Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14180
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Priscila Soares
dc.date.accessioned2023-12-22T02:57:09Z-
dc.date.available2023-12-22T02:57:09Z-
dc.date.issued2021-09-29
dc.identifier.citationFERREIRA, Priscila Soares. Efeito da Administração Perioperatória do Sulfato de Magnésio em Cadelas Anestesiadas com Propofol e Fentanil Para Ovariohisterectomia. 2021. 59f. Dissertação (Mestrado em Medicina Veterinária - Patologia e Ciências Clínicas) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14180-
dc.description.abstractA anestesia balanceada envolve a administração de diferentes agentes para criar o estado anestésico. Essa abordagem evita a dependência exclusiva de opioides para controlar a nocicepção no período transoperatório e a dor no pós-operatório. Devido sua ação como antagonista do receptor NMDA, o sulfato de magnésio (MgSO4) reduz a sensibilização central causada pela estimulação nociceptiva periférica, demonstrando potencial efeito antinociceptivo e redutor de anestésico e analgésico, como já demonstrado em modelos animais e humanos. Dessa maneira, o objetivo do presente estudo foi avaliar o efeito da administração de sulfato de magnésio no requerimento anestésico de propofol e fentanil, na resposta ao estímulo nociceptivo durante o período transoperatório e na analgesia pós-operatória imediata de cadelas submetidas à ovariohisterectomia. Trinta e duas cadelas, sedadas com acepromazina 0,02 mg/kg intramuscular, foram divididas aleatoriamente por sorteio em quatro grupos: PMFA - MgSO4 e fentanil alta dose; PFA - NaCl 0,9% e fentanil alta dose; PMFB- MgSO4 e fentanil baixa dose; PFB - NaCl 0,9% e fentanil baixa dose. As pacientes foram induzidas com propofol 1mg/kg/min dose efeito, ato contínuo permaneceram em infusão contínua dos tratamentos selecionados, com titulação da taxa de propofol de acordo com as variáveis cardiorrespiratórias e plano anestésico. Caso houvesse incremento de 20% da FC, FR ou PAS, foi administrado fentanil 2,5mcg/kg. Durante o transoperatório, avaliou-se a dose de propofol necessária para indução e manutenção anestésica, efeito antinociceptivo transoperatório através das variáveis cardiorrespiratórias, com o requerimento de doses adicionais de fentanil, qualidade de indução, de intubação e de relaxamento muscular transoperatório. Após o término da cirurgia foram avaliados os tempos de extubação, de sustentação de cabeça e posicionamento espontâneo em esternal, a qualidade de recuperação anestésica e a avaliação da dor utilizando a escala de Glasgow e os parâmetros fisiológicos. A concentração sérica de magnésio total foi mensurada em três diferentes tempos. Quanto aos resultados, não houve diferença estatística significante entre os grupos em nenhuma das variáveis avaliadas. Entretanto, durante o transoperatório menos cadelas dos grupos PFMA (4/8), PFA (4/8), e PFMB (5/8) necessitaram resgate analgésico com fentanil quando comparado ao grupo PFB (7/8). Durante a recuperação anestésica, uma cadela no grupo PFMB e duas cadelas no grupo PFB necessitaram resgate analgésico com metadona. No trans e pós-operatório, a concentração média de magnésio sérico total foi estatisticamente maior do que o valor pré-operatório (p <0,001) nos grupos PFMA e PFMB. Este estudo não encontrou benefício clínico evidente na administração de sulfato de magnésio em cadelas sedadas com acepromazina e anestesiadas com fentanil e propofol em cirurgia de ovariohisterectomiapor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectagente adjuvantepor
dc.subjectanestesia balanceadapor
dc.subjectanestesia multimodalpor
dc.subjectnocicepçãopor
dc.subjectdorpor
dc.subjectcãopor
dc.subjectadjuvant drugseng
dc.subjectbalanced anesthesiaeng
dc.subjectmultimodal anesthesiaeng
dc.subjectnociceptioneng
dc.subjectpaineng
dc.subjectdogeng
dc.titleEfeito da Administração Perioperatória do Sulfato de Magnésio em Cadelas Anestesiadas com Propofol e Fentanil Para Ovariohisterectomiapor
dc.title.alternativeEffect of Perioperatory Administration of Magnesium Sulfate in Bitches Anesthetized with Propofol and Fentanil Undergoing Ovariohysterectomyeng
