Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14155
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastro, Raphael Andrade de
dc.date.accessioned2023-12-22T02:56:54Z-
dc.date.available2023-12-22T02:56:54Z-
dc.date.issued2011-02-18
dc.identifier.citationCASTRO, Raphael Andrade de. Avaliação do potencial analgésico e anti-inflamatório do composto pirazólico 1,5-difenil-3-hidrazinopirazol(a) - DHP. 2011. 82 f. Dissertação (Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, RJ, 2011.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14155-
dc.description.abstractA inflamação é um processo fisiológico de resposta orgânica diante de lesão tissular ou infecção, gerando a dor como característica constante. Os compostos pirazólicos são drogas de origem sintética com um anel pirazolínico na sua estrutura química, com os quais diversos estudos demonstram a eficácia no controle da dor, da febre e da inflamação. A necessidade do desenvolvimento de novos fármacos com propriedades analgésicas e anti-inflamatórias, de baixo custo e que apresentem poucas reações adversas, tem estimulado a síntese e o estudo das atividades farmacológicas dos compostos pirazólicos. Com esse objetivo, foi estudado o potencial antinociceptivo e anti-inflamatório do composto pirazólico 1,5-difenil-3-hidrazinopirazol(a) (DHP), administrado pela via oral, nos modelos farmacológicos das contorções abdominais pelo ácido acético, tail-flick, formalina, edema de orelha induzido pelo óleo de cróton e peritonite induzida pela carragenina em camundongos; e na alodinia mecânica (von Frey) e hiperalgesia térmica (Hargreaves) em ratos. A administração do DHP (1, 3 e 10mg/kg) diminuiu de maneira dose-dependente (41,3, 62,7 e 76%) o numero de contorções abdominais (ID50=1,3mg/kg). No teste de tail-flick, DHP (10mg/kg) não foi efetivo e a aplicação do controle positivo fentanil (200μg/kg, s.c.) ampliou a latência ao estímulo térmico em até 138%. Sem alterarem a 1ª fase de nocicepção (dor neurogênica) do teste da formalina, o DHP (10mg/kg) e o controle positivo indometacina (10mg/kg, p.o.) inibiram a reatividade na 2ª fase (dor inflamatória) em 40,9 e 48,7% respectivamente. Essa mesma dose do DHP reduziu em 54% o edema de orelha induzido pelo óleo de cróton, assim como o controle positivo dexametasona (2mg/kg, s.c.) em 55.3%. Também de forma dose-dependente o DHP (3, 10 e 30 mg/kg) inibiu em 11,8, 39 e 53,7% respectivamente, a migração de leucócitos no teste da peritonite induzida pela carragenina (ID50=22,9mg/kg). Na avaliação da alodinia mecânica o grupo incisado tratado com o DHP (GIDHP - 10mg/kg) apresentou significativas reversões da alodinia (RA) após uma hora da administração, com RA máxima na leitura de 12 horas (28,2%) na segunda etapa, mantendo-se na terceira etapa com RA de 26,9, 43,4 e 60,4% nos 7º, 10º e 14º dias de experimentação, comparados com o grupo incisado veículo (GIV). Na hiperalgesia térmica o GIDHP também produziu reversão da hiperalgesia (RH) uma hora após o tratamento, com RH máximo na leitura de 3 horas (68,9%) na segunda etapa, mantendo-se na terceira etapa com RH de 43,4, 32,1 e 64% nos 7º, 10º e 14º dias de experimentação, quando comparados ao GIV e obtendo valores semelhantes ao grupo não incisado veículo (GNIV) no 14º dia. No von Frey e no Hargreaves o GNIV apresentou leituras semelhantes nas três etapas do experimento. O DHP (10mg/kg) não alterou a atividade motora de camundongos no teste do rota-rod. Considerando que o composto DHP apresentou atividade antinociceptiva no teste das contorções, antiedematogênica no edema de orelha, inibiu a 2ª fase de nocicepção (dor inflamatória) do teste da formalina e a migração leucocitária, promovendo ainda reversão da hipernocicepção nos modelos de hiperalgesia térmica e alodinia mecânica; esses resultados indicam que a efetividade do DHP envolve a participação de mecanismos anti-inflamatórios e criam perspectivas favoráveis para sua futura utilização com esse objetivo terapêutico.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectComposite pyrazole; antinociception, anti-inflammatory, von Frey, Hargreaveseng
dc.subjectComposto Pirazólico; antinocicepção; anti-inflamatório, von Frey, Hargreaves.por
dc.titleAvaliação do potencial analgésico e anti-inflamatório do composto pirazólico 1,5-difenil-3-hidrazinopirazol(a) - DHPpor
dc.typeDissertaçãopor
dc.description.abstractOthercausing pain as a constant feature. The pyrazole compounds are the drugs of synthetic origin in their chemical structure consisting of a ring pirazolínico, with which several studies show the effectiveness in controlling of pain, fever and inflammation. The need to develop new drugs with analgesic and anti-inflammatory, low cost and which have few adverse reactions, has stimulated the synthesis and study of pharmacological activities of pyrazole compounds. With this objective, we studied the antinociceptive and anti-inflammatory potential of compound 1.5-diphenyl-pyrazole-3-hidrazinopirazol(a) (DHP), administered orally in pharmacological models of the acetic acid writhing, tail-flick, formalin, ear edema induced by croton oil and carrageenan-induced peritonitis in mice, and mechanical allodynia (von Frey) and thermal hyperalgesia (Hargreaves) in rats. The administration of DHP (1, 3 and 10mg/kg) decreased in a dose-dependent (41.3, 62.7 and 76%) number of writhing (ID50 = 1.3mg/kg). In the tail-flick test, DHP (10mg/kg) was ineffective and the application of positive control fentanyl (200μg/kg, sc) increased the latency to thermal stimulation in up to 138%. Without changing the