em função da inoculação com Azospirillum e doses de nitrogênio. Revista Agro@Mbiente on-Line, v. 11, n. 3, p. 200, 2017. HILL, P. J.; STEWART, G. S. A. B. The polymerase chain reaction in molecular and microbiology. Biotechnology and Genetic Engineering Reviews, v. 10, n. 1, p. 343–377, 1992. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agr. Expt. Sta. Circ, v. 347, n. 1, p. 32, 1950. HOWARD, J. B.; REES, D. C. NITROGENASE: A Nucleotide-Dependent Molecular Switch. Annual Review of Biochemistry, v. 63, n. 1, p. 235–264, 1994. HUNGRIA, M. et al. Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant and Soil, v. 331, n. 1, p. 413–425, 2010. 59 HUNGRIA, M. Inoculação com Azospirillum brasilense: inovação em rendimento a baixo custo. Embrapa Soja, v. 325, p. 36, 2011. HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Soybean Seed Co-Inoculation with Bradyrhizobium spp. and Azospirillum brasilense: A New Biotechnological Tool to Improve Yield and Sustainability. American Journal of Plant Sciences, v. 06, n. 06, p. 811–817, 2015. HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: An environment-friendly component in the reclamation of degraded pastures in the tropics. Agriculture, Ecosystems and Environment, v. 221, p. 125–131, 2016. HUNGRIA, M.; RIBEIRO, A.; NOGUEIRA, A. Draft Genome Sequences of Azospirillum brasilense Strains Ab- V5 and Ab-V6, Commercially Used in Inoculants for Grasses and Legumes in Brazil. v. 6, n. 20, p. 5–6, 2018. IBGE-INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA 2010. Censo agropecuário. Disponível em: <http:www.ibge.gov.br/home/estatistica/economia/agropecuaria/censoagro/2006/default tab_censoagro.shtm>. Acesso em: 14 maio. 2019. IBGE-INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA 2017. Sala de imprensa. Disponível em: <https://agenciadenoticias.ibge.gov.br/agencia-sala-deimprensa/ 2013-agencia-de-noticias/releases/16992-pecuaria-municipal-2016-centrooeste- concentra-34-4-do-rebanho-bovino-do-pais>. Acesso em: 6 jun. 2019. IBGE-INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA 2019. Sistema IBGE de Recuperação Automática (SIDRA). Disponível em: <https://sidra.ibge.gov.br/home/leite/brasil>. Acesso em: 14 maio. 2019. ILHA, E. C. et al. Comparison of real-time PCR assay and plate count for Lactobacillus paracasei enumeration in yoghurt. Annals of Microbiology, v. 66, n. 2, p. 597–606, 2016. IM, W. T. et al. Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, v. 54, n. 3, p. 851–855, 2004. JAMES, E. K. et al. Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. Journal of Experimental Botany, v. 48, n. 3, p. 785–798, 1997. JANK, L. et al. The value of improved pastures to Brazilian beef production. Crop and Pasture Science, v. 65, n. 11, p. 1132–1137, 2014. JOHNSON, L. A. Corn: production, processing and utilization. Handbook of cereal Science and Technology, p. 55–131, 1991. JUNG, S. Y. et al. Herbaspirillum rhizosphaerae sp. nov., isolated from rhizosphere soil of Allium victorialis var. platyphyllum. International Journal of Systematic and Evolutionary Microbiology, v. 57, n. 10, p. 2284–2288, 2007. KANG, M. J. et al. Quantitative in planta PCR assay for specific detection of Xanthomonas oryzae pv. oryzicola using putative membrane protein based primer set. Crop Protection, v. 40, p. 22–27, 2012. KAPPES, C. et al. Manejo do Nitrogênio em Cobertura na Cultura do Milho em Sistema Plantio Direto. Revista Brasileira de Milho e Sorgo, v. 13, n. 2, p. 201–217, 2014. KARIA, C. T.; DUARTE, J. B.; ARAÚJO, A. C. G. Desenvolvimento de cultivares do gênero Brachiaria (trin .) Griseb. no Brasil. Planaltina: Embrapa Cerrados, 2006. (Embrapa Cerrados. Documentos, 163). 