dc.typeDissertaçãopor
dc.description.abstractOtherBalanced anesthesia involves administering different agents to create an optimal anesthetic state. This approach avoids exclusive dependence on opioids to control intraoperative nociception and postoperative pain. Magnesium sulfate (MgSO4) prevents central sensitization caused by peripheral nociceptive stimulation by acting as an NMDA receptor antagonist, its analgesic and anesthetic-reducing effects have been demonstrated in animal and human models. Thus, the aim of the present study was to evaluate the effect of magnesium sulphate administration on the anesthetic requirement of propofol and fentanyl, on the response to nociceptive stimulus during the intraoperative period and on the immediate postoperative analgesia of bitches undergoing ovariohysterectomy. Thirty-two bitches sedated with acepromazine 0.02 mg/kg intramuscularly, were randomly divided into four groups: PMFA - MgSO4 and high dose fentanyl; PFA - 0.9% NaCl and high dose fentanyl; PMFB - MgSO4 and low dose fentanyl; PFB - 0.9% NaCl and low dose fentanyl. Anesthesia was induced with propofol (1 mg/kg/min) to effect and maintained with continuous rate infusion of selected treatments. Propofol rate was titrated to maintain cardiorespiratory variables within normal range and an adequate anesthetic plan. If a 20% increase in HR, RR or SAP were noted, 2.5mcg/kg fentanyl was administered. The total dose of propofol necessary for anesthetic induction and maintenance was evaluated. Intraoperative antinociceptive effect was assessed through cardiorespiratory variables and the requirement of additional doses of fentanyl. Other variables such as quality of induction, intubation and intraoperative degree of muscle relaxation were evaluated. Time to extubation, head support and ability to reach sternal position were recorded. Following the recovery to sternal recumbency pain evaluation was assessed using the short form of the Glasgow Composite Pain Scale, and if analgesia was required methadone was administered IV (0.1 mg/kg). Serum magnesium concentrations were measured at three different time points (pre-, intra- and postoperatively).The present study didn’t demonstrate any significant difference among the groups regarding variables evaluated. Anyway, the number of bitches that needed additional doses of fentanyl in the intraoperative period were lower in group PMFA (4/8) PFA (4/8), and PMFB (5/8) than group PFB (7/8). There was no significant difference in pain assessment using the Glasgow pain scale in the postoperative period, however, more bitches in the PFB group required analgesic rescue (2/8). The mean serum magnesium concentration was higher in the postoperative than its preoperative values (p <0.001) in the PMFA and PMFB groups. This study did not find clear clinical benefits in administering magnesium sulfate in bitches sedated with acepromazine and anesthetized with fentanyl and propofol undergoing ovariohysterectomy.eng
dc.contributor.advisor1Marinho, Bruno Guimarães
dc.contributor.advisor1ID077.077.277-38por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2685794388394484por
dc.contributor.advisor-co1Evangelista, Marina Cayetano
dc.contributor.advisor-co1ID361.439.508-14por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7493123927095258por
dc.contributor.referee1Marinho, Bruno Guimarães
dc.contributor.referee1ID077.077.277-38por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2685794388394484por
dc.contributor.referee2Beier, Suzane Lilian
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7989058455676759por
dc.contributor.referee3Favarato, Lukiya Silva Campos
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7528417854213607por
dc.creator.ID111.099.947-02por
dc.creator.Latteshttp://lattes.cnpq.br/5823127981584331por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)por