first phase of nociception (neurogenic pain) of the formalin test, DHP (10mg/kg) and the positive control indomethacin (10mg/kg, p.o.) inhibited the reactivity in the 2 phase (ndinflammatory pain) in 40.9 and 48.7% respectively. This same dose of DHP reduced by 54% the ear edema induced by croton oil, as well as the positive control, dexamethasone (2mg/kg, sc) at 55.3%. Also in a dose-dependent DHP (3, 10 and 30 mg / kg) inhibited by 11.8, 39 and 53.7%, respectively, leukocyte migration in peritonitis induced by carrageenan test (ID50 = 22.9mg/kg). In the assessment of mechanical allodynia incision group treated with DHP (GIDHP - 10mg/kg) showed a significant reversal of allodynia (RA) after one hour of administration, with maximum reading RA for 12 hours (28.2%) in the second stage of the experiment, remaining in the third stage with RA of 26.9, 43.4 and 60.4% in the 7th, 10th and 14th days of evaluations, when compared with the vehicle group incised (GIV). In thermal hyperalgesia GIDHP (10mg/kg) also significantly reversed the hyperalgesia (RH) after one hour of treatment, with RH maximum of three hours in reading (68.9%) in the second stage, obtaining in the third stage RA of 43.4, 32,1 and 64% in 7th, 10th and 14th days of evaluations, when compared to the GIV and obtaining similar values of the group not incised vehicle (GNIV) on 14 dayth. In the von Frey and Hargreaves GNIV showed similar readings in the three stages of the experiment. The DHP (10mg/kg) did not alter the motor activity of mice in rota-rod test. Whereas the compound DHP showed antinociceptive activity in writhing test, antiedematogenic in ear edema, inhibited the 2nd phase of nociception (inflammatory pain) in formalin test and leukocyte migration, promoting reversal of hypernociception in models of thermal hyperalgesia and allodynia mechanics, these results indicate that the effectiveness of DHP involves the participation of anti-inflammatory mechanisms and create favorable outlook for its future use with this therapeutic goal.por
dc.contributor.advisor1Vanderlinde, Frederico Argollo
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3183716703092107por
dc.creator.ID8926587703por
dc.creator.Latteshttp://lattes.cnpq.br/0949145474026542por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)por
dc.relation.referencesALEY, K.O.; LEVINE, J.D. Role of protein kinase A in the maintenance of inflammatory pain. The Journal of Neuroscience, v.19, n.6, p.2181-2186, 1999. ALEY, K.O.; MESSING, R.O.; MONCHLY-ROSEN, D.; LEVINE, J.D. Chronic hypersensitivity for inflammatory nociceptor sensitization mediated by the epsilon isoenzyme of protein kinase C. The Journal of Neuroscience, v.20, n.12, p.4680-4685, 2000. ARELLANO, R.; SACRISTAN, S.A. Metamizole: reassessment of its therapeutic role. European Journal of Clinical Pharmacology, v.38, p.617-619, 1990. BASBAUM, A.I.; JULIUS, D. Novos alvos contra a dor. Scientific American Brasil, v.50, p.76-83, 2006. BATTAGLIA, G.; RUSTIONI, A. Coexistence of glutamate and substance P in dorsal root ganglion neurons of the rat and monkey. The Journal of Comparative Neurology, v.277, n.2, p.302-312, 1988. BEAR, M.F.; CONNORS, B.W.; PARADISO, M.A. Neurociência – Desvendando o Sistema Nervoso. Porto Alegre: Artmed, 2ª ed., 2002. BERTOLINI, A.; OTTANI A.; SANDRINI, M. Selective COX-2 inhibitors and dual acting anti-inflammatory drugs: critical remarks. Current Medicinal Chemistry, v.9, n.10, p.1033-1043, 2002. BESTER, H.; CHAPMAN, V.; BESSON, J.M. Physiological properties of the lamina I spinoparabrachial neurons in the rat. Journal of Neurophysiology, v.83, p.2239-2259, 2000. BESSON, J.M.; CHAOUCH, A. Peripheral and spinal mechanisms of nociception. Physiological Reviews, v.67, n.1, p.67-186, 1987. BJÖRKMAN, R. Central antinociceptive affects of non-steroidal anti-inflamatory drugs and paracetamol. Acta Anaesthesiologia Scandinavica, v.39, n.103, p.1-44, 1995. 61 BRENNAN, F.; CARR, D. B.; COUSINS, M. Pain management: A fundamental human right. Anesthesia & Analgesia, v.105, p.205-221, 2007. BRENNAN, T.J.; VANDERMEULEN, E.; GEBHART, G.F. Characterization of a rat model of incisional pain. Pain, v.64, p.493-501, 1996. BONACORSO, H.G.; OLIVEIRA, M.R.; WENTZ, A.P.; WASTOWSKY, A.D.; OLIVEIRA, A.B.; HÖERNER, M.; ZAMATTA, N.; MARTINS, M.A.P. Haloacetylated enol ethers: 12 [18]. Region specific synthesis and structural determination of stable 5-=hidroxy-1H-pyrazolynes. Tetrahedron, v.55, p.345-352, 1999. BORNE, R.F. Nonsterioidal anti-inflammatory drugs. In: FOYE, W.O.; WILLIANS, D.A. Medicinal Chemistry. Baltimore: Willians & Wilkins, 1995. BOTTING, R.M. Cyclooxygenase: Past, present and future. A tribute to John R. Vane (1927–2004). Journal of Thermal Biology, v.31, p.208-219, 2006. BRICKS, L.F.; SILVA, C.A.A. Toxicidade dos anti-inflamatórios não-hormonais. Pediatria, v.27, n.3, p.181-193, 2005. BROOKS, P.M.; DAY, R.O. Nonsteroidal anti-inflammatory drugs – differences and similarities. The New England Journal of Medicine, v.324, p.1716-1725, 1991. BROOKS, P.M.; EMERY, E.; EVANS, F. Interpreting the clinical significance of the diferential inhibition of cyclooxygenase I and cyclooxygenase II. Rheumatology, v.38, p. 779-788, 1999. BURIAN, M.; GEISSLINGER, G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacology & Therapeutics, v.107, p.139-154, 2005. 62 CARVALHO, W.A.; CARVALHO, R.D.S.; RIOS-SANTOS, F. Analgésicos inibidores específicos da ciclooxigenase-2: avanços terapêuticos. Revista Brasileira de Anestesiologia, v.54, p.448-464, 2004. CHAI, Z.; GATTI, S.; TONIATTI, C.; POLI, V.; BARTFAI, T. