Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/13622
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMatos, Gustavo Feitosa de
dc.date.accessioned2023-12-22T02:49:04Z-
dc.date.available2023-12-22T02:49:04Z-
dc.date.issued2017-02-23
dc.identifier.citationMATOS, Gustavo Feitosa de. Caracterização de novos rizóbios isolados de raízes de cana-de-açúcar. 2017. 57 f. Dissertação (Mestrado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/13622-
dc.description.abstractEstudos recentes de biologia molecular indicaram que bactérias do gênero Bradyrhizobium e Rhizobium também podem ter um papel no processo de fixação biológica de nitrogênio (FBN) quando associadas à cana-de-açúcar. O uso de plantas de Vigna unguiculata como “isca” possibilitou a obtenção de uma coleção diversa de Bradyrhizobium spp. endofíticos a partir de raízes de cana-de-açúcar. O presente trabalho teve como objetivo caracterizar um grupo de bactérias do gênero Bradyrhizobium proveniente de raízes de cana-de-açúcar, assim como avaliar a capacidade de uma estirpe representante desse grupo e de um isolado do gênero Rhizobium em promover efeito de crescimento nessa cultura. Para definir o posicionamento taxonômico dos isolados do grupo, análises filogenéticas foram realizadas com os genes individuais 16S rRNA, ITS, nodC e recA e análise de sequência de multilocus (MLSA) envolvendo quatro genes ‘housekeeping’ (recA, dnaK, glnII e atpD), em quatro isolados representantes (BR 10280T, BR 10266, BR10555 e BR 10556). Além disso, foram realizados testes bioquímicos e morfofisiológicos. Experimento onde os isolados P9-20 (BR 10280) (Bradyrhizobium sp.) e P5-2 (Rhizobium sp.) foram inoculados em minitoletes de cana-de-açúcar foi conduzido em casa de vegetação. Foram realizadas coletas aos 30 e 75 dias após transplantio (DAT). Entre as variáveis analisadas estão o índice de velocidade de brotamento (IVB), massa seca e Nitrogênio (N) total. Análises filogenéticas posicionaram os isolados no super clado de B. japonicum em um ramo independente próximo a B. huanghuaihaiense, um microssimbionte de soja. Apesar da proximidade do grupo em estudo com B. huanghuaihaiense, estes isolados não induziram nodulação em Glycine max. Além disso, diferente de B. huanghuaihaiense, os novos isolados induziram a formação de nódulos em Phaseolus vulgaris. Em estudos morfofisiológicos foram demostradas diferenças significativas entre os isolados representantes do grupo em estudo e B. huanghuaihaiense. Em experimento em casa de vegetação, observou-se na primeira coleta um incremento sobre o IVB e massa seca da raiz no tratamento inoculado com o isolado P5-2, embora não tenham sido observadas diferenças estatísticas. Na segunda coleta, incrementos foram encontrados na massa seca de raiz e volume de raiz, assim como, no N total das raízes e parte aérea, no tratamento incoculado com P5-2, embora não tenham apresentado diferença estatística. Massa seca da parte aérea do tratamento inoculado com P5-2 apresentou incremento na primeira e segunda coleta, em relação aos controles, embora não tenha sido detectada diferença estatística. Os resultados da caracterização do grupo indicam que os isolados de cana-de-açúcar do gênero Bradyrhizobium representam uma nova espécie desse gênero. Em relação ao experimento em casa de vegetação, o isolado do gênero Rhizobium sp. apresentou potencial como promotor de crescimento na cultura de cana-de-açúcarpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectBradyrhizobiumpor
dc.subjecttaxonomia de procariotospor
dc.subjectpromoção de crescimento em cana-de-açúcarpor
dc.subjectBradyrhizobiumeng
dc.subjecttaxonomy of prokaryoteseng
dc.subjectPromotion of growth in sugarcaneeng
dc.titleCaracterização de novos rizóbios isolados de raízes de cana-de-açúcarpor
dc.title.alternativeCharacterization of new rhizobia isolated from sugarcane rootseng
dc.typeDissertaçãopor
dc.description.abstractOtherRecent molecular biology studies have indicated that bacteria of the genus Bradyrhizobium and Rhizobium may also play a role in the biological nitrogen fixation process (BNF) when associated with sugarcane. The use of Vigna unguiculata trap plants allowed obtaining a diverse collection of endophytic Bradyrhizobium spp. from sugarcane roots. The present work aimed to characterize a group of bacteria of the genus Bradyrhizobium from sugarcane roots, as well as to evaluate the ability of a representative strain of this group and an isolate of the genus Rhizobium to promote growth in this crop. To define the taxonomic position of the isolates of the group, phylogenetic analyzes were performed with the individual 16S rRNA, ITS, nodC and recA genes and multilocus sequence analysis (MLSA) involving four housekeeping genes (recA, dnaK, glnII and atpD), in