dc.relation.referencesACEVEDO-ARCIQUE, C. M.; IBANCOVICHI, J. A.; CHAVEZ, J. R.; GUTIERREZBLANCO, E.; MORAN-MUNOZ, R.; VICTORIA-MORA, J. M.; TENDILLO-CORTIJO, F.; SANTOS-GONZALEZ, M.; SANCHEZ-APARICIO, P. Lidocaine, Dexmedetomidine and Their Combination Reduce Isoflurane Minimum Alveolar Concentration in Dogs. Plos One, v.9, n.9, p. 1-5, 2014. ADAMI, C.; CASONI, D.; NOUSSITOU, F.; RYTZ, U.; SPADAVECCHIA, C. Addition of magnesium sulphate to ropivacaine for spinal analgesia in dogs undergoing tibial plateau levelling osteotomy. The Veterinary Journal, v. 209, p. 163-168, 2016. ANDREONI, V.; HUGHES J. M. L. Propofol and fentanyl infusions in dogs of various breeds undergoing surgery Veterinary Anaesthesia and Analgesia, v.36, p.523-532, 2009. AGUIAR, A.J.A.; LUNA, S.P.L.; OLIVA, V.N.L.S.; EUGENIO, F.R.; CASTRO, G.B. Continuous infusion of propofol in dogs premedicated with methotrimeprazine. Veterinary Anaesthesia and Analgesia, v.28, p.220-224, 2001. ALBRECHT, E.; KIRKHAM, K. R.; LIU S. S.; BRULL, R. Peri-operative intravenous administration of magnesium sulphate and postoperative pain: a meta-analysis. Anaesthesia, v.68, p.79-90, 2013. AL-HASANI R.; BRUCHAS M. R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, v. 115, n. 6, p.1363–1381, 2011. AL-RIFAI, Z.; MULVEY, D. Principles of total intravenous anaesthesia: practical aspects of using total intravenous anaesthesia. BJA Education. v. 16, n. 8, p. 276-280, 2016. ANAGNOSTOU T. L.; SAVVAS J.; KAZAKOS G. M.; RAPTOPOULOS D.; VERVERIDIS H.; ROUBIES N. Thiopental and halothane dose-sparing effects of magnesium sulphate in dogs. Veterinary Anaesthesia and Analgesia, v. 38 93-99, 2008. 45 BAHRENBERG, A.; DZIKITI, B. T.; FOSGATE, G. T.; STEGMANN, F. G.; TACKE, S. P.; RIOJA, E. Antinociceptive effects of epidural magnesium sulphate alone and in combination with morphine in dogs. Veterinary Anaesthesia and Analgesia, v. 42, n. 3, p. 319-328, 2015. BATEMAN, S. W. A Quick reference on Magnesium. Veterinary Clinics of North America: Small Animal Practice, v. 47, n. 2, p. 235-239, 2017. BECKER, W. M.; MAMA, K. R.; RAO, S.; PALMER, R. H.; EEGER. E. L. Prevalence of dysphoria after fentanyl in dogs undergoing stifle surgery. Veterinary Surgery, v.42, p.302- 307, 2013. BENCHARIF, D.; AMIRAT, L.; GARAND, A.; TAINTURIER, D. Ovariohysterectomy in the Bitch. Obstetrics and Gynecology International, v.2010, p.1-7, 2010. BERRY, S.H. Anestésicos Injetáveis. Em: Anestesiologia e Analgesia em Veterinária Lumb & Jones, c.15, p.282, 2015. BROWN, E. M.; PAVONE, K. J.; NARANJO, M. Multimodal general anesthesia: Theory and Pratice. Anesthesia and Analgesia, v.127, n.5, p. 1246-1258, 2018. CABALA, R. W.; SILVA, E. B.; CLARK, R. M. O. Cardiopulmonary assessment, quality induction and tracheal intubation with the use of induction adjunct with propofol in dogs. Revista Brasileira de Medicina Veterinária, v.38, n.1, p. 39-44, 2016. CAINES, D.; SINCLAIR, M.; VALVERDE, A.; DYSON, D.; GAITERO, L.; WOOD, D. Comparison of isoflurane and propofol for maintenance of anesthesia in dogs with intracranial disease undergoing magnetic resonance imaging. Veterinary Anaesthesia and Analgesia, v.41, n.5, p.468-479, 2014. CATTAI, A.; RABOZZI, R.; NATALE, V.; FRANCI, P. The incidence of spontaneous movements (myoclonus) in dogs undergoing total intravenous anaesthesia with propofol. Veterinary Anaesthesia and Analgesia, v.42, p.93-98, 2015. CATTAI, A.; RABOZZI, R.; FERASIN, H.; ISOLA, M.; FRANCI, P. Haemodynamic changes during propofol induction in dogs: new findings and approach of monitoring. BMC Veterinary Research, v.14, n. 282, p. 1-8, 2018. CIZMECI, P.; OZKOSE, Z. Magnesium Sulphate as an Adjuvant to Total Intravenous Anesthesia in Septorhinoplasty: A Randomized Controlled Study. Aesthetic Plastic Surgery, v. 31, p. 167-173, 2007. CODERRE, T. J.; KATZ, J.; VACCARINO, A. L.; MELZACK, R. Contribution of central neuroplasticity to pathological pain: review of clinical and experimental evidence. Pain, v. 52, n. 3, p. 259-285, 1993. 