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1β: a study on IL-6 deficient mice. The Journal of Experimental Medicine, v.183, p.311-316, 1996. CHICHORRO, J.G.; LORENZETTI, B.B.; ZAMPRONIO, A.R. Involvement of bradykinin, cytokines, sympathetic amines and prostaglandins in formalin-induced orofacial nociception in rats. British Journal of Pharmacology, v.141, p.1175-1184, 2004. CLARK, T.P. The clinical pharmacology of cyclooxygenase-2-selective and dual inhibitors. Veterinary Clinics of North America: Small Animal Practice, v.36, p.1061-1085, 2006. CORRÊA, C.R.; CALIXTO, J. B. Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. British Journal of Pharmacology, v.110, p.93-98, 1993. COTRAN, R.S.; KUMAR, V.; COLLINS, T. Patologia Estrutural e Funcional. 7ª ed. Rio de Janeiro: Editora Guanabara Koogan, 2006. COWAN, A.; PORRECA, F.; WHEELER, H. Use of the formalin test in evaluation analgesics. NIDA Research Monograph, v.95, p.116-122, 1989. CUNHA, F.Q.; LORENZETTI, B.B.; POOLE, S.; FERREIRA, S.H. Interleukin-8 as a mediator of sympathetic pain. British Journal of Pharmacology, v.104, n.3, p.765-767, 1991. CUNHA, F.Q.; POOLE, S.; LORENZETTI, B.B.; FERREIRA, S.H. The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. British Journal of Pharmacology, v.107, n.3, p.660-664, 1992. 63 DAMAS, J.; BOURDON, V.; REMACLE-VOLON, G.; ADAM, A. Kinins and peritoneal exudates induced by carrageenin and zymosan in rats. British Journal of Pharmacology, v.101, p.418-422, 1990. D’AMOUR, F.E.; SMITH, J. A method for determining loss of pain sensation. Journal of Pharmacology and Experimental Therapeutics, v.72, p.74-79, 1941. D’MELLO, R.; DICKENSON, A.H. Spinal cord mechanisms of pain. British Journal of Anasthesia, v.101, p.8-16, 2008. DEVOR, M. Unexplained peculiarities of the dorsal root ganglion, Pain, v.6, p.27-35, 1999. DICKENSON, A.H.; SULLIVAN, A.F. Peripheral origins and central modulation of subcutaneous formalininduced activity of rat dorsal horn neurones. Neuroscience Letters v.83, p.207-211, 1987 DICKENSON, A.H. Central acute pain mechanisms. Annals of Medicine, v.27, p.223-227, 1995. DINARELO, C.A. Interleukin 1 as mediator of the acute-phase response. Survey of Immunologic Research, v.3, n.1, p.29-33, 1984. DINARELLO, C.A. Interleukin-1, interleukin-1 receptors and interleukin-1 antagonist. International Reviews of Immunology, v.16, p.457-499, 1998. DI ROSA, M.; GIROUD, J.P.; WILLOUGHBY, D.A. Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenin and turpentine. Journal of Pathology, v.104, p.15-29, 1971. DOUGLASS, D.K.; CARSTENS, E. Responses of rat sacral spinal neurons to mechanical and noxious thermal stimulation of the tail. Journal of Neurophysiology, v.77, p.611–620, 1997. 64 DUBINSKY, B.; GEBREMARIAM, S.; CAPETOLA, R.J.; ROSENTHALE, M.E. The antialgesic drugs: human therapeutic correlates of their potency in laboratory animal models of hyperalgesia. Agents and Actions, v.20, n.1/2, p.50-60, 1987. DUBNER, R.; BENNETT, G.J. Spinal and trigeminal mechanisms of nociception. Annual Review of Neuroscience, v.6, p.381-418, 1983. DUBUISSON, D.; DENNIS, S.G. The formalin test: a quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain, v.4, p.161-174, 1977. DUHAM, N.W.; MIYA, T.S. A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of the American Pharmaceutical Association, v.46, p.208-209, 1957. ENGELHARDT, G.; BÖGEL, R.; SCHNOTZLER, C.; UTZMANN, R. Meloxican: Influence on Arachidonic Acid Metabolism – Part II – In vivo findings. Biochemical Pharmacology, v.51, p.29-38, 1996. FERRÁNDIZ, M.L.; ALCARAZ, M.J. Antiinflammatory activity and inhibition of arachidonic acid metabolism by flavonoids: Agents and Actions, v.32, n.3-4, p.283-288, 1991. FERREIRA, K.A.S.L. Dor e qualidade de vida relacionada a saúde de pacientes com câncer: influência das citocinas pro-inflamatória TNF-α, IL-6, IL-8 e IL1-β. Tese de doutorado apresentada à Escola de Enfermagem da Universidade de São Paulo, 2008. FERREIRA, S.H.; LORENZETTI, B.B.; CORREA, F.M. Central and peripheral analgesic action of aspirin-like drugs. European Journal of Pharmacology, v. 53, p.39-48, 1978. FERREIRA, S.H.; NAKAMURA, M.I. Prostaglandin hyperalgesia, a cAMP/Ca2+ dependent process. Prostaglandins, v.18, n.2, p.179-190, 1979. 65 FERREIRA, S.H.; LORENZETTI, B.B.; BRISTOW, A.F.; POOLE, S. Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature, v.334, n.6184, p.698-700, 1988. FERREIRA, S.H. The role of interleukins and nitric oxide in the mediation of inflamamatory pain and its control by peripheral analgesics. Drugs, v.46, n.1, p.1-9, 1993. FERREIRA, S.H.; LORENZETTI, B.B.; POOLE, S. Bradykinin initiates cytoline-mediated inflammatory hyperalgesia. British Journal of Pharmacology, v.110, n.3, p.1227-1231, 1993. FERREIRA, S.H. Hiperalgesia inflamatórial, óxido nítrico y control periférico del dolor. Revista Latino Americana de Dolor, v.12, p. 6-17, 1995. FERREIRA, S.H.; FERRARI, L.F.; CUNHA, T.M.; NASCIMENTO, P.G.B.D.; VERRI, W.A.; CUNHA, F.Q. Dor Inflamatória. Disponível em: <http://www.dol. inf.br/Html/DorInflamatoria.html>, Acessado em: outubro/2010. FILHO, M.M.M.; RAHAL, S.C. O uso de antiinflamatórios inibidores COX II seletivos na osteoartrite canina. Veterinária e Zootecnia, v.15, n.3. p.407-415, 2008. FISCHER, L.G.; SANTOS, D.; SERAFIN, C.; MALHEIROS, A.; DELLE MONACHE, F.; DELLE MONACHE, G.; CECHINEL, V.F.; SOUZA, M.M. Further antinociceptive properties of extracts and phenolic compounds from Plinia glomerata (Myrtaceae) leaves. Biological & Pharmaceutical Bulletin, v.32, p.235-239, 2008. FRANCO, G.C.N.; MORETTI, D.; CAVALCANTE, P.F.C.; LOPES, L.C. Uma análise crítica sobre viabilidade do uso dos inibidores seletivos de COX II em odontologia. Revista de Odontologia da Universidade Cidade de São Paulo, v.18, n.1, p.75-81, 2006. GILMAN, A.G.; GOODMAN, L.S.; RALL, T.W.; MURAD, F. Goodman & Gilman's the pharmacological basis of terapeutics. 