four representative isolates (BR 10280T, BR 10266, BR 10555 and BR 10556). In addition, biochemical and morphophysiological tests were performed. Experiments in which the isolates P9-20 (BR 10280) (Bradyrhizobium sp.) and P5-2 (Rhizobium sp.) were inoculated in sugarcane seedlings were conducted in a greenhouse to evaluate the growth promoting effect of these isolates. Two harvests were performed at 30 and 75 days after transplanting (DAT). Among the analyzed variables were the budding speed index (BSI), dry mass and total nitrogen (N). Phylogenetic analyzes positioned the isolates in the superclade of B. japonicum in an independent branch close to B. huanghuaihaiense, a soybean micro-symbiont. Despite the proximity of the group under study to B. huanghuaihaiense, these isolates did not induce nodulation in Glycine max. In addition, unlike B. huanghuaihaiense, the new isolates induced nodule formation in Phaseolus vulgaris. In morphophysiological studies, significant differences were demonstrated between the representative isolates from this study and B. huanghuaihaiense. In the greenhouse experiment, an increase on BSI and root dry mass of the inoculated treatment with the P5-2 isolate was observed in the first harvest. In the second harvest, increments were found in the root dry mass and root volume, as well as in the total N of the roots and aerial part, in the treatment inoculated with P5-2, although no statistical difference was detected. These results of the characterization indicate that the sugarcane isolates of the genus Bradyrhizobium represent a new species of this genus. In relation to the greenhouse experiment, the isolate of the genus Rhizobium sp. presented potential as a growth promoter in the sugarcane crop.eng
dc.contributor.advisor1Baldani, José Ivo
dc.contributor.advisor1ID538.864.458-87por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0129530048505952por
dc.contributor.advisor-co1Rouws, Luc Felicianus Marie
dc.contributor.advisor-co1ID014.563.806-56por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4500797890789377por
dc.contributor.referee1Zilli, Jerri Édson
dc.contributor.referee2Medici, Leonardo Oliveira
dc.creator.ID602.783.683-01por
dc.creator.Latteshttp://lattes.cnpq.br/0129530048505952por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesALMEIDA, N. F.; YAN, S. C.; CAI, R. M.; CLARKE, C. R.; MORRIS, C. E.; SCHAAD, N. W.; SCHUENZEL, E. L.; LACY, G. H.; SUN, X. A., JONES, J. B.; CASTILLO, J. A.; BULL, C. T.; LEMAN, S.; GUTTMAN, D. S.; SETUBAL, J. C.; VINATZER, B. A. A multilocus sequence typing and analysis database and website for plant-associated Microbes. Phytopathology, v. 100, n. 3, p. 208-215, 2010. ALTSCHUL, S.F.; MADDEN, T.L.; SCHÄFFER, A.A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; AND LIPMAN, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, v. 25, n. 17, p. 3389-3402, 1997. AMANN, R. AND W. LUDWIG. Ribossoma RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiology Reviews, v. 24, n. 5, p. 555-565, 2000. ANDO, S.; GOTO, M.; MEUNCHANG S.; THONGRA-AR, P.; FUJIWARA, T.; HAYASHI, H.; YONEYAMA, T. Detection of nifH sequences in sugarcane (Saccharum officinarum L.) and pineapple (Ananas comosus [L.] Merr.). Soil Science & Plant Nutrition, v. 51, n. 2, p. 303-308, 2005. ARAUJO, E.O.; ROCHA, J. R.; GEROLA, J. G.; MATTE, L. C. Diazotrophic bacteria inoculation associates with acids and nitrogen in corn. African Journal of Plant Science, v. 10, n. 8, p. 162-166, 2016. BALDANI, J.I.; BALDANI, V.; SELDIN, L.; DÖBEREINER, J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic and Evolutionary Microbiology, v. 36, p. 86-93, 1986. BALDANI, J.I.; BALDANI, V.L.D.; SELDIN, L.; DOBEREINER, J. Characterization of Herbaspirillum seropedicae gen.nov., a root associated nitrogen fixing bacterium. International Journal of Systematic and Evolutionary Microbiology, v. 36, n. 1, p. 86-93, 1986. BALDANI, J.I.; CARUSO, L.; BALDANI, V.L.D.; GOI, S.R.; DÖBEREINER, J. Recent advances in BNF with non-legume plants. Soil Biology and Biochemistry, v. 29, p. 911- 922, 1997. BALDANI, J.I.; POT, B.; KIRCHHOF, G.; FALSEN, E.; BALDANI, V.L.D.; OLIVARES, F.L.; HASTE, B.; KERSTERS, K.; HORTMANN, A.; GILLIS, M.; DOBEREINER, J. Emended description of Herbaspirillum, inclusion of (Pseudomonas) rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. International Journal of Systematic and Evolutionary Microbiology, v. 46, n. 3, p. 802-810, 1996. BALDANI, J.I.; REIS, V.M.; VIDEIRA, S.S.; BODDEY, L.H.; BALDANI, V.L.D. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, v. 384, p. 413-431, 2014. 40 BALDANI, V.L.D.; BALDANI, J.I.; DÖBEREINER, J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp.. Biology and Fertility of Soils, v. 30, n. 5, p. 485-491, 2000. BEIJERINCK, M.W. Cultur des Bacillus radicola aus den Kno llchen. Bot. Ztg., v. 46, p. 740–750, 1888. BENEDUZI, A.; MOREIRA, F.; COSTA, P.B.; VARGAS, L.K.; LISBOA, B.B.; FAVRETO, R. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology, v.63, p. 94–104, 2013. BHATTACHARJEE, R.B.; AQBAL, S.; MUKHOPADHYAY,S.N. Use of nitrogen‑fixing bacteria as biofertiliser for non‑legumes: prospects and challenges. Applied Microbiology and Biotechnology, v.80, p.199‑209, 2008. BHATTACHARYYA, P.N.; JHA, D.K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, v. 28, p. 1327–1350, 2012. BOMAR, L.; MALTZ, M.; COLSTON, S.; GRAF, J. Direct culturing of microorganisms using metatranscriptomics. MBio, v. 2, n. 2, p. e00012-11, 2011. BROUGHTON, W.J.; HANIN, M.; RELIC, B.; KOPCINSKA, J.; GOLINOWSKI, W.; SIMSEK, S.; OJANEN-REUHS, T.; REUHS, B.; MARIE, C.; KOBAYASHI, H.; BORDOGNA, B.; LE QUERE, A.; JABBOURI, S.; FELLAY, R.; PERRET, X.; DEAKIN, W.J. Flavonoid-inducible modifications to rhamnan O antigens are necessary for Rhizobium sp. Strain NGR234- Legume Symbioses. Journal of Bacteriology, v. 188, n. 10, p. 3654-3663, 2006. BURBANO, C.S.; LIU, Y.; RÖSNER, K.L.; REIS, V.M.; CABALLERO-MELLADO, J.; REINHOLD-HUREK, B.; HUREK T. Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. Environmental microbiology reports, v. 3, p. 383-389, 2011. CARDINALE, M.; BRUSETTI, L.; QUATRINI, P. Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Applied Microbiology and Biotechnology, v. 70, p. 6147–56, 2004. CAVALCANTE, V.A.; DOBEREINER, J.A. New acid-tolerant nitrogenfixing bacterium associated with sugar-cane. Plant and Soil, v. 108, p. 23-31, 1988. CHAHBOUNE, R.; CARRO, L.; PEIX, A.; RAMÍREZ-BAHENA, M.H.; BARRIJAL, S.; VELÁZQUEZ, E.; BEDMAR, E. J. Bradyrhizobium rifense sp. nov. isolated from effective nodules of Cytisus villosus grown in the Moroccan Rif. Systematic and Applied Microbiology, v.35, p.302-305, 2012. CHAINTREUIL, C.; GIRAUD, E.; PRIN, Y.; LORQUIN, J.; BÂ, A.; GILLIS, M.; LAJUDIE, P.; DREYFUS, B. Photosynthetic Bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Applied and Environmental Microbiology, v. 66, p. 5437–5447, 2000. 41 CHAVES, V.; SANTOS, S.; SCHULTZ, N.; PEREIRA, W.; SOUSA, J.; MONTEIRO, R.; REIS, V. Desenvolvimento Inicial de Duas Variedades de Cana-de-açúcar Inoculadas com Bactérias Diazotróficas. Revista Brasileira Ciência do Solo, Viçosa-MG, v. 39, n. 6, p. 1595-1602, 2015. CHRISTENSEN, H.; KUHNERT, P.; BUSSE, H-J.; FREDERIKSEN, W.C.; BISGAARD,M. Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. International Journal of Systematic Bacteriology, v. 57, p. 166-178, 2007. COUTINHO, H.L.C.; OLIVEIRA, V.M.; MANFIO, G.P.; ROSADO, A.S. Evoluating the microbial diversity of soil samples: methodological innovations. Anais da Academia de Ciência, v.71, p.491-503, 1999. DALL´AGNOL, R.F.; RIBEIRO, R.A.; DELAMUTA, J.R.M.; ORMENO-ORRILLO, E.; ROGEL, M.A.; ANDRADE, D.S.; MARTÍNEZ-ROMERO, E.; HUNGRIA, M. Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. International Journal of Systematic and Evolutionary Microbiology, v. 64, p. 3222-3229, 2014. DALL’AGNOL, R.F.; DELAMUTA, J.R.M.; RIBEIRO, A.R.; HUNGRIA, M. Diversidade e filogenia de estirpes de rizóbios pela metedologia de MLSA. Embrapa Soja-Artigo em anais de congresso. responsabilidade socioambiental da pesquisa agrícola: anais. Viçosa: SBCS. 2014.4. Trab.1212, 2012. DAVIS, K.E.R.; SANGWAN, P.; JANSSEN, P.H. Acidobateria, Rubrobacteridae and Chloroflexi are abundant among very slow-growing and mini-colony-forming soil bacteria. Environmental microbiology, v. 13, n. 3, p. 798-805, 2011. DELAMUTA, J.R.M.; RIBEIRO, R.A.; ORMEÑO-ORRILLO, E.; MELO, I.S.; MARTI´NEZ-ROMERO, E.; HUNGRIA, M. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 63, p. 3342–3351, 2013. DÉNARIÉ, J.; DEBELLÉ, F.; PROMÉ, J.C. Rhizobium lipochitooligosaccharide nodulation factors: signalling molecules mediating recognition and morphogenesis. Annual Review Biochemistry, Palo Alto, v. 65, p. 503- 535, 1996. DIXON, R. AND KAHN, D. Genetic regulation of biological nitrogen fixation. Nature Reviews Microbiology, v. 2, n. 8, p. 621-631, 2004. DOBBELAERE, S.; VANDERLEYDEN, J.; OKON, Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, v. 22, p. 107–149, 2003. DOBEREINER J.; RUSCHEL A. P. Uma nova espécie de Beijerinckia. Revista de Biologia, v. 1, p. 261-272, 1958. DÖBEREINER, J. Nitrogen-fixing bacteria of the genus Beijerinckia Derx in the rhizosphere of sugar cane. Plant and Soil, v. 15, p. 211, 1961. 42 DÖBEREINER, J. Recent changes in concepts of plant bacteria interactions: Endophytic Nz fixing bacteria. Ciência e Cultura, v. 44, p. 310-313, 1992. DOBEREINER, J.; BALDANI, J.I.; BALDANI, V.L.D. Como isolar e identificar bactérias diazotróficas de plantas não leguminosas. Embrapa SPI, 1995. EDGAR, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research, v. 32, p. 1792-1797, 2004. FELSENSTEIN, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, p. 783-791, 1985. FERRARA, F.I.; OLIVEIRA, Z.M.; GONZALES, H.H.S.; FLOH, E.I.S.; BARBOSA, H.R. Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growthpromoting substances. Plant and Soil, v. 353, p. 409–417, 2012. FERREIRA, D.F. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, v. 38, n. 2, p. 109-112, 2014. FISCHER, D.; PFITZNER, B.; SCHMID, M. et al. Molecular characterization of the diazotrophic bacterial community in uninoculated and inoculated field-grown sugarcane (Saccharum sp.). Plant and soil, v. 356, n. 1-2, p. 83-99, 2012. FRANK, B. Ueber die Pilzsymbiose der Leguminosen. Bulletin der Akademie der Wissenschaft in Erakau, 1889. FURUSHITA, M.; SHIBA, T.; MAEDA, T.; YAHATA, M.; KANEOKA, A.; TAKAHASHI, Y.; TRII, K.; HASEGAWA, T.; OHTA, M. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, v. 69, p. 5336–5342, 2003. GALTIER, N.; GOUY, M.; GAUTIER, C. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Computer applications in the biosciences: CABIOS, v. 12, n. 6, p. 543-548, 1996. GARC A-MART NE , J.; ACINA , .G.; RODR GUE -VALERA, F. Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. Journal of Microbiological Methods, v. 36, p. 55-64, 1999. GEVERS, D.; COHAN, F.M.; LAWRENCE, J.G.; SPRATT, B.G.; COENYE, T.; FEIL, E.J.; STACKEBRANDT, E.; de PEER, Y.V.; VANDAMME, P.; THOMPSON, F.L.; SWINGS, J. Re-evaluating prokaryotic species. Nature Reviews Microbiology, v.3, p.733-739, 2005. GILLIS, M.; KERSTIRS, K.; HOSTE, B.; JANSSENS, D.; KROPPENSTEDT, R.M.; STEPHOM, M.P.; TEXEIRA, K.R.S.; DOBEREINER, J.; LEY, J. Acetobacter diazotrophicus sp.nov., a nitrogen fixing acetic acid bacterium associated with sugar cane. International Journal of Systematic Bacteriology, v. 39, p.361-364, 1989. GÍRIO, L.A.S.; DIAS, F.L.F.; REIS, V.M.; URQUIAGA, S.; SCHULTZ, N.; BOLONHEZI, D.; MUTTON, M.A. Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesquisa Agropecuária Brasileira, v. 50, p. 33-43, 2015. 43 GLICK, B.R. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, v. 41, p. 109–117, 1995. GOMES, A.A.; REIS, V.M.; BALDANI, V.L.D.; GOI, S.R. Relação entre a distribuição de nitrogênio e colonização por bactérias diazotróficas em cana de açúcar. Pesquisa Agropecuária Brasileira, v. 40, p. 1105-1113, 2005. GOVINDARAJAN, M.; BALANDREAU, J.; MUTHUKUMARASAMY, R.; REVATHI, G.; LAKSHMINARASIMHAN, C. Improved yield of micropropagated sugarcane following inoculation by endophytic Burkholderia vietnamiensis. Plant end Soil, v. 280, p. 239–252, 2006. GOVINDARAJAN, M.; KWON, S-W.; WEON, H-Y. Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp.. World Journal Microbiol, v. 23, p. 997–1006, 2007. GUTIÉRREZ‐MAÑERO, F.J.; RAMOS‐SOLANO, B.; PROBANZA, A.; MEHOUACHI, J.; TADEO, F.; TALON, M. The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, v. 111, p. 206-211, 2001. HALLMANN, J.; QUADT-HALLMANN, A.; MAHAFFEE, W. F.; KLOEPPER, J. W. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology. V. 43, p. 895-914, 1997. HARDOIM, P.R.; VAN OVERBEEK, L.S.; BERG, G.; PIRTTILÄ, A.M.; COMPANT, S.; CAMPISANO, A.; DORING, M.; SESSITSCH, A. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, v. 79, p. 293-320, 2015. JORDAN, D.C. NOTES: transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. International Journal of Systematic and Evolutionary Microbiology, v. 32, n. 1, p. 136-139, 1982. KAMST, E.; ESPANHAK, H.P.; KAFETZOPOULOS, D. Biosynthesis and secretion of rhizobial lipochitin-oligosaccharide signal molecules. Subcellular Biochemistry, v. 29, p. 29-71, 1998. KAMST, E.; PILLING, J.; RAAMSDONK, L.M.; LUGTENBERG, B.J.J.; ESPANHAK, H.P. Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis, v.179, p.2103-2108, 1997. KANEKO, T.; NAKAMURA, Y.; SATO, S.; MINAMISAWA, K.; UCHIUMI, T.; SASAMOTO, S.; WATANABE, A.; IDESAWA, K.; IRIGUCHI, M.; KAWASHIMA, K.; KOHARA, M.; MATSUMOTO, M.; SHIMPO, S.; TSURUOKA, H.; WADA, T.; YAMADA, M.; TABATA, S. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Research, v. 9, p. 189-197, 2002. 44 KENNEDY, I.; CHOUDHURY, A.; KECSKÉS, M. Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited? Soil Biology and Biochemistry, v. 36, p. 1229–1244, 2004. KONSTANTINIDIS K.T.; TIEDJE J.M. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Current opinion in microbiology, v. 10, p. 504-509, 2007. KONSTANTINIDIS, K.T.; RAMETTE, A.; TIEDJE, J.M. Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Applied and Environmental Microbiology, v. 72, p. 7286–7293, 2006. KUYKENDALL, L.D.; SAXENA, B.; DEVINE, T.E.; UDELL, S.E. Genetic diversity in Bradyrhizobium japonicum (Jordan 1982) and a proposal for Bradyrhizobium elkanii sp. nov. Canadian Journal of Microbiology, v. 38, n. 6, p. 501-505, 1992. LAGUERRE, G.; NOUR, S.M.; MACHERET, V.; SANJUAN, J.; DROUIN, P.; AMARGER, N. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology, v. 147, p. 981–993, 2001. LANDELL, M.G.A.; CAMPANA, M.P., FIGUEIREDO, P.; XAVIER, M.A.; ANJOS, I.A.; DINARDO-MIRANDA, L.L.; SCARPARI, M.S.; GARCIA, J.C.; BIDÓIA, M.A.P.; SILVA, D.N.; MENDONÇA, J,R,; KANTHACK, R.A.D.; CAMPOS, M.F.; BRANCALIÃO, S.R.; PETRI, R.H.; MIGUEL, P.E.M. Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (MPB), oriundas de gemas individualizadas. Ribeirão Preto: Instituto Agronômico de Campinas, 2012. LAWSON, D.M. & SMITH, B.E. Molybdenum Nitrogenases. In: Metals Ions in Biological System: Volume 39: Molybdenum and Tungsten: Their Roles in Biological Processes:. CRC Press, 2002. LEDGARD, S.F. & STEELE, K.W. Biological nitrogen fixation in mixed legume/grass pastures. Plant end Soil, v. 141, p. 137, 1992. LIMA, E.; BODDEY, R.M.; DÖBEREINER, J. Quantification of biological nitrogen fixation associated with sugarcane using a 15N aided nitrogen balance. Soil Biology and Biochemistry, v. 19, n. 2, p. 165-170, 1987. LUDWIG, W.; STRUNK, O.; WESTRAM, R.; RICHTER, L.; MEIER, H.; YADHUKUMAR, A.; et al. ARB: a software environment for sequence data. Nucleic acids research, v. 32, n. 4, p. 1363-1371, 2004. MAGALHÃES, F.M.; BALDANI, J.I.; SOUTO, S.M.; KUYKENDALL, J.R.; DÖBEREINER, J. A new acid-tolerant Azospirillum species. Anais-Academia Brasileira de Ciencias, 1983. MAGNANI, G.S.; DIDONET, C.M.; CRUZ, L.M.; PICHETH, C.F.; PEDROSA, F.O.; SOUZA, E.M. Diversity of endophytic bacteria in Brazilian sugarcane. Genetics and Molecular Research, v. 9, p. 250–258, 2010. 45 MAGUIRE, J.D. Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Sci.;2:176-7, 1962. MARCELLETTI, S.; FERRANTE, P.; SCORTICHINI, M. Multilocus sequence typing reveals relevant genetic variation and different evolutionary dynamics among strains of Xanthomonas arboricola pv. juglandis. Diversity, v. 2, n. 11, p. 1205-1222, 2010. MARQUES JÚNIOR, R.B.; CANELLAS, L.P.; SILVA, L.G.; OLIVARES, F.P. Promoção de enraizamento de microtoletes de cana-de-açúcar pelo uso conjunto de substâncias húmicas e bactérias diazotróficas endofíticas. Revista Brasileira de Ciência do Solo, v. 32, p. 1121-1128, 2008. MATOS, G. F.; COELHO, M.R.R., BALDANI, J.I.; REIS, V.M.; URQUIAGA, S.; ROUWS, L.F.M. Positive effects os endophytic (Brady)rhizobium isolates on sugarcane sett germination and root growth under glass house conditions. In: 10th International PGPR WorKshop, Liége. From Omics to the Field, 2015. MATOS, G.F. Isolamento, caracterização e aplicação de rizóbios naturalmente associadas à cana-de-açúcar, usando novas estratégias de cultivo. Monografia do curso de graduação em Agronomia. Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 39 p. 2015. MATTHEWS, S.S; SPARKES, D.L.; BULLARD, M.J. The response of wheat to inoculation with the diazotroph Azorhizobium caulinodans. Aspects Appl Biol, v. 63, p. 35–42, 2001. MENNA, P.; BARCELLOS, F.G.; HUNGRIA, M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on Multilocus Sequence Analysis of the 16S rRNA gene, ITS region and gln II, rec A, ATP D and dnaK genes. International Journal of Systematic and Evolutionary Microbiology, v. 59, p. 2934-2950. 2009. MOREIRA, F.M.S.; SILVA, K.; NÓBREGA, R.S.A.; CARVALHO, F. Bactérias diazotróficas associativas: diversidade ecologia e potencial de aplicações. Comunicata Scientiae, v. 1, p. 74 – 99, 2010. MOREIRA, F.M.S.; SIQUEIRA, J. O. Microbiologia e bioquímica do solo. 2. ed. Lavras: UFLA, p. 729, 2006. MULLIS, K.; FALOONA, F.; SCHARF, S.; SAIKI, R.; HORN, G.; ERLICH, H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, v. 51, p. 263-273, 1986. NAGPAL, M.L.; FOX, K.F.; FOX A. Utility of 16S–23S rRNA spacer region methodology: how similar are interspace regions within a genome and between strains for closely related organisms? Journal of Microbiological Methods, v. 33, 211–219, 1998. NOGUEIRA, A.R.A.; SOUZA, G.B. Manual de laboratório: solo, água, nutrição vegetal, nutrição animal e alimentos. Embrapa Pecuária Sudeste, p. 313, 2005. NORRIS, D.O.; DATE, R.A. Legume bacteriology. Tropical Pastures Research; Principles and Methods. p, p. 134-174, 1976. 