46 COVEY-CRUMP G. L.; MURRISON, P. J. Fentanyl or midazolam for co-induction of anaesthesia with propofol in dogs. Veterinary Anaesthesia and Analgesia v.35, p.463-472, 2008. DAVIES C., Excitatory phenomena following the use of propofol in dogs. Journal of Veterinary Anaesthesia and Analgesia, v. 18, p. 48-51, 1991. DAVIS, C. A.; SEDDIGHI, R.; COX, S. K.; SUN, X.; EGGER, C. M.; DOHERTY, T. J. Effect of fentanyl on the induction dos and minimum infusion rate of propofol preventing movement in dogs. Veterinary Anaesthesia and Analgesia, v. 47, n 4, p. 727-737, 2017. EBNER, L. S.; LERCHE P.; BEDNARSKI R. M.; HUBBELL, J. A. Effect of dexmedetomidine, morphine-lidocaine-ketamine and dexmedetomidine-morphine-lidocaineketamine constant rate infusions on the minimum alveolar concentration of isoflurane and bispectral index in dogs. American Journal of Veterinary Research, v. 74, p. 963-970, 2013. EISELE, J. H.; REITAN, J. A.; TORTEN, M.; MILLER, C. H. Myocardial sparing effect of fentanyl during halothane anasesthesia in dogs. British Journal Anaesthesia, v. 47, p. 937- 940, 1975. FAWCETT, J. W.; HAXBY, E. J.; MALE, D. A. Magnesium: physiology and pharmacology British Journal of Anaesthesia v. 83, n. 2, p.302-320, 1999. GANEM, E. M.; CASTIGLIA, Y. M. M.; VIANNA, P. T. G.; MÓDOLO, N. S. P.; BRAZ, J. T. G. Efeitos do Sulfato de Magnésio na Hemodinâmica e Função Renal de Cães Anestesiados com Pentobarbital Sódico. Revista Brasileira de Anestesiologia, v. 46, n. 2, p. 122-129, 1996. GILL, S. S.; WRIGHT, E. M.; REILLY, C. S. Pharmacokinetic interaction of propofol and fentanyl: single bolus injection study. British Journal Anaesthesia, v. 65, p. 760-765, 1990. GIMENES, A. M.; AGUIAR, A. J. A.; PERRI, S. H. V.; NOGUEIRA, G.P. Effect of intravenous propofol and remifentanil on heart rate, blood pressure and nociceptive response in acepromazine premedicated dogs. Veterinary Anaesthesia and Analgesia, v. 38, p.54-62, 2011. GOMES, D. R.; NICÁCIO, I. P. G. A.; CERAZO, L. M. L.; DOURADO, L.; TEIXEIRANETO, F. J.; CASSU, R. N. Addition of magnesium sulfate to intraperitoneal ropivacaine for perioperative analgesia in canine ovariohysterectomy. Journal of Veterinary Pharmacology and Therapeutics, v. 43, n. 4, p. 355-363, 2020. GOODCHILD, C. S.; SERRAO, J. M. Cardiovascular effects of propofol in the anaesthetized dog. British Journal of Anaesthesia, v.63, n,1, p.87-92, 1989. 47 GRANDY, J. L.; STEFFEY, E. P. Anesthesia and the respiratory system. In: SLATTER, D.H. Textbook of Small Animal Surgery. 2. Ed. Philadelphia: W.B. Saunders, p. 2621-2633, 1985. GUPTA, K.; VOHRA, V.; SOOD, J. The role of magnesium as an adjuvant during general anaesthesia. Anaesthesia, v. 61, n, 11, p. 1058-1063, 2006. GURNEY, M.; CRIPPS, P.; MOSING, M. Subcutaneous pre-anaesthetic medication with acepromazine–buprenorphine is effective as and less painful than the intramuscular route. Journal Small Animal Practice, v. 50, p. 474–477, 2009. GURNEY, M. A. Pharmacological options for intra- operative and early postoperative analgesia: an update. Journal Small Animal Practice, v. 53, p. 377-386, 2012. GUTIERREZ-BLANCO, E.; VICTORIA-MORA J. M.; IBANCOVICHI-CAMARILLO, J. A.; SAURI-ARCEO, C. H.; BOLIO-GONZALEZ, M. E.; ACEVEDO-ARCIQUE, C. M.; MARIN-CANO, G.; STEAGALL, P. V. M. Evaluation of the isoflurane-sparing effects of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine-ketaminedexmedetomidine during ovariohysterectomy in dogs. Veterinary Anaesthesia and Analgesia v.40, p.599-609, 2013. HATSCHBACH, E.; SILVA, F. C.; BEIER, S.L.; LIMA, A. F. M.; MASSONE, F. Comparative study between target-controlledinfusion and continuous-infusion anesthesia in dogs treated with methotrimeprazine and treated with propofol and remifentanil. Acta Cirúrgica Brasileira, v. 23, n. 1, 2008. HERROEDER, S.; SCHÖNHERR, M. E.; DE HERT, S. G.; HOLLMANN, M. W. Magnesium – essentials for anesthesiologists. Anesthesiology, v.114, n. 4, p. 971– 993, 2011. HOLDEN, J. E.; JEONG, Y.; FORREST, J. M. The endogenous opioid system and clinical pain management. AACN Clinical Issues, v. 16, n. 3, p. 291-301, 2005. HUG, C. C; MURPHY, M. R. Fentanyl disposition in cerebrospinal fluid and plasma and its relationship to ventilatory depression in the dog. Anesthesiology, v. 50, p. 342-349, 1979. HUGHES, L. J. M.; NOLAN, A. M. Total Intravenous Anesthesia in Greyhounds: Pharmacokinetics of Propofol and Fentanyl—A Preliminary Study. Veterinary Surgery, v. 28, p. 513-524, 1999. IIZUKA, T.; KAMATA, M.; YANAGAWA, M.; NISHIMURA, R. Incidence of intraoperative hypotension during isoflurane–fentanyl and propofol–fentanyl anaesthesia in dogs. The Veterinary Journal, v. 198, n. 1, p. 289-291, 2013. 