11a ed. Rio de Janeiro: Grow-Hill, 2006. 66 GODOY, M.C.M.; FIGHERA, M.R.; SOUZA, F.R.; FLORES, A.E.; RUBIN, M.A.; OLIVEIRA, M.R.; ZAMATTA, N.; MARTINS, M.A.P.; BONACORSO, H.G.; MELLO, C.F. α2-adrenorecptors and 5-HT receptors mediate the antinociceptive effects of new pyrazolines, but not of dipyrone. European Journal of Pharmacology, v.496, p.93-97, 2004. GOEL, A.; MADAN, A.K. Structure-activity study on anti-inflammatory pyrazole carboxylic acid hydrazide analogs using molecular connectivity indices. Journal of Chemical Information and Computer Sciences, v.35, n.3, p.510-524, 1995. GOMES, K.S. Expressão da Proteína Fos na Investigação do Substrato Neural da Antinocicepção Induzida pelo Medo. Dissertação de Mestrado apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo, 2005. GONÇALVES, J.C.; OLIVEIRA, F.S.; BENEDITO, R.B.; SOUSA, D.P.; ALMEIDA, R.N.; ARAÚJO, D.A. Antinociceptive activity of (-) Carvone: Evidence of association decrease peripheral nerve excitability. Biological & Pharmaceutical Bulletin, v.31, p.1017-1020, 2008. GOODMAN, L.; TORRES, B.; PUNKE, J.; REYNOLDS, L.; SPEAS, A.; ELLIS, A.; BUDSBERG, S. Effects of firocoxib and tepoxalin on healing in a canine gastric mucosal injury model. Journal of Veterinary Internal Medicine, v.23, p.56-62, 2009. GÖRSOY, A.; DEMIRAYAK, S.; CAPAN, G.; EROL, K.; VURAL, K. Synthesis and preliminary evaluation of new 5-pyrazolinone derivatives as analgesic agents. European Journal of Medicinal Chemistry, v.35, p.359-364, 2000. GOUDET, C.; CHAPUY, E.; ALLOUI, A.; ACHER, F.; PIN, J. P.; ESCHALIER, A. Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain, v.137, p.112-24, 2008. GREVES, P.L.; NYBERG, F.; TERENIUS, L.; HÖKFELT, T. Calcitonin gene related peptide is a potent inhibitor of substance P degradation. European Journal Pharmacology, v.115, p.309-311, 1985. 67 HARDY, J.D.; WOLFF, H.G.; GOODELL, H. Experimental evidence on the nature of cutaneous hyperalgesia. The Journal Clinical Investigation, v.29, n.1, p.115-140, 1950. HARGREAVES, K.; DUBNER, R.; BROWN, F.; FLORES, C.; JORIS, J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, v.32, n.1, p.77-88, 1988. HAZEWINKEL, H.A.W.; VAN DEN BROM, W.E.; THEYSE, L.F.H.; POLLMEIER, M.; HANSON, P.D. Comparison of the effects of firocoxib, carprofen and vedaprofen in a sodium urte crystal induced synovitis model of arthritis in dogs. Research in Veterinary Science, v.84, p.74-79, 2008. HEADLEY, PM., GRILLNER S. Excitatory amino - acids and synaptic transmission: the evidence for a physiological function. Trends in Pharmacological Sciences, v.11, p.205-211, 1990. HERNANDEZ, N.; VANEGAS, H. Antinociception induced by PAG-microinjected dipyrone (metamizol) in rats: involvement of spinal endogenous opioids. Brain Research, v.896, p.175-178, 2001. HIGGS, G.A.; EAKINS, K.E.; MUGRIDGE, K.G.; MONCADA, S.; VANE, J.R. The effects on non-steroid anti-inflammatory drugs on leukocyte migration in carrageenin-induced inflammation. European Journal Pharmacology, v.66, p.81-86, 1980. HILÁRIO, M.O.E.; TERRERI, M.T.; LEN, C.A. Antiinflamatórios não-hormonais: inibidores da ciclooxigenase 2. Journal of Pediatrics, v.82, n.5, 2006. HILL, R.G. Molecular basis for the perception of pain. The Neuroscience, v.7, p.282-292, 2001. HOLDEN, J.E.; PIZZI, J. A. The Challenge of chronic pain. Advanced Drug Delivery Reviews, v.55, p. 935-948, 2003. 68 HUCHO, T.; LEVINE, J. D. Signaling pathways in sensitization: Toward a nociceptor cell biology. Neuron, v.55, p.365-376, 2007. HUNSKAAR, S.; FASMER, O.B.; HOLE, K. Formalin test in mice, a useful technique for evaluating mild analgesia. Journal Neuroscience Methods, v.14, p.69-76, 1985. HUNSKAAR, S.; BERGER, O.G.; HOLE, K. Dissociation between antinociceptive and antiinflammatory effects of acetylsalicylic acid and indomethacin in the formalin test. Pain, v.25, p.125-132, 1986. HUNSKAAR, S.; HOLE, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, v.30, p.103-114, 1987. INSEL, P.A. Analgesic – antipyretic and anti-iflammatory agents and drugs employed in the treatment of gout. In: HARDMAN, J.G.; LINBIRD, L.E.; MALINOFF, P.B.; RUDDON, R.W.; GOODMAN GILMAN, A. Pharmacological, 1996. ISHII, K.; MOTOYOSHI, S.; KAWATA, J.; NAKAGAWA, H.; TAKEYAMA, K. A useful method for differential evaluation of anti-inflammatory effects due to cyclooxygenase and 5-lipoxygenase inhibitors in mice. The Japanese Journal of Pharmacology, v.65, p.297-303, 1994. JONES, S.L. Anatomy of pain. In SINATRA, R.S.; HORD, A.H; GINSBERG, B; PREBLE, L. Acute pain: Mecanisms & Management. St. Louis: Mosby-YearBook, 1992. JU, G.; HOKFELT, T.; BRODIN, E.; FAHRENKRUG, J.; FISCHER, J.A.; FREY, P.; ELDE, R.P.; BROWN, J.C. Primary sensory neurons of the rat showing calcitonin gene-related peptide immunoreactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-imunoreactive ganglion cells. Cell and Tissue Research, v.247, n.2, p.417-431, 1987. JULIUS, D; BASBAUM, A. I. Molecular mechanisms of nociception. Nature, v.413, p.203-210, 2001. 69 KANDEL, E. R.; SCHWARTZ, J. H.; JESSEL, T. M. Principles of Neuronal Science. New York: McGraw-Hill, 2000. p. 472-491. KATZUNG, B.G. Farmacologia básica e clínica. 