60 KASCHUK, G.; ALBERTON, O.; HUNGRIA, M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biology and Biochemistry, v. 42, n. 1, p. 1–13, 2010. KASCHUK, G.; HUNGRIA, M. Diversity and Importance of Diazotrophic Bacteria to Agricultural Sustainability in the Tropics. In: DE AZEVEDO, J. L.; QUECINE, M. C. (Eds.). . Diversity and Benefits of Microorganisms from the Tropics. [s.l: s.n.]. p. 1– 439. KLASSEN, G. et al. Effect of nitrogen compounds on nitrogenase activity in Herbaspirillum seropedicae SMRl Can. Canadian Journal of Microbiology, v. 43, n. 9, p. 887–891, 1997. KLOEPPER, J. W.; LIFSHITZ, R.; ZABLOTOVICZ, R. M. Free-living bacteria inocula for enhancing crop productivity. Trends in Biotechnology, v. 7, n. 2, p. 39–44, 1989. KUKLINSKY-SOBRAL, J. et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, v. 6, n. 12, p. 1244–1251, 2004. KUMAR, B.; TRIVEDI, P.; PANDEY, A. Pseudomonas corrugata: A suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biology and Biochemistry, v. 39, n. 12, p. 3093–3100, 2007. LAREEN, A.; BURTON, F.; SCHÄFER, P. Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, v. 90, n. 6, p. 575–587, 2016. LEITE, R. D. C. et al. Mitigation of mombasa grass (megathyrsus maximus) dependence on nitrogen fertilization as a function of inoculation with Azospirillum Brasilense. Revista Brasileira de Ciência do Solo, v. 43, p. 1–14, 2019. LIN, S. Y. et al. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, v. 105, n. 6, p. 1149–1162, 2014. LINS, F. J. A. et al. Crescimento de genótipos experimentais de milho em função de doses crescentes de nitrogênio. Revista Ciência Agrícola, v. 15, n. 2, p. 19, 2017. LOPES, M. J. DOS S. et al. Effect of Pseudomonas fluorescens and Burkholderia pyrrocinia on the Growth Improvement and Physiological Responses in Brachiaria brizantha. American Journal of Plant Sciences, v. 09, n. 02, p. 250–265, 2018. LOPES, M. J. S. et al. Light and plant growth-promoting rhizobacteria effects on Brachiaria brizantha growth and phenotypic plasticity to shade. Grass and Forage Science, v. 73, n. 2, p. 493–499, 2017. LOURENTE, E. R. P. et al. Culturas antecessoras, doses e fontes de nitrogênio nos componentes de produção do milho. Acta Scientiarum Agronomy, v. 29, n. 1, p. 55– 61, 2007. MAASS, B. L. et al. Homecoming of Brachiaria : Improved Hybrids Prove Useful for African Animal Agriculture. East African Agricultural and Forestry Journal, v. 81, n. 1, p. 71–78, 2015. MAGALHAES, F. M. et al. New acid-tolerant Azospirillum species. Anais-Academia Brasileira de Ciencias, 1983. MAGALHÃES, P. C.; DURÃES, F. O. M. Fisiologia da Produção de Milho. Sete Lagoas: Embrapa Milho e Sorgo, 2006. (Embrapa Milho e Sorgo. Circular Técnica, 76). MAPA- MINISTÉRIO DA AGRICULTURA E ABASTECIMENTO 2019. Agropecuária brasileira em números. Disponível em: 61 <http://www.agricultura.gov.br/assuntos/politica-agricola/agropecuaria-brasileira-emnumeros? fbclid=IwAR2g8qiy6aRdXqy2DmSjyITgeHTJgR1iMnuN9MBxkHG4N5IuC oWFgTqp9K0>. Acesso em: 23 nov. 2019. MARKS, B. B. et al. Maize growth promotion by inoculation with Azospirillum brasilense and metabolites of Rhizobium tropici enriched on lipo-chitooligosaccharides (LCOs). AMB Express, v. 5, 2015. MARQUES, A. C. R. et al. Biological nitrogen fixation in C4 grasses of different growth strategies of South America natural grasslands. Applied Soil Ecology, v. 113, p. 54–62, maio 2017. MARTHA JR, G. B. et al. Pecuária de corte no Cerrado: uma visão conjuntural. Uso Eficiente de Fertilizantes em Pastagens no Cerrado. Planaltina: Embrapa Cerrados, p. 43–64, 2006. MARTÍNEZ-VIVEROS, O. et al. Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition, v. 10, n. 3, p. 293–319, 2010. MARTINI, M. et al. Quantitative real-time PCR and high-resolution melting (HRM) analysis for strain-specific monitoring of fluorescent pseudomonads used as biocontrol agents against soil-borne pathogens of food crops. Trends in Food Science and Technology, v. 46, n. 2, p. 277–285, 2015. MARTINS, M. R. et al. Impact of plant growth-promoting bacteria on grain yield, protein content, and urea-15 N recovery by maize in a Cerrado Oxisol. Plant and Soil, v. 422, n. 1–2, p. 239–250, 2017. MCPHERSON, M. J.; MØLLER, S. G. PCR- Second Edition. Taylor & Francis Group In, 2006. MEHNAZ, S. Azospirillum : A Biofertilizer for Every Crop. In: N., A. (Ed.). . Plant Microbes Symbiosis: Applied Facets. New Delhi: Springer, New Delhi, 2015. p. 297– 314. MENDIS, H. C. et al. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions. PLoS ONE, v. 13, n. 2, p. 1–19, 2018. MILANI, K. M. L.; MACHINESKI, O.; BALOTA, E. L. Ocorrência E Isolamento De Bactérias Diazotróficas Associadas À Cana-De-Açúcar. Enciclopédia Biosfera, v. 7, n. 13, p. 1345–1351, 2011. MONTEIRO, R. A. et al. Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genetics and Molecular Biology, v. 31, n. 4, p. 932–937, 2008. MONTEIRO, R. A. et al. Herbaspirillum-plant interactions: Microscopical, histological and molecular aspects. Plant and Soil, v. 356, n. 1–2, p. 175–196, 2012. MOREIRA, F. M. DE S. et al. Bactérias diazotróficas associativas: diversidade, ecologia e potencial de aplicações. Comunicata Scientiae, v. 1, n. 2, p. 74–100, 2010. MORUZZI, S. et al. Genomic-assisted characterisation of Pseudomonas sp. strain Pf4, a potential biocontrol agent in hydroponics. Biocontrol Science and Technology, v. 27, n. 8, p. 969–991, 2017. MOSIMANN, C. et al. Tracing of two Pseudomonas strains in the root and rhizoplane of maize, as related to their plant growth-promoting effect in contrasting soils. Frontiers in Microbiology, v. 7, n. JAN, p. 1–14, 2017. MÜLLER, S.; PEREIRA, P. A. A.; MARTIN, P. Effect of different levels of mineral nitrogen 62 on nodulation and N2 fixation of two cultivars of common bean (Phaseolus vulgaris L.). Plant and Soil, v. 152, n. 1, p. 139–143, 1993. MÜLLER, T. M. et al. Combination of inoculation methods of Azospirilum brasilense with broadcasting of nitrogen fertilizer increases corn yield. Ciência Rural, v. 46, n. 2, p. 210–215, 2016. MUSTAFA, S. et al. Plant growth promoting rhizobacteria in sustainable agriculture: from theoretical to pragmatic approach. Symbiosis, v. 78, n. 2, p. 115–123, 2019. NABTI, E. et al. A halophilic and osmotolerant Azospirillum brasilense strain from algerian soil restores wheat growth under saline conditions. Engineering in Life Sciences, v. 7, n. 4, p. 354–360, 2007. NAEF, A.; SENATORE, M.; DÉFAGO, G. A microsatellite based method for quantification offungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. FEMS Microbiology Ecology, v. 55, n. 2, p. 211–220, 2006. NAVARRO, E. et al. Real-time PCR detection chemistry. Clinica