48 IIZUKA, T.; NISHIMURA, R. Context-sensitive half-time of fentanyl in dogs. The Journal of Veterinary Medical Science, v. 77, n. 5, p. 615-617, 2015. IIZUKA, T.; MASUI, K.; KANAZAWA, H.; NISHIMURA, R. Propofol-fentanyl interaction in Beagles – Apnea, response to mechanical ventilation, endotracheal tube, and tetanic stimulation. Research in Veterinary Science, v. 115, p. 34-42, 2017. ISERI, L. T.; FRENCH, J. H. Magnesium: Nature’s physiologic calcium blocker. American Heart Journal, v. 108, n. 1, p. 188-193, 1984. JACKSON, C. B.; DROBATZ, K. J. Iatrogenic magnesium overdose: 2 case reports. Journal Veterinary Emergency and Critical Care, v. 14, n, 2, p. 115– 123, 2004. JAMES, M. F. M.; BEER, R. E.; ESSER, J. D. Intravenous Magnesium Sulfate Inhibits Catecholamine Release Associated with Tracheal Intubation. Anesthesia and Analgesia, v. 68, p. 772-776, 1989. JANG, H. S.; CHOI, H. S.; LEE, M. Effect of propofol administration rates on cardiopulmonary function and anaesthetic depth during anaesthetic induction in rats. Veterinary Anaesthesia and Analgesia, v. 36, n.3, p. 239-245, 2009. JARAHZADEH, M. H.; HARATI, S. T.; BABAEIZADEH, H.; YASAEI, E.; BASHAR, R. The effect of intravenous magnesium sulfate infusion on reduction of pain after abdominal hysterectomy under general anesthesia: a double-blind, randomized clinical trial. Electronic Physician, v. 8, n. 7, p. 2602-2606, 2016. JOHNSON A. N.; SEDDIGHI, R.; ROHRBACH, B. W.; COX, S. K.; EGGER, C. M.; MARTIN-FLORES M.; DOHERTY, T. J. Effects of Magnesium Sulfate and Propofol on the Minimum Alveolar Concentration Preventing Motor Movement in Sevoflurane-Anesthetized Dogs. American Journal Veterinary Research v. 77, p. 575-581, 2016. KARA, H.; ULUSAN, V.; AYDOG, T. Magnesium infusion reduces perioperative pain. European Journal of Anaesthesiology, v. 19, p. 52-56, 2002. KAYALHA, H.; YAGHOUBI, S.; YAZDI, Z.; IZADPANAHI, P. Effect of Intervenous Magnesium Sulfate on Decreasing Opioid Requirement after Surgery of the Lower Limb Fracture by Spinal Anesthesia. International Journal of preventive Medicine, v. 10, n. 57, p.1-8, 2019. KEEGAN, R. D.; GREENE, S. A. Cardiovascular Effects of a Continuous Two-Hour Propofol Infusion in Dogs Comparison With lsoflurane Anesthesia. Veterinary Surgery, v. 22, n. 6, p. 537-543, 1993. 49 KHAFAGY, H. F.; OSMAN, E. S.; NAGUIB, A. F. Effects of different dose regimens of magnesium on pharmacodynamics and anesthetic requirements of balanced general anesthesia. Journal of the Egyptian Society of Parasitology, v. 37, n. 2, p. 469-482, 2007. KO, S. H.; LIM, H. R.; KIM, D. C.; HAN, Y. J.; CHOE, H.; SONG, H. S. Magnesium sulfate does not reduce postoperative analgesic requirements. Anesthesiology, v. 95, n. 3, p. 640-646, 2001. KOINIG, H.; WALLNER, T.; MARHOFER, P.; ANDEL, H.; HORAUF, K.; MAYER, N. Magnesium sulfate reduces intra and postoperative analgesic requirements. Anesthesia and Analgesia, v. 87, p. 206-210, 1998. KUUSELA, E.; VAINIO, O.; SHORT, C. E.; LEPPA, J.; STRO, S.; HUJU, V.; VALTONEN, A.; RAEKALLIO, M. A comparison of propofol infusion and propofol / isoflurane anaesthesia in dexmedetomidine premedicated dogs. Journal Veterinary Pharmacology Therapy, v.26, p.199-204, 2003. LAFLAMME, D. P. Development and validation of a body condition score system for dogs: a clinical tool. Canine Practice, Santa Barbara, v. 22, n. 3, p. 10- 15, 1997. LARDONE, E.; PEIRONE, B.; ADAMI, C. Combination of magnesium sulphate and ropivacaine epidural analgesia for hip arthroplasty in dogs Veterinary Anaesthesia and Analgesia, v. 44, n.5, p. 1-9, 2017. LASCELLES, B. D. X.; WATERMAN, A. E.; CRIPPS, P. J.; LIVINGSTON, A.; HENDERSON, G. Central sensitization as a result of surgical pain: investigation of the preemptive value of pethidine for ovariohysterectomy in the rat. Pain, n. 62, p. 201-212, 1995. LASCELLES, B. D. X.; CRIPPS, P. J.; JONES, A.; WATERMAN, A. E. Post-operative