9ª ed. Rio de Janeiro: Guanabara Koogan, 2006. KHASABOV, S.G.; ROGERS, S.D.; GHILARDI, J.R.; PETERS, C.M.; MANTYH, P.W.; SIMONE, D.A. Spinal neurons that possess the substance P receptor are required for the development of central sensitization. The Journal of Neuroscience, v.22 p.9086-9098, 2002. KING, J.N.; DAWSON, J.; ESSER, R.E.; FUJIMOTO, R.; KIMBLE, E.F.; MANIARA, W.; MARSHALL, P.J.; O’BYRNE, L.; QUADROS, E.; TOUTAIN, P.L.; LEE, P. Preclinical pharmacology of rofecoxib: a novel selective inhibitor of cyclooxygenase-2. Journal of Veterinary Pharmacology Therapeutics, v.32, p.1-17, 2009. KOSTER, R.; ANDERSON, M.; DE BEER, E.J. Acetic acid for analgesic screening. Federation Proceedings, v.18, p.412, 1959. KUMMER, C.L.; COELHO, T.C.R.B. Anti-inflamatórios não esteróides inibidores da ciclooxigenase II (COX II): aspectos atuais. Revista Brasileira de Anestesiologia, v.5, n.4, 2002. KVATERNICK, V.; POLLMEIER, M.; FISCHER, J.; HANSON, P.D. Pharmacokinetics and metabolism of orally administered firocoxib, a novel second generation coxib, in horses. Journal of Veterinary Pharmacology Therapeutics, v.30, p.208-217, 2007. LAMONT, L.A.; TRANQUILLI, W.J.; KURT, A.G. Physiology of pain. Veterinary Clinics of North America Small Animal Practice, v. 30, n. 4, p.703-728, 2000. LE BARS, D.; GOZARIU, M.; CADDEN, S.W. Animal models of nociception. Pharmacological Reviews, v.53, p.597-652, 2001. LECANNELIER, S. Antiinflamatorios no esteroideos. In: Marcondes, J. Farmacología. Buenos Aires: Intermédica, 1976. 70 LEES, P. Pharmacology of drugs used to treat osteoarthritis in veterinary practice. Inflammopharmacology, v.11, p.385-399, 2003. LEES, P.; LANDONI, M.F.; GIRAUDEL, J.; TOUTAIN, P.L. Pharmacodynamics and pharmacokinetics of nonsteroidal anti-inflammatory drugs in species of veterinary interest. J Veterinary of Pharmacology and Therapeutics, v.27, p.479-490, 2004. LIU, H.; WANG, H.; SHENG, M.; JAN, L.Y.; JAN, Y.N.; BASBAUM, A.I. Evidence for presynaptic Nmethyl-D-aspartate autoreceptores in the spinal cord dorsal horn. Proceedings of the National Academy of Sciences of United States of America, v.91, p.8383-8387, 1994. LIU, H; MANTYH, PW; BASBAUM, A.I. NMDA-receptor regulation of substance P release form primary afferent nociceptors. Nature, v.386, p.721-724, 1997. LOESER, J. D.; MELZACK, R. Pain: An Overview. Lancet, v.353, p.1607-1609, 1999. MAI, C.M.G. Avaliação do potencial antinociceptivo de novos 3-metil-1h-1-pirazol metil esteres 5-substituídos em camundongos. Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Bioquímica Toxicológica da Universidade Federal de Santa Maria, 2007. MARNETT, L.J. The COXIB experience: A look in the rear-view mirror. Annual Review of Pharmacology and Toxicology, v.49, p.265-290, 2009. MATHEWS, K.A.; DOHERTY, T.; DYSON, D.H.; WILCOCK, B.; VALLIANT, A. Nephrotoxicity in dogs associated with methoxyflurane anesthesia and flunixin meglumine analgesia. The Canadian Veterinary Journal, v.31, p.766-771, 1990. MATHEUS, M.E.; OLIVEIRA, L.F.; FREITAS, A.C.C.; CARVALHO, A.M.S.P.; BARREIRO, E.J. Antinociceptive property of new 4-acyl-arilhidrazone pyrazole compounds. Brazilian Journal of Medical and Biological Research, v.24, p.1219-1222, 1991. 71 McNAMARA, C.R.; MANDEL-BREHM, J.; BAUTISTA, D.M.; SIEMENS, J.; DERANIAN, K.L.; ZHAO, M.; HAYWARD, N.J.; CHONG, J.A.; JULIUS, D.; MORAN, M.M.; FANGER, C.M. TRPA1 mediates formalin-induced pain. Proceedings of the National Academy of Sciences of the United States of America, v.104, n.33, 2007. MENEZES, G.B.; REIS, W.G.; SANTOS, J.M.; DUARTE, I.D. FRANCISCHI, J.N. Inhibition of prostaglandin F (2alpha) by selective cyclooxygenase 2 inhibitors accounts for reduced rat leukocyte migration. Inflammation, v.29, p.163-169, 2005. MIKAMI, T.; MIYASAKA, K. Effects of several antiinflammatory drugs on the various parameters involved in the inflammatory response in rat carrageenininduced pleurisy. European Journal of Pharmacology, v.95, p.1-12, 1983. MILANO, J. Avaliação do Potencial Antinociceptivo de 5-trialometil-4,5-diidro-1h- pirazol metil Ésteres Inéditos em Camundongos. Tese de doutorado apresentada ao Programa de Pós-Graduação em Ciências Biológicas da Universidade Federal de Santa Maria, 2008. MILANO, J.; ROSSATO, M.F.; OLIVEIRA, S.M.; DREWES, C.; MACHADO, P.; BECK, P.; ZANATTA, N.; MARTINS, M.A.P.; MELLO, C.F.; RUBIN, M.A.; FERREIRA, J.; BONACORSO, H.G. Antinociceptive action of 4-methyl-5-trifluoromethyl-5-hydroxy-4,5-dihydro-1H-pyrazole methyl ester in models of inflammatory pain in mice. Life Sciences, v.83, p.739-746, 2008. MILLAN, M.J. The induction of pain: an integrative review. Progress in Neurobiology, v.57, p.1-164, 1999. MOLLER, K.A.; JOHANSSON, B.; BERGE, O.G. Assessing mechanical allodynia in the rat paw with a new electronic algometer. Journal of Neuroscience Methods, v.84, p.41-47, 1998. MULLER, W.A. Leukocyte-endothelial cell interactions in the inflammatory response. Laboratory Investigation, v.82, p.521-533, 2002. 