Chimica Acta, v. 439, p. 231–250, 2015. NEWTON, W. E. Nitrogen fixation in perspective. In: Nitrogen fixation: from molecules to crop productivity. Springer, 2000. p. 3–8. NEWTON, W. E. Biology of the nitrogen cycle. In: BOTHE, H.; FERGUSON, S. . J.; NEWTON, W. E. (Eds.). . Biology of the Nitrogen Cycle. Elsevier B.V., 2007. p. 109– 130. NUNES, S. G. et al. Brachiaria brizantha cv. Marandu. Campo Grande: Embrapa Gado de Corte, 1894. (Embrapa Gado de Corte. Documentos, 21). NUTZ, S.; DÖLL, K.; KARLOVSKY, P. Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: Application to qPCR assays for Fusarium verticillioides and F. proliferatum. Analytical and Bioanalytical Chemistry, v. 401, n. 2, p. 717–726, 2011. ODUM, E. P.; BARRETT, G. W. Fundamentals of Ecology. 5th Edn ed. Belmont: Thomson Brooks/Cole, 2005. OKON, Y. et al. Agronomic Applications of Azospirillum and Other PGPR. In: DE BRUIJN, F. J. (Ed.). . Biological Nitrogen Fixation. 1. ed. v. 2p. 925–936. OLIVARES, F. L. et al. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils, v. 21, n. 3, p. 197–200, 1996. OLIVARES, F. L. Taxonomia, ecologia e mecanismos envolvidos na infecção e colonização de plantas de cana-de-açúcar (Saccharum sp. híbrido) por bactérias endofíticas do gênero Herbaspirillum. Tese de Doutorado, 1997. OLIVEIRA, I. J. et al. Inoculation with Azospirillum brasiliense increases maize yield. Chemical and Biological Technologies in Agriculture, v. 5, n. 6, p. 13–15, 2018. OLIVEIRA, P. P. A.; DE OLIVEIRA, W. S. DE; JUNIOR, W. B. Produção de forragem e qualidade de Brachiaria brizantha cv. Marandu com Azospirillum brasilense e fertilizada com nitrogênio. São Carlos: Embrapa Pecuária Sudeste, 2007. (Embrapa Pecuária Sudeste.Circular Técnica, 54). OLIVER, J. D. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Reviews, v. 34, n. 4, p. 415–425, 2010. ORAM, R. N. Register of Australian herbage plant cultivars. 303 p. Commonwealth Scientific and Industrial Research, East Melbourne, Victoria, Australia, 1990. ORMENÕ-ORRILLO, E.; HUNGRIA, M.; MARTINEZ-ROMERO, E. The prokaryotes: 63 Prokaryotic physiology and biochemistry. In: ROSENBERG, E. et al. (Eds.). . The Prokaryotes: Prokaryotic Physiology and Biochemistry. [s.l: s.n.]. p. 1–662. OSEI, O. et al. PCR assay for direct specific detection of Bradyrhizobium elite strain BR 3262 in root nodule extracts of soil-grown cowpea. Plant and Soil, v. 417, n. 1–2, p. 535– 548, 2017. PAMPANA, S. et al. Nitrogen fixation of grain legumes differs in response to nitrogen fertilisation. Experimental Agriculture, v. 54, n. 1, p. 66–82, 2018. PEDREIRA, C. G. S.; SILVA, L. S.; ALONSO, M. P. Use of grazed pastures in the brazilian livestock industry: a brief overview. In: EVANGELISTA, A. R. et al. (Eds.). . International Conference on Forages in Warm Climates Proceedings of the 1st International Conference on Forages in Warm Climates. Lavras: p. 1–141. PEDROSA, F. O.; YATES, M. G. Regulation of nitrogen fixation (nif) genes of Azospirillum brasilense by nifA and ntr (gln) type gene products. FEMS Microbiology Letters, v. 23, n. 1, p. 95–101, 1984. PEREG, L.; DE-BASHAN, L. E.; BASHAN, Y. Assessment of affinity and specificity of Azospirillum for plants. Plant and Soil, v. 399, n. 1–2, p. 389–414, fev. 2015. PEREIRA, J. A. R. et al. Field inoculation of sorghum and rice with Azospirillum spp. and Herbaspirillum seropedicae. Plant and Soil, v. 110, n. 2, p. 269–274, 1988. PEREIRA, T. P. et al. Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae strain SmR1 in maize roots. Molecular Biotechnology, v. 56, n. 7, p. 660–670, 2014. PIZARRO, E. A. et al. Regional experience with Brachiaria: Tropical América – Savannas. In: Brachiaria: biology, agronomy and improvement. Colombia: p. 225–246. POLLARD, A. T.; OKUBARA, P. A. Real-time PCR quantification of Fusarium avenaceum in soil and seeds. Journal of Microbiological Methods, v. 157, p. 21–30, fev. 2019. PUJOL, M. et al. Development of a strain-specific quantitative method for monitoring Pseudomonas fluorescens EPS62e, a novel biocontrol agent of fire blight. FEMS Microbiology Letters, v. 249, n. 2, p. 343–352, 2005. PUJOL, M. et al. Assessment of the Environmental Fate of the Biological Control Agent of Fire Blight, Pseudomonas fluorescens EPS62e, on Apple by Culture and Real-Time PCR Methods. Applied and Environmental Microbiology, v. 72, n. 4, p. 2421–2427, 2006. RAYNAUD, X.; JAILLARD, B.; LEADLEY, P. W. Plants may alter competition by modifying nutrient bioavailability in rhizosphere: A modeling approach. American Naturalist, v. 171, n. 1, p. 44–58, 2008. REES, D. C.; HOWARD, J. B. Nitrogenase: Standing at the crossroads. Current Opinion in Chemical Biology, v. 4, n. 5, p. 559–566, 2000. REIS JUNIOR, F. B. et al. Identificação de isolados de Azospirillum amazonense associados a Brachiaria spp., em diferentes épocas e condições de cultivo e produção de fitormônio pela bactéria. Revista Brasileira de Ciencia do Solo, v. 28, n. 1, p. 103–113, 2004. RENVOIZE, S. A.; CLAYTON, W. B.; KABUYE, C. H. S. Morphology, taxonomy and natural distribution of Brachiaria (Trin.) Griseb. In: MILES, J. W.; MAAS, B. L.; VALLE, C. B. (Eds.). . Brachiaria: biology, agronomy and improvement. Colombia: p. 1–15. RICHARDSON, A. E. et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, v. 321, n. 1–2, p. 305–339, 2009. RIHS, J. D. et al. Roseomonas, a new genus associated with bacteremia and other human 64 infections. Journal of Clinical Microbiology, v. 31, n. 12, p. 3275–3283, 1993. RIRIE, K. M.; RASMUSSEN, R. P.; WITTWER, C. T. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Analytical Biochemistry, v. 245, n. 2, p. 154–160, 1997. RODRIGUES, E. P. et al. Azospirillum amazonense inoculation: Effects on growth, yield and N 2 fixation of rice (Oryza sativa L.). Plant and Soil, v. 302, n. 1–2, p. 249–261, 2008. RODRIGUES NETO, J. Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol, v. 12, p. 16, 1986. ROSCONI, F. et al. Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environmental Microbiology, v. 15, n. 3, p. 916–927, 2013. RUBIO, L. M.; LUDDEN, P. W. Maturation of Nitrogenase: a Biochemical Puzzle. Journal of Bacteriology, v. 187, n. 2, p. 405–414, 15 jan. 2005. RUZZI, M.; AROCA, R. Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, v. 196, p. 124–134, 2015. SÁ, G. C. R. et al. Biomass Yield, Nitrogen Accumulation and Nutritive Value of Mavuno Grass Inoculated with Plant Growth-promoting Bacteria. Communications in Soil Science and Plant Analysis, v. 50, n. 15, p. 1931–1942, 2019. SANTANA, S. S. et al. Canopy characteristics and tillering dynamics of Marandu palisade grass pastures in the rainy–dry transition season. Grass and Forage Science, v. 72, n. 2, p. 261–270, 2016. SANTOS, M. M. et al. Épocas de aplicação de nitrogênio em cobertura na cultura do milho em plantio direto, e alocação do nitrogênio (15N) na planta. Revista Brasileira de Ciencia do Solo, v. 34, n. 4, p. 1185–1194, 2010. SAVAZZINI, F. et al. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. Journal of Microbiological Methods, v. 73, n. 2, p. 185–194, 2008. SCHENA, L. et al. Real-time quantitative PCR: A new technology to detect and study phytopathogenic and antagonistic fungi. European Journal of Plant Pathology, v. 110, n.9, p. 893-908, 2004. SCOTT, M. P.; EMERY, M. Maize: Overview. In: Encyclopedia of Food Grains: Second Edition. 2. ed. Elsevier Ltd., 2016. p. 99–104. SHIME-HATTORI, A. et al. A rapid and simple PCR method for identifying isolates of the genus Azospirillum within populations of rhizosphere bacteria. Journal of Applied Microbiology, v. 111, n. 4, p. 915–924, 2011. SILVA, L. L. G. G. et al. Biological Nitrogen fixation in grassalnds with different cutting intensities. Archivos de Zootecnia., v. 59, n. 225, p. 21–30, 2010. SØRENSEN, J. et al. Molecular tools in rhizosphere microbiology-from single-cell to wholecommunity analysis. Plant and Soil, v. 321, n. 1–2, p. 483–512, 2009. SOTO-MUÑOZ, L. et al. DNA-based methodologies for the quantification of live and dead cells in formulated biocontrol products based on Pantoea agglomerans CPA-2. International Journal of Food Microbiology, v. 210, p. 79–83, 2015. SPAEPEN, S. et al. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, v. 312, n. 1–2, p. 15–23, 2008. SPAEPEN, S.; VANDERLEYDEN, J.; OKON, Y. Plant Growth-Promoting Actions of Rhizobacteria. In: LOON, L. C. VAN (Ed.). . Advances in Botanical Research. 1. ed. Elsevier Ltd, 2009. v. 51p. 283–320. STEENHOUDT, O.; VANDERLEYDEN, J. Azospirillum, a free-living nitrogen-fixing 65 bacterium closely associated with grasses: Genetic, biochemical and ecological aspects. FEMS Microbiology Reviews, v. 24, n. 4, p. 487–506, 2000. STETS, M. I. Monitoramento de Azospirillum brasilense e estudo da diversidade bacteriana associada a raízes de trigo ( Triticum aestivum ). UFPR, 2013. STETS, M. I. et al. Quantification of Azospirillum brasilense FP2 bacteria in wheat roots by strain-specific quantitative PCR. Applied and Environmental Microbiology, v. 81, n. 19, p. 6700–6709, 2015. STOFFELS, M.; CASTELLANOS, T.; HARTMANN, A. Design and Application of New 16S rRNA-targeted Oligonucleotide Probes for the Azospirillum-Skermanella- Rhodocista-Cluster. Systematic and applied microbiology, v. 24, n. 1, p. 83–97, 2001. TARRAND, J. J.; KRIEG, N. R.; DOBEREINER, J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Canadian Journal of Microbiology, v. 24, n. 8, p. 967–980, 1978. THERMOFISHER. Real-time PCR handbook. Disponível em: <https://www.ffclrp.usp.br/divulgacao/emu/real_time/manuais/Apostila qPCRHandbook. pdf>. Acesso em: 2 dez. 2019. TIMMUSK, S. et al. Perspectives and Challenges of Microbial Application for Crop Improvement. Frontiers in Plant Science, v. 8, n. 49, p. 1–10, 2017. TSAI, S. M. et al. Minimizing the effect of mineral nitrogen on biological nitrogen fixation in common bean by increasing nutrient levels. Plant and Soil, v. 152, n. 1, p. 131–138, 1993. UNTERGASSER, A. et al. Primer3- New Capabilities and Interfaces. Nucleic Acids Research, v. 40, n. 15, p. 1–12, 2012. URQUIAGA, S.; CRUZ, K. H. S.; BODDEY, R. M. Contribution of Nitrogen Fixation to Sugar Cane: Nitrogen-15 and Nitrogen-Balance Estimates. Soil Science Society of America Journal, v. 56, n. 1, p. 105, 1992. USDA- UNITED STATES DEPARTMENT OF AGRICULTURE 2018. National