central hypersensitivity and pain: the pre-emptive value of pethidine for ovariohysterectomy. Pain, n. 73, p. 461-471, 1997. LIAO, P.; SINCLAIR, M.; VALVERDE, A.; MOSLEY, C.; CHALMERS, H.; MACKENZIE, S.; HANNA, B. Induction dose and recovery quality of propofol and alfaxalone with or without midazolam coinduction followed by total intravenous anesthesia in dogs. Veterinary Anaesthesia and Analgesia, v.44, n. 5, p. 1016-1026, 2017. LYSAKOWSKI, C.; DUMONT, L.; CZARNETZKI, C.; TRAMÈR, M. R. Magnesium as an adjuvant to postoperative analgesia: A systematic review of randomized trials. Anesthesia and Analgesia, v. 104, n. 6, p. 1532-1539, 2007. MANNARINO, R.; LUNA, S. P. L.; MONTEIRO, E. R.; BEIER, S. L.; CASTRO, V. B. Minimum infusion rate and hemodynamic effects of propofol, propofol-lidocaine and propofollidocaine- ketamine in dogs. Veterinary Anaesthesia and Analgesia, v. 39, p. 160-173, 2012. 50 MATTHEWS, N. S.; BROWN, R. M.; BARLING, K. S.; LOVERING, S. L. Repetitive Propofol Administration in Dogs and Cats. Journal of the American Animal Hospital Association, v.40, n.4, p.255-260, 2004. MENDONCA, F. T.; DE QUEIROZ, L. M.; GUIMARAES, C. C.; AND XAVIER, A. C. Effects of lidocaine and magnesium sulfate in attenuating hemodynamic response to tracheal intubation: single-center, prospective, double-blind, randomized study. Revista Brasileira de Anestesiologia, v. 67, p. 50–56, 2017. MENDONÇA, F. T.; PELLIZZARO, D.; GROSSI, B. J.; CALVANO, L. A; DE CARVALHO, L. S. F.; SPOSITO, A.C. Synergistic effect of the association between lidocaine and magnesium sulfate on peri-operative pain after mastectomy. European Journal Anaesthesiology, v. 37, p. 224-234, 2020. MITEK, A. E.; CLARK-PRICE, S. C.; BOESCH, J. M. Case Report: Severe propofol-associated dystonia in a dog. Canadian Veterinary Journal, v. 54, p. 471-474, 2013. MORGAN, D. W.; LEGGE, K. Clinical evaluation of propofol as an intravenous anaesthetic agent in cats and dogs. Veterinary Record, v.124, n.2, p.31-33, 1989. MORISAKI, H.; YAMAMOTO, S.; MORITA, Y.; KOTAKE, Y.; OCHIAI, R.; TAKEDA, J. Hypermagnesemia-induced cardiopulmonary arrest before induction of anesthesia for emergency 50lasgow50n section. Journal of Clinical Anesthesia, v. 12, n. 3, p. 224-226, 2000. MURREL J. C.; PSATHA E. P.; SCOTT E. M.; REID J.; HELLEBREKERS L. J. Application of modified form of the Glasgow pain scale in a veterinary teaching centre in the Netherlands. Veterinary Record, v 162, p. 403-408, 2008. MURREL J. C.; NOTTEN, R. W.; HELLEBREKERS, L. J. Clinical investigation of remifentanil and propofol for the total intravenous anaesthesia of dogs. The Veterinary Record, v.156, p. 804-808, 2005. NAKAIGAWA, Y.; AKAZAWA, S.; SHIMIZU, R.; ISHII, R.; IKENO, S.; INOUE, S.; YAMATO, R. Effects of magnesium sulphate on the cardiovascular system, coronary circulation and myocardial metabolism in anaesthetized dogs. British Journal of Anaesthesia, v. 79, n. 3, p. 363-368, 1997. NAKAYAMA T., NAKAYAMA H., MIYAMOTO M., HAMLIN RL., Hemodynamic and electrocardiographic effects of magnesium sulfate in healthy dogs. Journal of Veterinary Internal Medicine v. 13, p. 485-490, 1999. NOLAN, A. M; REID, J. The use of intraoperative fentanyl in spontaneously breathing dogs undergoing orthopaedic surgery. Journal Veterinary Anaesthesiolgy, v. 18, n. 1, p. 30-34, 1991. 51 OGUZHAN, N.; GUNDAY, I.; TURAN, A. Effect of magnesium sulfate infusion on sevoflurane consumption, hemodynamics, and perioperative opioid consumption in lumbar disc surgery. Journal of Opioid Management, v. 4, n.2, p. 105-110, 2008. OLGUN, B.; OǦUZ, G. O.; KAYA, M.; ŞALVI, S.; ESKIÇIRAK, H. E.; GÜNEY, I.; KADIOǦULLARI, N. The effects of magnesium sulphate on desflurane requirement, early recovery and postoperative analgesia in laparascopic cholecystectomy. Magnesium Research, v. 25, n. 2, p. 72-78, 2012. PAECH, M. J.; MAGANN, E. F.; DOHERTY, D. A.; VERITY, L. J.; NEWNHAM, J. P. Does magnesium sulfate reduce the short- and long-term requirements for pain relief after caesarean delivery? A double-blind placebo-controlled trial. American Journal of Obstetrics & Gynecology, v. 