72 NESTLER, E.J.; HYMAN, S.E.; MALENKA, R.C. Molecular neuropharmacology: a foundation for clinical neuroscience. New York: Macgraw-Hill, 2001. NODINE, J.H.; SIEGLER, P.E. Animal and Clinical Pharmacologic Techniques in Drug Evaluation. EUA, Year Book Medical Publishers Inc. 1964, 660p. OCHI, T.; GOTO, T. The spinal antinociceptive effect of FR140423 in mice. Involvement of the descending noradrenergic and serotoninergic systems. Life Science, v.69, p.2256-2264, 2001. OCHI, T.; FUJII, T.; MOTOYANA, Y.; GOTO, T. Antinociceptive properties of FR140423 mediated through spinal δ- but not M-and к-, opioid receptors. European Journal of Pharmacology, v.380, p.73-79, 1999b. OCHI, T.; FUJII, T.; MOTOYANA, Y.; GOTO, T. The profile of FR140423, a novel anti-inflammatory compound, in yeast-induced rat hyperalgesia. Jananase Journal of Pharmacology, v.81, n.1, p.94-98, 1999a. OCHI, T.; JOBO-MAGARI, K.; YONEZAWA, A.; MATSUMORI, K.; FUJJI, T. Anti-inflammatory and analgesic effects of a novel pyrazole derivative, FR140423. European Journal of Pharmacology, v.365, p.259-266, 1999c. OKUSE, K. Pain signalling pathways: from cytokines to ion channels. The International Journal of Biochemistry & Cell Biology, v.39, n.3, p.490-496, 2007. OLIVEIRA, F.S.; SOUSA, D.P.; ALMEIDA, R.N. Antinociceptive effect of hydroxydihydrocarvone. Biological & Pharmaceutical Bulletin, v.31, p.588-591, 2008. OLIVEIRA, C.M.B.; ISSY, A.M.; SAKATA, R.K. Fisiopatologia da dor pós operatória. Revista Brasileira de Medicina, v.11, n.67, p.415-418, 2010. OMOTE, K.; KAWAMATA, T.; NAMIKI, A. Formalin-induced release of excitatory amino acids in the skin of the rat hindpaw. Brain Research, v.787, p.161-164, 1998. 73 ORTIZ, M.I.; CASTAÑEDA-HERNÁNDEZ, G.; GRANADOS-SOTO, V. Pharmacological evidence for the activation of Ca2+-activated K+ channels by meloxicam in the formalin test. Pharmacology, Biochemistry and Behavior, v.81, p.725–731, 2005. OSHIMA, Y.; AKIMOTO, T.; TSUCADA, W.; YAMASAKI, T.; IAMAGUCI, K.; KOJIMA, H. Studies on pyrimidinylpyrazoles, IV. Pharmacological actives of 1(4-metoxy-6-methyl-2-pyrimidinyl)-3-methyl-5-metoxypyrazol and its related compounds. Chemical & Pharmaceutical bulletin, v.17, n.7, p.1492-1497, 1969. OTERO, P.E. Manejo da dor e a medicina veterinária. In OTERO, P.E. Dor: avaliação e tratamento em pequenos animais. São Paulo: Interbook, 2005, p.02-05. OTTEN, U.; GOEDERT, M.; MAYER, N.; LEMBECK, F. Requirement of nerve growth factor for development of substance P-containing sensory neurones. Nature, v.287, p.158-159, 1980. PAPICH, M.G. An update on nonsteroidal anti-inflammatory drugs (NSAIDs) in Small Animals. Veterinary Clinics of North America: Small Animal Practice, v.38, p.1243-1266, 2008. PARADA, S.A.; TAMBELI, C.H.; CUNHA, F.Q.; FERREIRA, S.H. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience, v.4, p.937-944, 2001. PARADA, S.A.; VIVANCOS, G.G.; TAMBELI, C.H.; CUNHA, F.Q.; FERREIRA, S.H. Activation of presynaptic NMDA receptors coupled to NaV1.8-resistant sodium channel C-fiber causes retrograde mechanical nociceptor sesitilization. Proceedings of the National Academy of Sciences of the United States of America, v.100, n.5, p.2923-2928, 2003. PARVEEN, Z.; DENG, Y.; SAEED, M.K.; DAI, R.; AHAMAD, W.; YU, Y.H. Antiinflammatory and analgesic activities of Thesium chinese Turcz extracts and its major flavonoids, kaampferol and kaempferol-3-O-glucoside. Yakugaku Zasshi, v.127, p.1275-1279, 2007. 74 PELLEGRINO, F. Organização funcional das vias da dor. In OTERO, P.E. Dor: avaliação e tratamento em pequenos animais. São Paulo: Interbook, 2005. p.06-28. PERL, E.R. Ideas about pain, a historical view. Nature Reviews Neuroscience, v.8, p.71-80, 2007. PIRES, P.A. Potencial analgésico, anti-edematogênico, antipirético e atividade ulcerogênica de fármacos anti-inflamatórios, em roedores. Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Medicina Veterinária da Universidade Federal Rural do Rio de Janeiro, 2009. PONG, S.F.; DEMUTH, S.M.; KINNEY, C.M.; DEEGAN, P. Prediction of human analgesic dosages of nonsteroidal antiinflammatory drugs (NSAIDs) from analgesic ED50 values in mice. Archives Internationales de Pharmacodynamie et de Therapie, v.273, p.212-220, 1985. PORTER, D.G. Ethical scores for animal experiments. Nature, v.356, n.6365, p.101-102, 1992. PROKOPP, C.R. 2-[5-triclorometil-5-hidróxi-3-fenil-4,5-dihidro-1H-pirazol-1-il]-4-(4-bromofenil)-5-metiltiazol (B50) provoca antinocicepção em camundongos. Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Bioquímica Toxicológica da Universidade Federal de Santa Maria, 2004. RANG, H.P.; BEVAN, S.; DRAY, A. Chemical activation of nociceptive peripheral neurons. British Medical Bulletin, v.47, n.3, p.534-548, 1991. RANG, H.P.; DALE, M.M.; RITTER, J.M.; MOORE. P.K. Farmacologia. 6ª Ed. Editora Elsevier, 2007. RATES, S.M.K.; BARROS, H.M.T. Modelos animais para a avaliação da dor: métodos para triagem de novos analgésicos. Revista Brasileira de Farmacologia, v.75, n.2, p.3134, 1994. 75 RIBEIRO, R.A.; VALE, M.L.; THOMAZZI, S.M.; PASCHOALATO, A.B.; POOLE, S.; FERREIRA, S.H.; CUNHA, F.Q. Involvement of resident macrophages and mast cells in the writhing nociceptive response induced by zymosan and acetic acid in mice. European Journal of Pharmacology, v.387, n.1, p.111-118, 2000. ROTH, J.; RUMMEL, C.; BARTH, S.W.; GERSTBERGER, R.; HÜBSCHLE, T. Molecular aspects of fever and hyperthermia. Immunology And Allergy Clinics of North America, v.29, p.229-245, 2009. SANTOS, A.R.S.; CALIXTO, J.B. Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides, v.31, p.381-389, 1997. SANTOS, A.R.S.; VEDANA, E.M.A.; FREITAS, G.A.G. Antinociceptive effects of meloxicam, in neurogenic and inflammatory nociceptive models in mice. Inflammation Research, v.47, p.302-307, 1998. SAUZEM, P.D. Derivados pirazólicos inéditos causam antinocicepção em camundongos no teste da formalina. Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Bioquímica Toxicológica da Universidade Federal de Santa Maria, 2004. SAUZEM, P.D.; MACHADO, P.; RUBIN, M.A.; SANT’ANNA, G.S.; FABER, H.B.; SOUZA, A.H.; MELLO, C.F.; BECK, P.; BURROW, R.A.; BONACORSO, H.G.; ZANATTA, N.; MARTINS, M.A.P. Design and microwave-assisted synthesis of 5-trifluoromethyl-4,5-dihydro-1H-pyrazoles: Novel agents with analgesic and anti-inflammatory properties. European Journal of Medicinal Chemistry, v.43, p.1237-1247, 2008. SCHOLZ, J.; WOOLF, C.J. Can we conquer pain? Nature Neurosci, v.5, p.1062-1067, 2002. SHIBATA, M.; OHKUBO, T.; TAKAHASHI, H.; INOKI, R. Modified formalin test: characteristic biphasic pain response. Pain, v.38, p.347-52, 1989. 