46 OLDROYD G.; SPEAK, F.; ENTER. Signalling systems that promote beneficial symbiotic associations in plants. Nature Reviews Microbiology, v. 11, p. 252–263, 2013. OLDROYD, G.E.; MURRAY, J.D.; POOLE P.S.; DOWNIE, J.A. The rules of engagement in the legume-rhizobial symbiosis. Annual Review of Genetics, v. 45, p. 119-44, 2011. OLIVARES, F.L.; JAMES, E.K.; BALDANI, J.I.; DOBEREINER, J. Infection of mottle strip disease-susceptible and resistant sugar cane varieties by the endophytc diazotroph Herbaspirillum. New phytologist, Cambridge, Grã-Bretanha, v.135, p.575-597, 1997. OLIVEIRA, A.L.M.; CANUTO, E.L.; REIS, V.M.; BALDANI, J.I. Response of micropropagated sugarcane varieties to inoculation with endophytic diazotrophic bacteria. Brazilian Journal of Microbiology, v. 34, p. 59-61, 2003. OLIVEIRA, A.L.M.; URQUIAGA, S.; DÖBEREINER, J. & BALDANI, J.I. The effect of inoculating endophytic N2 fixing bacteria on micro propagated sugarcane plants. Plant and Soil, v. 242, p. 205-215, 2002. OLIVEIRA, R.P.; SCHULTZ, N.; MONTEIRO, R.C.; PEREIRA, W.; DE ARAÚJO, A.P.; URQUIAGA, S.; REIS, V.M. Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. African Journal of Agricultural Research, v. 11, p. 2786-2795, 2016. ORMEÑO-ORRILLO, E.; RIBEIRO, R.A.; HELENE, L.C.F.; HUNGRIA, M.; DELAMUTA, J.R.M.; MARTÍNEZ-ROMERO, E.; ROGEL, M.A. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for greenmanure and environmental services. International Journal of Systematic and Evolutionary Microbiology. v. 65, p. 4441-4448, 2015. PAUNGFOO-LONHIENNE, C.; LONHIENNE, T.G.A.; YEOH, Y.K.; WEBB, R.I.; LAKSHMANAN, P.; CHAN, C.X.; LIM, P.E.; RAGAN, M.A.; SCHMIDT, S.; HUGENHOLTZ, P. A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microbial Biotechnology, v. 7, p. 142–154, 2014. PIROMYOU, P.T.; GREETATORN, K.; TEAMTISONG, T.; OKUBO, R.; SHINODA, A.; NUNTAKIJ, P.; TITTABUTR, N.; BOONKERD, K.; MINAMISAWA, AND N. TEAUMROONG. Preferential Association of Endophytic Bradyrhizobia with Different Rice Cultivars and Its Implications for Rice Endophyte Evolution. Applied and environmental microbiology, v. 81, n. 9, p. 3049-3061, 2015. QUECINE, M.C.; ARAÚJO, W.L.; ROSSETTO, P.B.; FERREIRA, A.; TSUI, S.; LACAVA, P.T.; PIZZIRANI-KLEINER, A.A. Sugarcane Growth Promotion by the Endophytic Bacterium Pantoea agglomerans 33.1. Applied and Environmental Microbiology, v. 78, p. 7511–7518, 2012. R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/, 2016. REES, D.C. & HOWARD, J.B. Nitrogenase: standing at the crossroads. Current opinion in chemical biology, v. 4, n. 5, p. 559-566, 2000. 47 REINHOLD-HUREK, B. & HUREK, T. Living inside plants: bacterial endophytes. Current opinion in plant biology, v. 14, n. 4, p. 435-443, 2011. REINHOLD-HUREK, B.; HUREK, T. Life in grasses: diazotrophic endophytes. Trends in Microbiology v. 6, p. 139–144, 1998. REIS JUNIOR, F.B.; MENDES, I.E.; TEIXEIRA, K.R.S.; REIS, V.M. Uso de Ferramentas Moleculares em Estudos da Diversidade de Microrganismos do Solo. Planaltina, DF: Embrapa Cerrados, 2002. REIS JUNIOR, F.B; REIS, V.M.; URQUIAGA, S.; DÖBEREINER, J. Influence of nitrogen fertilisation on the population of diazotrophic bacteria Herbaspirillum spp. and Acetobacter diazotrophicus in sugar cane (Saccharum spp.). Plant and Soil, v.219, p.153-159, 2000. REIS, F.B., SILVA, L.G.; REIS, V.M.; DOBEREINER, J. Occurrence of diazotrophic bacteria in different sugar cane genotypes. Pesquisa Agropecuaria Brasileira v. 35, p. 985– 994, 2000. REIS, V.M.; BALDANI, J.I.; URQUIAGA, S. Recomendação de uma mistura de estirpes de cinco bactérias fixadores de nitrogênio para inoculação de cana-de-açúcar: Gluconacetobacter diazotrophicus (BR 11281), Herbaspirillum seropedicae (BR 11335), Herbaspirillum rubrisubalbicans (BR 11504), Azospirillum amazonense (BR 11145) e Burkholderia tropica (BR11366). Embrapa Agrobiologia. Circular Técnica, 2009. RICHARDSON, A.E.; BAREA, J.M.; MCNEILL, A.M. et al. Acquisition of phodphorus and nitrogen in the rhizosphere and plant growth promocion by mricroorganisms. Plant and Soil, v. 321, p. 305, 2009. RICHTER, M.; ROSSELLÓ-MÓRA, R. Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, v. 106, p. 19126-19131, 2009. RIVAS, R.; MARTENS, M.; LAJUDIE, P.; WILLEMS, A. Multilocus sequence analysis of the genus Bradyrhizobium. Systematic and applied microbiology, v. 32, p. 101-110, 2009. RIVAS, R.; MARTENS, M.; LAJUDIE, P.; WILLEMS, A. Multilocus sequence analysis of the genus Bradyrhizobium. Systematic and applied microbiology, v. 32, p. 101-110, 2009. RIVAS, R.; WILLEMS, A.; PALOMO, J.L.; GARCÍA-BENAVIDES, P.; MATEOS, P.F.; MARTÍNEZ-MOLINA, E.; GILLIS, M.; VELÁZQUEZ, E. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. International Journal of Systematic Bacteriology, v. 54, p. 1271–1275, 2004. ROBERTSON, G.P.; VITOUSEK, P.M. Nitrogen in agriculture: balancing the cost of an essential resource. Annual Review of Environment and Resources, v. 34, p. 97–125, 2009. RODRIGUEZ NETO, J.; MALAVOLTA JUNIOR, V.A.; VICTOR, O. Meio Simples para isolamento e cultivo de Xanthomonas campestris pv. Citri tipo B. Summa Phytopathol, v. 12, n. 1-2, p. 32, 1986. RODRIGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, v. 17, p. 319-339, 1999. 