194, p. 1596-1603, 2006. PASCOE, P. J. Opioid analgesics. Veterinary Clinics of North America – Small Animal Practice, v. 30, n. 4, p. 757-772, 2000. POGATZKI, E. M.; ZAHN, P. K.; BRENNAN, T. J. Effect of pretreatment with intrathecal excitatory amino acid receptor antagonists on the development of pain behavior caused by plantar incision. Anesthesiology, v. 93, n. 2, p. 489-496, 2000. QIU, Q.; CHOI S. W; WONG, S. S. C.; IRWIN, M. G.; CHEUNG, C. W. Effects of intraoperative maintenance of general anaesthesia with propofol on postoperative pain outcomes – a systematic review and meta-analysis. Anaesthesia, v. 71, p. 1222–1233, 2016. REBOLLAR, R. E.; PALACIOS, M. V. G.; GUERRERO, J. M.; TORRES, L. M. Magnesium sulfate in pediatric anesthesia: the Super Adjuvant. Pediatric Anaesthesia, v. 27, p. 480-489, 2017. REID, J.; NOLAN, A. M.; HUGHES, J. M. L.; LASCELLES, D.; PAWSON, P.; SCOTT, E.M. Development of the short-form Glasgow Composite Measure Pain Scale (CMPS-SF) and derivation of an analgesic intervention score. Animal Welfare, v.16, p.97-104, 2007. REILLY, S.; SEDDIGHI, R.; EGGER, C. M.; ROHRBACH, B. W.; DOHERTY, T. J.; QU, W.; JOHNSON, J. R. The effect of fentanyl on the end-tidal sevoflurane concentration needed to prevent motor movement in dogs. Veterinary Anaesthesia and Analgesia, v. 40, N. 3, p.290-296, 2013. RIOJA E.; DZIKITI, B. T.; FOSGATE, G., GODDARD, A., STEGMANN, F. G.; SCHOEMAN, J.P. Effects of a constant rate infusion of magnesium sulphate in healthy dogs anaesthetized with isoflurane and undergoing ovariohysterectomy. Veterinary Anaesthesia and Analgesia, v. 39, p.599-610, 2012. 52 RODRÍGUEZ-RUBIO, L.; NAVA E.; DEL POZO, S. G.; JORDÁN, J. Influence of the perioperative administration of magnesium sulfate on the total dose of anesthetics during general anesthesia. A systematic review and meta-analysis Journal of Clinical Anesthesia v.39, p.129-138, 2017. ROBERTSON, S. A.; JOHNSTON, S.; BEEMSTERBOER, S. Cardiopulmonary, anesthetic, and postanesthetic effects of intravenous infusions of propofol in greyhounds and nongreyhounds. Veterinary Record, v.53, n. 6, p.1027-1032, 1992. RYU, J. H.; KANG, M. H.; PARK, K. S.; DO, S. H. Effects of magnesium sulphate on intraoperative anaesthetic requirements and postoperative analgesia in gynaecology patients receiving total intravenous anaesthesia. British Journal of Anaesthesia, v. 100, n. 3, p. 397-403, 2008. SANG-HWAN DO Magnesium: a versatile drug for anesthesiologists Korean Journal of Anesthesiology, v. 65, n. 1, p 4-8, 2013. SÁNCHEZ, A.; BELDA, E.; ESCOBAR, M.; AGUT, A.; SOLER, M.; LAREDO, F. G. Effects of altering the sequence of midazolam and propofol during co-induction of anaesthesia. Veterinary Anaesthesia and Analgesia, v. 40, n,1, p. 359-366, 2013. SANO, T.; NISHIMURA, R.; KANAZAWA, H.; IGARASHI, E.; NAGATA, Y.; MOCHIZUKI, M.; SASAKI, N. Pharmacokinetics of fentanyl after single intravenous injection and constant rate infusion in dogs, Veterinary Anaesthesia and Analgesia, v.33, p.266-273, 2006. SAROTTI, D.; RABOZZI, R.; FRANCI, P. Impact evaluation of two different general anesthesia protocols (TIVA with propofol vs isoflurane) on the total number of interventions to treat cardiovascular depression or arousal/movement episodes in dogs undergoing orthopedic surgery receiving an intrathecal anesthesia. Journal of Veterinary Medical Science, v. 78, n.10, p.1549–1555, 2016. SASAKI, R.; HIROTA, K.; ROTH, S. H.; YAMAZAKI, M. Extracellular magnesium ion modifies the actions of volatile anaesthetics in area CA1 of rat hippocampus in vitro. Anesthesiology, v. 96, p. 681–687, 2002. SEYHAN, T. O.; TUGRUL, M.; SUNGUR, M. O.; KAYACAN, S.; TELCI, L.; PEMBECI, K.; AKPIR, K. Effects of three different dose regimens of magnesium on propofol requirements, haemodynamic variables and postoperative pain relief in gynaecological surgery. British Journal of Anaesthesia, v. 96, n. 2, p. 247-252, 2006. SHIN, H.J.; NA, H.S.; DO, S.H. Magnesium and Pain. Nutrients, v. 12, n. 2184, p. 1-13, 2020. 