76 SHIN, J.W.; HWANG, K.S.; KIM, Y.K.; LEEM, J.G.; LEE, C. Nonsteroidal anti-inflammatory drugs suppress pain-related behaviors, but not referred hiperalgesia of visceral pain in mice. Anesthesia & Analgesia, v.102, p.195-200, 2006. SIEGMUND, E.; CADMUS, R.; LU, G. Method for evaluating both nonnarcotic and narcotic analgesics. Proceedings of the Society for Experimental Biology and Medicine, v.95, p.729, 1957. SHIBATA, M.; OHKUBO, T.; TAKAHASHI, H.; INOKI, R. Modified formalin test: characteristic biphasic pain response. Pain, v.38, p.347-352, 1989. SMITH, C.H.; BARKER, J.N.; MORRIS, R.W.; MACDONALD, D.M.; LEE, T.H. Neuropeptides induce rapid expression of endothelial cell adhesion molecules and elicit granulocytic infiltration in human skin. The Journal of Immunology, v.151, n.6, p.3274-3282, 1993. SOKAL, R.R.; ROHLF, F.J. Biometry: The principles an Practice of Statistics. New York: W. H. Freemann, 1981. SORKIN, L. S.; WALLACE, M. S. Acute pain mechanisms. Surgical Clinics of North America, v.79, p.213-229, 1999. SOUCCAR, C.; LAPA, A.J. Analgesic and antiinflammatory screening of two Brazilian medicinal plants: A positive and a falsepositive result. Ciência e Cultura Journal of the Brazilian Association for the Advancement of Science, v.49, n.5/6, p.417-421, 1997. SOUZA, F.R.; FIGHERA, M.R.; LIMA, T.T.F.; BASTIANI, J.; BARCELLOS,I.B.; ALMEIDA, C.E.; OLIVEIRA, M.R.; BONACORSO, H.G.; FLORES, A.E.; MELLO, C.F. 3-metil-5-hidróxi-5-triclorometil-4,5-diidro-1H-1-piraxolcarboxiamide induces antinociception. Pharmacology, Biochemistry and Behavior, v.68, p.525-530, 2001. SOUZA, F.R.; SOUZA, V.T.; RATZLAFF, V.; BORGES, L.P.; OLIVEIRA, M.R.; BONACORSO, H.G.; ZAMATTA, N.; MARTINS, M.A.P.; MELLO, C.F. Hypothermic and antipyretic effects of 3-metyl and 3-phenyl-5-hidróxi-5-triclorometil-4,5-diidro-1H-1- 77 piraxolcarboxiamide induces antinociception. Pharmacology, Biochemistry and Behavior, v.451, p.141-147, 2002. SPINOSA, H.S.; GÓRNIAK, S.L.; BERNARDI, M.M. Farmacologia aplicada a Medicina Veterinária. 4ª ed. Rio de Janeiro: Guanabara Koogan, 2006. STEAGALL, P.V.M.; MOUTINHO, F.Q.; MATOVANI,F.B.; PASSARELLI, D.; THOMASSIAN, A. Evaluation of the adverse effects of subcutaneous carprofen over six days in healthy cats. Research in Veterinary Science, v.86, p.115-120, 2009. TABARELLI, Z.; RUBIN, M.A.; BERLESE, D.B.; SAUZEN, P.D.; MISSIO, T.P.; TEIXEIRA, M.V.; SINHORIN, A.P.; MARTINS, M.A.P.; ZAMATTA, N.; BONACORSO, H.G.; MELLO, C.F. Antinociceptive, effects of model pyrazolines en mice. Brazilian Journal of Medical and Biological Research, v.37, in press, 2004. TAIWO, Y.O.; LEVINE, J.D. Characterization of the arachidonic acid metabolites mediating bradikinin and noradrenaline hiperalgesia. Brain Research, v.458, p.402-406, 1988. TAIWO, Y.O.; BJERKNES, L.K.; GOETZL, E.J.; LEVINE, J.D. Mediation of primary afferent peripheral hyperalgesia by the cAMP second messenger system. Neuroscience, v.32, n.3, p.577-580, 1989. TASSORELLI, C.; GRECO, R.; WANG, D.; SANDRINI, G.; NAPPI, G. Prostaglandins, glutamate and nitric oxide synthase mediate nitroglycerin-induced hyperalgesia in the formalin test. Eurpean Journal Pharmacology, v.534 p.103-107, 2006. TEIXEIRA, F.M. Avaliação comparativa do efeito de fármacos anti-inflamatórios com a acupuntura no modelo de dor pós-incisional em ratos Dissertação de Mestrado apresentada ao Programa de Pós-graduação em Medicina Veterinária da Universidade Federal Rural do Rio de Janeiro, 2010. TIZARD, I.R. Imunologia veterinária: uma introdução. 6ª ed. São Paulo: Editora Roca, 2002. 78 TJOLSEN, A.; BERGE, O.; HUNSKAAR, S.; ROSLAND, J. H.; HOLE, K. The formalin test: an evaluation of the method. Pain, v.51, p.5-17, 1992. TJOLSEN, A.; HOLE, K. Animal models of analgesia. In: DICKENSON, A.; BESSON, J.M (eds). The Pharmacology of Pain, Germany: Springer, Berlin, 1997, p.1-20. TORTORICI, V.; VASQUES, E.; VANEGAS, H. Naloxone partial reversal of the antinociception produced by dipyrone microinjected into the periaqueductal grey of rats: possible involvement of medulary off- and on cells. Brain Research, v.726, p.106-111, 1996. TRACEY, D.J.; DE BIASI, S.; PHEND, K.; Rustioni, A. Aspartate-like immunoreactivity in primary afferent neurons. Neuroscience, v.40, n.3, p.673-686, 1991. TSUJI, K.; KONISHI, N.; SPEARS, G.W.; OGINO, T.; NAKAMURA, K.; TOJO, T.; OCHI, T.; SHIMOJO, F.; SENOH, H.; MATSUO, M. Studies on anti-inflammatory agents. V. Synthesis and pharmacological properties of 3-(difluormetil)-1-(4-metoxifenil)-5-[4-(metilsulfinil)fenil] pyrazole and relates compounds. Chemical & Pharmaceutical Bulletin, v.45, p.1475-1481, 1997. TUBARO, A.; DRI, P.; MELATO, M.; MULAS, G.; BIANCHI, P.; DEL NEGRO, P.; DELLA LOGGIA, R. In the croton oil ear test the effects of non steroidal anti-inflammatory drug (NSAIDs) are dependent on the dose of the irritant. Agents & Actions, v.19, p.371–373, 1986. VACHER, P.J.; DUCHÉNE-MARULLAZ, P.; BARBOT, P. A propos de quelques produits usuels – comparaison de deux méthodes d’étude des analgésiques. Medicina Experimentalis, v.11, p.51-58, 1964. VALE, M.L. Atividade analgésica das interleucinas 4, 13 e 10 (IL-4, IL-13 e IL10) na dor inflamatória experimental: Papel de células residentes e citocinas. Dissertação de Mestrado em Farmacologia da Faculdade de Medicina da Universidade Federal do Ceará, 2000. VANE, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirinlike drugs. Nature New Biology, v.231, p.232-239, 1971. 