48 ROESCH, L.F.; SELBACH, P.A.; SÁ, E.S. Reinoculação de bactérias diazotróficas aumentando o crescimento de plantas de trigo. Ciência Rural, Santa Maria, v. 35, n.5, p. 1201-1204, 2005. ROSADO, A.S.; DUARTE, G.F.; MENDONÇA-HAGLER, L.C. A moderna microbiologia do solo: Aplicação de técnicas de biologia molecular. In: SIQUEIRA, J.D.; MOREIRA, F.M.S.; LOPES, A.S.; GUILHERME, LR.G.; FAQUIM, V.; FRUTINI-NETO, A.E.; CARVALHO, J.G. (Ed.). Inter-relação fertilidade, biologia do solo e nutrição de plantas. Viçosa: SBCS, Lavras: UFLA/DSC. p. 429-448, 1999. ROSENBLUETH, M. and MARTINEZ-ROMERO, E. Bacterial endophytes and their interactions with hosts. Molecular plant-microbe interactions, v. 19, n. 8, p. 827-837, 2006. ROSSELÓ-MORA, R.; AMANN, R. The species concept for prokaryotes. FEMS Microbiology Review, v. 25, n. 1, p. 39-67, 2001. ROUWS, L.F.M.; LEITE, J.; MATOS, G.F.; ZILLI, J.E.; COELHO, M. R.R.; XAVIER, G. R.; FISCHER, D.; HARTMANN, A.; REIS, V.M., BALDANI, J.I. Endophytic Bradyrhizobium spp. isolates from sugarcane obtained through different culture strategies. Environmental microbiology reports, v. 6, n. 4, p. 354-363, 2013. RUSCHEL, A.P.; HENIS, Y.; SALATI E. Nitrogen-15 tracing of N-fixation with soil-grown sugarcane seedlings. Soil Biology and Biochemistry, v. 7, n. 2, p. 181-182, 1975. SAITOU, N.; NEI, M. The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, v. 4, p. 406-425, 1987. SALEH, S.A.; MEKHEMAR G.A.A.; EL-SOUD, A.A.A.; RAGAB, A.A.; MIKHAEEL, F.T. Survival of Azorhizobium and Azospirillum in different carrier materials: inoculation of wheat and Sesbania rostrata. Bulletin of Faculty of Agriculture, v. 52, p. 319–338, 2001. SANTI, C.; BOGUSZ, D.; FRANCHE, C. Biological nitrogen fixation in nonlegume plants. Annals of Botany, v. 111, p. 743–767, 2013. SANTOYO, G.; MORENO-HAGELSIEB, G.; OROZCO-MOSQUEDA, M.C.; GLICK, B.R, Plant growth-promoting bacterial endophytes. Microbiological Research, v. 183, p. 92–99, 2016. SARITA, S.; SHARMA, P.K.; PRIEFER, U.B.; PRELL, J. Direct amplification of rhizobial nodC sequences from soiltotal DNA and comparison to nodC diversity of root nodule isolates. FEMS microbiology ecology, v. 54, n. 1, p. 1-11, 2005. SCHULTZ, N.; SILVA, J.A.; SOUSA, J.S.; MONTEIRO, R.C.; OLIVEIRA, R.P.; CHAVES, V.A.; PEREIRA, W.; SILVA, M.; BALDANI, J.I.; BODDEY, R.M.; REIS, V.M.; URQUIAGA, S. Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo, v. 38, p. 407-414, 2014. SILVA, C., VINUESA, P., EGUIARTE, L.E., SOUZA, V., MARTÍNEZ-ROMERO, E. Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely 49 distributed bacterial symbiont of diverse legumes. Molecular Ecology, v. 14, p. 4033-4050, 2005. SOUZA, R.S.C.; OKURA, V.K.; ARMANHI, J.S.L.; JORR,ıI.N.B.; LOZANO, N.; SILVA, M.J.; GONZıALEZ-GUERRERO, M.; ARAUJO, L.M.; FERREIRA, N.V.; BAGHERI, H.C.; IMPERIAL, J.; ARRUDA, P. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Scientific Reports v. 6, p. 28774, 2016. STACKEBRANDT, E.; GOEBEL, B. Taxonomic note. A place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology, v. 44, n. 4, p. 846-849, 1994. STEPKOWSKI, T.; CZAPLINSKA, M., MIEDZINSKA, K.; MOULIN, L. The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Systematic and Applied Microbiology, v.26, p.483-494, 2003. STEPKOWSKI, T.; MOULIN, L.; KRZYZANSKA, A.; MCINNES, A.; LAW, I.J.; HOWIESON, J. European origin of Bradyrhizobium populations infecting lupins and serradella in soils of western Australia and South Africa. Applied and Environmental Microbiology, v. 71, n. 11, p. 7041-7052, 2005. STEVENSON, B.S.; EICHORST, S.A.; WERTZ, J.T.; SCHMIDT, T.M.; BREZNAK, J.A. New strategies for cultivation and detection of previously uncultered microbes. Applied and Environmental Microbiology. v. 70, p. 4748-4755, 2004. TAMURA, K.; STECHER, G.; PETERSON, D.; FILIPSKI, A.; KUMAR, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution v. 30, p. 2725-2729, 2013. TEALE, W.; PAPONOV, I.; PALME, K. Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, v. 7, n. 11, p. 847-859, 2006. THAWEENUT, N.; HACHISUKA, Y.; ANDO, S.; YANAGISAWA, S.; YONEYAMA, T. Two seasons study of nifH gene expression and nitrogen fixation by diazotrophic endophytes in sugarcane (Saccharum spp. hybrids): expression of nifH genes similar to those of rhizobia. Plant and Soil, v. 338, p. 435-449, 2011. TIGHE, S.W.; DE LAJUDIE, P.; DIPIETRO, K.; LINDSTRÖM, K.; NICK, G.; JARVIS, B. D. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. International journal of systematic and evolutionary microbiology, v. 50, p. 787-801, 2000. TILMAN, D.; CASSMAN, K.G.; MATSON, P.A.; NAYLOR, R.; POLASKY, S. Agricultural sustainability and intensive production practices. Nature, v. 418, n. 6898, p. 671-677, 2002. 50 TOLEDO, B.F.B. Identificação de estirpes de rizóbios por sequenciamento parcial dos genes 16S rDNA e nifH. Graduate Program in Agronomy – Plant Breeding and Genetics, UNESP, Jaboticabal, Brazil, 2008. UEDA, T.; SUGA, Y.; YAHIRO, N.; MATSUGUCHI, T. Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. Journal of bacteriology, v. 177, n. 2, p. 468-472, 1995. URQUIAGA, S.; CRUZ, K.H.S.; BODDEY, R.M. Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Science Society of America Journal, v. 56, n. 1, p. 105-114, 1992. VAN BELKUM, A.; STRUELENS, M.; DE VISSER, A.; VERBRUGH, H.; TIBAYRENC, M. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology. Clinical Microbiology Reviews, v. 14, p. 547–560, 2001. VAN BERKUM, P.; TEREFEWORK, Z.; PAULIN, L.; SUOMALAINEN, S.; LINDSTROM, K.; EARDLY, B.D. Discordant phylogenies within the rrn loci of rhizobia. Journal of Bacteriology, v. 185, p. 2988-2998, 2003. VANDAMME, P.; POT, B.; GILLIS, M.; DEVOS, P.; KERSTERS, K.; SWING, S.J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbial Reviews, v. 60, p. 407–438, 1996. VESSEY, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, v. 255, p. 571–586, 2003. VINCENT, J.M. A manual for the practical study of root-nodule bacteria., 1970. VINUESA, P.; LEÓN-BARRIOS, M.; SILVA, C.; WILLEMS, A.; JARABO-LORENZO, A.; PÉREZ-GALDONA, R.; WERNER, D.; MARTÍNEZ-ROMERO, E. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. International Journal of Systematic Bacteriology, v. 55, p. 569–575, 2005. WANG, J.Y.; WANG, R.; ZHANG, Y.M.; LIU, H.C.; CHEN, W.F.; WANG, E.T., SUI, X. H.; CHEN, W.X. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. International journal of systematic and evolutionary microbiology, v. 63, p. 616-624, 2013. WANG, K.; YAN, P.S.; DING, Q.L.; WU, Q.X.; WANG, Z.B.; PENG, J. Diversity of culturable root-associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World Journal of Microbiology and Biotechnology, v.29, p.1-10, 2013. WANG, Y.; BROWN, H.N.; CROWLEY, D.E.; SZANISZLO, P.J. Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant, Cell & Environment, v. 16, n. 5, p. 579-585, 1993. WILLEMS, A. The taxonomy of rhizobia: an overview. Plant and Soil, v. 287, p. 3-14, 2006. 51 WILLEMS, A.; COOPMAN, R.; GILLIS, M. Phylogenetic and DNA-DNA hybridization analyses of Bradyrhizobium species. International journal of systematic and evolutionary microbiology v. 51, p. 111-117, 2001. WILLEMS, A.; DOIGNON-BOURCIER, F.; GORIS, J.; COOPMAN, R.; LAJUDIE, P.; DE VOS, P.; GILLIS, M. DNA–DNA hybridization study of Bradyrhizobium strains. International Journal of Systematic Bacteriology, v. 51, p. 1315–1322, 2001. WILLEMS, A.; MUNIVE, A.; DE LAJUDIE, P.; GILLIS, M. In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Systematic and Applied Microbiology, v. 26, p. 203–210, 2003. WOESE, C.R. Bacterial evolution. Microbiological reviews, v. 51, n. 2, p. 221, 1987. YANNI, Y.G.; RIZK, R.Y.; CORICH, V.; SQUARTINI, A.; NINKE, K.; PHILIPHOLLINGSWORTH, S.; ORGAMBIDE, G.; BRUINJ, F.; STOLTZFUS, J.; BUCKLEY, D.; SCHMIDT, T.M.; MATEOS, P.F.; LADHA, J.K.; DAZZO, F.B. Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil v. 194, p. 99–114, 1997. YAO, Z.Y.; KAN, F.L.; WANG, E.T.; WEI, G.H.; CHEN, W.X. Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 52, p. 2219-2230, 2002. YAO, Z.Y.; KAN, F.L.; WANG, E.T.; WEI, G.H.; CHEN, W.X. Characterization of rhizobia that nodulate legume species within the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. International Journal of Systematic Bacteriology, v. 52, p. 2219–2230, 2002. YU, X.; CLOUTIER, S.; TAMBONG, J.T.; BROMFIELD, E.S. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. International journal of systematic and evolutionary microbiology, v. 64, p. 3202-3207, 2014. ZAKHIA, F.; LAJUDIE, P. Taxonomy of rhizobia. Agronomie, v. 21, n. 6-7, p. 569-576, 2001. ZHANG, Y.M.; LI JR, Y.; CHEN, W.F.; WANG, E.T.; SUI, X.H.; LI, Q.Q.; ZHANG, Y.Z.; ZHOU, Y.G.; CHEN, W.X. Bradyrhizobium huanghuaihaiense sp. nov. an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. International journal of systematic and evolutionary microbiology, v. 62, p. 1951-1957, 2012.por
dc.subject.cnpqAgronomiapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53640/2017%20-%20Gustavo%20Feitosa%20de%20Matos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/2436
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2018-09-13T17:03:37Z No. of bitstreams: 1 2017 - Gustavo Feitosa de Matos.pdf: 1844017 bytes, checksum: 0ed6966082e21d15123a12cd0e5777ef (MD5)eng
dc.originais.provenanceMade available in DSpace on 2018-09-13T17:03:38Z (GMT). No. of bitstreams: 1 2017 - Gustavo Feitosa de Matos.pdf: 1844017 bytes, checksum: 0ed6966082e21d15123a12cd0e5777ef (MD5) Previous issue date: 2017-02-23eng
Appears in Collections:Mestrado em Fitotecnia

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Gustavo Feitosa de Matos.pdfDocumento principal1.8 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.