53 SHORT, C. E.; BUFALARI, A. Propofol Anesthesia. Clinical Anesthesia, v. 29, n. 3, p. 747- 778, 1999. SMITH, J. BA.; GAYNOR, J. S.; BEDNARSKI, R. M.; MUIR, W. W. Adverse effects of administration of propofol with various preanesthetic regimens in dogs. Journal of American Veterinary Medical Association, v.202, n.7, p.1111- 1115, 1993. SMITH C. K.; SEDDIGHI R.; COX K. S.; SUN X.; KNYCH K. H.; DOHERTY T. J. Effect of dexmedetomidine on the minimum infusion rate of propofol preventing movement in dogs. Veterinary Anaesthesia and Analgesia, v.44, p.1287-1295, 2017. STEAGALL, P. V. M.; TEIXEIRA-NETO, F. J.; MINTO, B. W.; CAMPAGNOL, D.; CORREA M. A. Evaluation of the isoflurane-sparing effects of lidocaine and fentanyl during surgery in dogs, Journal of the American Veterinary Medical Association, v.229, n. 4, p.522-527, 2006. SUAREZ, M. A.; SEDDIGHI, M. R.; EGGER, C; M.; ROHRBACH, B. W. Effect of fentanyl and lidocaine on the end-tidal sevoflurane concentration preventing motor movement in dogs. American Journal of Veterinary Research, v. 78, n. 1, p. 12-16, 2017. TELCI, L.; ESEN, F.; AKCORA, D.; ERDEN, T.; CANBOLAT, A. T.; AKPIR, K. Evaluation of effects of magnesium sulphate in reducing intraoperative anaesthetic requirements. British Journal Anaesthesia, v. 89, n. 4, p. 594–598, 2002. TRAPANI, E., ALTOMARE, C., SANNA, E., BIGGIO, G., LISO, G. Propofol in anesthesia, mechanism of action, structure-activity relationships, and drug delivery. Current Medicinal Chemistry v.7, p. 249-271, 2000. TSAI, Y.; WANG, L.; YEH, L. Clinical Comparison of Recovery from Total Intravenous Anesthesia with Propofol and Inhalation Anesthesia with Isoflurane in Dogs. Journal Veterinary Medicine Science, v. 69, n10, p. 1179-1182, 2007. WAGNER, A. E.; WORLAND, G. A.; GLAWE, J. C. Multicenter, randomized controlled trial of pain-related behaviors following routine neutering in dogs. Journal of the American Veterinary Medical Association, v.233, n. 1, p. 109-115, 2008. WALDER B., TRAMER RM., DPHIL., SEECK M., Seizure-like phenomena and propofol. Journal of Neurology, v. 56, p. 1327-1332, 2002. WALIA, C.; GUPTA, R.; KAUR, M.; MAHAJAN, L.; KAUR, G.; KAUR, B. Propofol sparing effect of dexmedetomidine and magnesium sulfate during BIS targeted anesthesia: A 54 prospective, randomized, placebo controlled trial, Journal of Anaesthesiology. Clinical Pharmacology, v. 34, p.335-340, 2018. WATKINS, S. B.; HALL, L. W.; CLARKE, K. W. Propofol as an intravenous anesthetic agent in dogs. Veterinary Record, v.120, p.326-329, 1987. WATNEY , G. C.; PABLO, L. S. Median effective dosage of propofol for induction of anesthesia in dogs, American Journal Veterinary Research, v. 53, n. 12, p. 2320-2322, 1992. WILLIAMSON, A. L.; SOARES J. H. N.; PAVLISKO, N. D.; COUNCIL-TROCHE, R. M.; HENAO-GUERRERO N. Isoflurane minimum alveolar concentration sparing effects of fentanyl in the dog. Veterinary Anesthesia and Analgesia, v.44, p.738-745, 2017. WILLIAMSON, A. L.; SOARES, J. H. N.; HENAO-GUERRERO, N.; COUNCIL-TROCHE, R. M.; PAVLISKO, N. D. Cardiovascular and respiratory effects of two doses of fentanyl in the presence or absence of bradycardia in isoflurane–anesthetized dogs. Veterinary Anesthesia and Analgesia, v.45, n. 4, p.423-431, 2018. ZAHN, P.K.; BRENNAN, T.J. Lack of effect of intrathecally administered N-methyl-Daspartate receptor antagonist in a rat model of postoperative pain. Anesthesiology, v.88, p. 143- 156, 1998.por
dc.subject.cnpqMedicina Veterináriapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73887/2021%20-%20Priscila%20Soares%20Ferreira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6739
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-07-17T16:19:45Z No. of bitstreams: 1 2021 - Priscila Soares Ferreira.pdf: 3430340 bytes, checksum: fea962f5c605ff1dbe6c90619a6b64c4 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-07-17T16:19:45Z (GMT). No. of bitstreams: 1 2021 - Priscila Soares Ferreira.pdf: 3430340 bytes, checksum: fea962f5c605ff1dbe6c90619a6b64c4 (MD5) Previous issue date: 2021-09-29eng
Appears in Collections:Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Priscila Soares Ferreira.pdf2021 - Priscila Soares Ferreira3.35 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.