79 VANE, J.R.; BAKHLE, Y.S.; BOTTING, R.M. Cyclooxygenase 1 and 2. Annual Review of Pharmacology and Toxicology, v.38, p.97-120, 1998. VELÁZQUEZ, R.A.; KITTO, K.F.; LARSON, A.A. CP-96, 345, wich inhibits [3H] substance P binding, selectively inhibits the behavioral response to intrathecally administered NMDA, but not substance P, in the mouse. The Journal of Pharmacology and Experimental Therapeutics, v.281, p.1231-1237, 1997. VERRI JR, W.A.J.; CUNHA, T.M.; PARADA, C.A.; POOLE, S.; CUNHA, F.Q.; FERREIRA, S.H. Hypernociceptive role of cytokines and chemokines: Targets for analgesic drug development? Pharmacology & Therapeutics, v.112, p.116-138, 2006. VINCENT, M.B.; WHITE, L.R.; ELSAS, T.; QVIGSTAD, G.; SJAASTAD, O. Substance P augments the rate of vasodilation induced by calcitonin gene-related peptide in porcine ophthalmic artery in vitro. Neuropeptides, v.22, p. 137-141, 1992. VINEGAR, R.; TRUAX, J.F.; SELOH, J.L. Some quantitative temporal characteristics of carrageenin-induced pleurisy in the rats. Proceedings of the Society for Experimental Biology and Medicine, v.143, p.711-714, 1973. VON FREY, M. Untersuchunger über die Sinnesfunctionen der menschlichen Haut. Bandes der Abhandlungen der mathematisch-physischen Classe der Königl. Sächsischen Gesellschaft der Wissenschaften, v.23, p.175-266, 1896. YAKSH, T.L. The spinal pharmacology of facilitation of afferent processing evoked by high-threshold afferent input of the postinjury pain state. Current Opinion in Neurology and Neurosurgery, v.6, p.250–256. 1993. ZAKARIA, Z.A.; GOPALAN, H.K.; ZAINAL, H.; MOHD POJAN, N.H.; MORSID, N.A.; ARIS, A.; et al. Antinociceptive, antiinflammatory and antipyretic effects of Solanum nigrum Chloroform extract in animal models. Yakugaku Zasshi, v.126, p.1171-1178, 2006a. 80 ZAKARIA, Z.A.; ABDUL, Z.D.G.; RADEN, R.N.M.N; GOPALAN, H.K.; SULAIMAN, M.R.; ABDULLAH, F.C. Antinociceptive and antiinflamatory activities of Dicranopteris linearis leaves clhoroform extract in experimental animals. Yakugaku Zasshi, v.126, p.1197-1203, 2006b. ZANINI JUNIOR, J.C.; MEDEIROS, Y.S.; CRUZ, A.B.; YUNES, R.A.; CALIXTO, J.B. Actions of compounds from Manderilla velutina on croton oil-induced ear edema in mice. A comparative study with steroidal and nonsteroidal antiinflammatory drugs. Phytotherapy Research, v.6, p.1-5, 1992. ZHANG, B.; LI, B.J.B.; ZHANG, D.M.; DING,Y.; DU, G.H. Analgesic and antiinflammatory activities of a fraction rich in Gaultherin isolated from Gaultheria yunnanensis (Franch.) Rehder. Biological & Pharmaceutical Bulletin, v.30, n.3, p.465-469, 2007. ZHANG, H. M.; CHEN, S. R.; PAN, H. L. Effects of activation of group III metabotropic glutamate receptors on spinal synaptic transmission in a rat model of neuropathic pain. Neuroscience, v.158, p.875-884, 2009. ZIMMERMANN, M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain, v.16, n.2, p.109-110, 1983. ZIMMERMANN, M. Ethical considerations in relation to pain in animal experimentation. Acta physiologica Scandinavica Supplementum, v.554, p.221-233, 1986. WATKINS, L.R.; GOEHLER, L.E.; RELTON, J.; BREWER, M.T.; MAIER, S.F. Mechamisms of tumor necrosis factor-alpha (TNF-alpha) hyperalgesia. Brain Research, v.692, n.1-2, p.244-250, 1995. WHITESIDE, G.T.; HARRISON, J.; BOULET, J.; MARK, L.; PEARSON, M.; GOTTSHALL, S.; WALKER, K. Pharmacological characterization of a rat model of incisional pain. British Journal of Pharmacological, v.141, p.85-91, 2004. 81 WOOLF, C.J.; COSTIGAN, M. transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America, v.96, p.7723-7730, 1999. WOOLF, C.J.; SALTER, M.W. Neuronal plasticity: increasing the gain in pain. Science, v.288, p.1765-1769, 2000. YAKSH, T.L.; HAMMOND, D.L. Peripheral and central substrates involved in the rostral transmissions of nociceptive information. Pain, v.13, p.1-85, 1982. YAMAMOTO, T.; SAKASHITA, Y.; OZAKI-TAGUCHI, N. Anti-allodynic effects of oral COX-2 selective inhibitor on postoperativepain in the rat. Canadian Journal Anesthesiology, v.47, n.4, p.354–360, 2000. YEDGAR, S.; KRIMSKY, M.; COHEN, Y.; FLOWER, R. Treatment of inflammatory diseases by aselective eicosanoid inhibiton: a double-edged sword? Pharmacological Sciences, v.28, n.9, p.459-464, 2007.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/4638/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19276/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/25589/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/31957/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38354/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/44738/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51125/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/57610/2011%20-%20Raphael%20Andrade%20de%20Castro.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1177
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-08-24T15:39:27Z No. of bitstreams: 1 2011 - Raphael Andrade de Castro.pdf: 917522 bytes, checksum: f65a225b9fc808c90016c649f5cb2be1 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2016-08-24T15:39:27Z (GMT). No. of bitstreams: 1 2011 - Raphael Andrade de Castro.pdf: 917522 bytes, checksum: f65a225b9fc808c90016c649f5cb2be1 (MD5) Previous issue date: 2011-02-18eng
Appears in Collections:Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Raphael Andrade de Castro.pdf2011 - Raphael Andrade de Castro896.02 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.