Agricultural Statistics Service. Disponível em: <https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads>. Acesso em: 2 mar. 2019. VALASEK, M. A.; REPA, J. J. The power of real-time PCR. American Journal of Physiology - Advances in Physiology Education, v. 29, n. 3, p. 151–159, 2005. VALENTIM, J. F.; AMARAL, E. F. DO; LANI, J. L. Definição de zonas de risco edáfico de morte de pastagens de Brachiaria brizantha cv. Marandu no Estado do Acre. REUNÃO BRASILEIRA DE MANEJO E CONSERVAÇÃO DO SOLO E DA ÁGUA. Anais...2002 VALLE, C. B.; JANK, L. .; RESENDE, R. M. S. O melhoramento de forrageiras tropicais no Brasil. Revista Ceres, v. 56, n. 4, p. 460–472, 2009. VILELA, L.; MARTHA JÚNIOR, G.; BARIONI, B. I. Pasture degradation and long-term sustainability of beef cattle systems in the Brazilian Cerrado. Discussion draft presented at the symposium Cerrado land-use and conservation: assessing tradeoff between human and ecological needs. XIX ANNUAL MEETING OF SOCIETY FOR CONSERVATION BIOLOGY CAPACITY BULDING & PRACTICE IN A GLOBALIZED WORLD. Anais...2005 WAGH, J. et al. Overexpression of citrate operon in Herbaspirillum seropedicae Z67 enhances organic acid secretion, mineral phosphate solubilization and growth promotion of Oryza sativa. Plant and Soil, v. 383, n. 1–2, p. 73–86, 2014. 66 WALKER, V. et al. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant and Soil, v. 356, n. 1–2, p. 151–163, 2012. WANG, R.-F.; CAO, W.-W.; CERNIGLIA, C. E. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. International Journal of Systematic and Evolutionary Microbiology, v. 46, n. 1, p. 341–343, 1996. WEBER, O. B. et al. Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant and Soil, v. 210, n. 1, p. 103–113, 1999. WEBER, O. B. et al. Interaction of endophytic diazotrophic bacteria and Fusarium oxysporum f. sp. cubense on plantlets of banana “Maça”. Plant and Soil, v. 298, n. 1–2, p. 47–56, 2007. YASMIN, H. et al. L-tryptophan-assisted pgpr-mediated induction of drought tolerance in maize (Zea mays L.). Journal of Plant Interactions, v. 12, n. 1, p. 567–578, 2017. YEOH, Y. K. et al. The core root microbiome of sugarcanes cultivated under varying nitrogen fertilizer application. Environmental Microbiology, v. 18, n. 5, p. 1338–1351, 2016. ZEFFA, D. M. et al. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maize genotypes. PLoS ONE, v. 14, n. 4, p. 1–19, 2019. ZHANG, T.; FANG, H. H. P. Applications of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Applied Microbiology and Biotechnology, v. 70, n. 3, p. 281–289, 2006. | por |
dc.subject.cnpq | Biologia Geral | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/69573/2019%20-%20Isis%20Capella%20Soares.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/5721 | |
dc.originais.provenance | Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-06-01T13:08:51Z No. of bitstreams: 1 2019 - Isis Capella Soares.pdf: 1471628 bytes, checksum: fc39b431f9755ec4a169f1f53e55ebbd (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2022-06-01T13:08:51Z (GMT). No. of bitstreams: 1 2019 - Isis Capella Soares.pdf: 1471628 bytes, checksum: fc39b431f9755ec4a169f1f53e55ebbd (MD5) Previous issue date: 2019-12-18 | eng |
Appears in Collections: | Mestrado em Fitossanidade e Biotecnologia Aplicada |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2019 - Isis Capella Soares.pdf | 2019 - Isis Capella Soares | 1.44 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.