Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14353
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFilgueiras, Douglas Bortolassi
dc.date.accessioned2023-12-22T03:00:06Z-
dc.date.available2023-12-22T03:00:06Z-
dc.date.issued2022-05-30
dc.identifier.citationFILGUEIRAS, Douglas Bortolassi. Um estudo sobre a previsão do consumo de energia elétrica considerando as medidas de eficiência energética: aplicado à Universidade Federal Rural do Rio de Janeiro. 2022. 61 f. Dissertação (Mestrado em Modelagem Matemática e Computacional) - Instituto de Ciências exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14353-
dc.description.abstractA previsão do consumo de energia elétrica é muito importante para o planejamento energético de um país, empresa ou região. O interesse pelas projeções do consumo de energia elétrica está relacionado, em geral, ao impacto financeiro que a distribuição de energia pode ge- rar, podendo causar imensos prejuízos. Neste trabalho, propomos uma metodologia utilizando a abordagem bottom-up por meio de modelos de séries temporais e análise de cluster para obter a previsão do consumo de energia elétrica. As medidas de eficiência energética foram inseridas na metodologia para avaliar a economia de energia elétrica. Em particular, esta metodologia foi aplicada aos dados de consumo de energia elétrica da Universidade Federal Rural do Rio de Janeiro (UFRRJ). Os resultados mostram que a metodologia apresentou um erro percentual absoluto médio de aproximadamente 1%. Além disso, essa metodologia demostrou um grande potencial para avaliar a implementação de medidas de eficiência energética.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectConsumo de Energia Elétricapor
dc.subjectSéries Temporaispor
dc.subjectAnálise de Clusterpor
dc.subjectPrevisãopor
dc.subjectMedidas de Eficiência Energéticapor
dc.subjectElectricity Consumptioneng
dc.subjectTime Serieseng
dc.subjectCluster Analysiseng
dc.subjectForecasteng
dc.subjectEnergy Effi- ciency Measureseng
dc.titleUm estudo sobre a previsão do consumo de energia elétrica considerando as medidas de eficiência energética: aplicado à Universidade Federal Rural do Rio de Janeiropor
dc.title.alternativeA study on forecasting electricity consumption considering energy efficiency measures: applied to the Federal Rural University of Rio de Janeiroeng
dc.typeDissertaçãopor
dc.description.abstractOtherElectricity consumption forecasting is very important for the energy planning of a country, com- pany or region. The interest in electricity consumption projections is related, in general, to the financial impact that energy distribution can generate, which can cause immense losses. In this work, we propose a methodology using the bottom-up approach through time series models and cluster analysis to obtain the prediction of electricity consumption. Energy efficiency measures were inserted into the methodology to assess electricity savings. In particular, this methodology was applied to electricity consumption data from the Federal Rural University of Rio de Janeiro (UFRRJ). The results show that the methodology presented an average absolute percentage er- ror of approximately 1%. In addition, this methodology has shown great potential for evaluating the implementation of energy efficiency measures.eng
dc.contributor.advisor1Silva, Felipe Leite Coelho da
dc.contributor.advisor1ID099.619.917-96por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7090-5716por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9601624302826678por
dc.contributor.referee1Silva, Felipe Leite Coelho da
dc.contributor.referee1ID099.619.917-96por
dc.contributor.referee1IDhttps://orcid.org/0000-0002-7090-5716por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9601624302826678por
dc.contributor.referee2Vera-Tudela, Carlos Andrés Reyna
dc.contributor.referee2IDhttps://orcid.org/0000-0001-5855-8611por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6509989261742578por
dc.contributor.referee3Oliveira, Fernando Luiz Cyrino
dc.contributor.referee3IDhttps://orcid.org/0000-0003-1870-9440por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0348074510343282por
dc.creator.ID106.627.186-07por
dc.creator.Latteshttp://lattes.cnpq.br/7644532697097294por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Modelagem Matemática e Computacionalpor
dc.relation.references1 HAHN, H.; MEYER-NIEBERG, S.; PICKL, S. Electric load forecasting methods: tools for decision making. Eur J Oper Res, 2009;199(3):902e7. https://doi.org/10.1016/j.ejor.2009.01.062. 2 EMPRESA DE PESQUISA ENERGÉTICA (EPE). ESTUDOS DA DEMANDA DE ENERGIA: Demanda de Energia 2050. 2016. Disponível em: https://www.epe.gov.br/sites- pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-227/topico- 458/DEA%2013-15%20Demanda%20de%20Energia%202050.pdf. Acesso em: 16 fev. 2022. 3 SILVA, F. L. C. et al. A bottom-up methodology for long term electricity consumption forecasting of an industrial sector – Application to pulp and paper sector in Brazill, Energy, 144:1107–1118, 2018. https://doi.org/10.1016/j.energy.2017.12.078. 4 MAÇAIRA, Paula Medina. Modelagem e previsão das séries de consumo de energia elétrica no Brasil com métodos de suavização exponencial de Pegels e abordagem bottom up por uso final. Rio de Janeiro, 2015. Dissertação (Programa de Pós Graduação em Engenharia Elétrica) - Pontifícia Universidade Católica do Rio De Janeiro. 5 ZELLNER, A.; TOBIAS, J. A note on aggregation, disaggregation and fore- casting performance. J. Forecasting, 19:457-69, 2000. https://doi.org/10.1002/1099- 131X(200009)19:5<457::AID-FOR761>3.0.CO;2-6 6 HYNDMAN, R. et al. Optimal combination forecasts for hierarchical time series. Computa- tional Statistics & Data Analysis, 2011;55:2579e89. https://doi.org/10.1016/j.csda.2011.03.006 7 FLEITER, T. et al. Energy efficiency in the german pulp and paper industry – a model-based assessment of saving potentials. Energy, v. 40, p. 84–99, 2012. 8 HERBST, A. et al. Introduction to energy systems modelling. Swiss Journal of Economics and statistic, v. 148, p. 111–135, 2012. 9 CHATEAU, B.; LAPILLONNE, B. Long-term energy demand forecasting a new approach. Energy Pol, 1978;6:140e57. https://doi.org/10.1016/0003-4916(63)90068-X. 10 GEROSKI P. A. Models of technology diffusion. Res Pol, 2000;29:603e25. https://doi.org/10.1016/S0048-7333(99)00092-X 11 FLIEDNER, G. Hierarchical forecasting: issues and use guidelines. Industrial Management & Data Systems, v. 101, p. 5–12, 2001. 12 KINNEY, W. R. Predicting earnings: entity versus sub-entity data. Journal of Accounting Research, v. 9, p. 127–136, 1971. 13 COLLINS, D. W. Predicting earnings with sub-entity data: some further evidence. Journal of Accounting Research, v. 14, p. 163–177, 1976. 14 DUNN, D. M.; WILLIAMS, W. H.; DECHAINE, T. L. Aggregate versus sub aggregate models in local area forecasting. Journal of the American Statistical Association, v. 71, p. 68–71, 1976. 15 DANGERFIELD, B. J.; MORRIS, J. S. Top-down or bottom-up: aggregate versus disaggregate extrapolations. International Journal of Forecasting, v. 8, p.233–241, 1992. 16 JACOBSEN, H. K. Integrating the bottom-up and top-down approach to energyeconomy modelling: the case of Denmark. Energy Econ. 1998;20:443e61. https://doi.org/10.1016/S0140- 9883(98)00002-4. 17 KOOPMANS, C.C.; VELDE, D.W. Bridging the energy efficiency gap: using bottomup information in a top-down energy demand model. Energy Econ. 2001;23: 57e75. https://doi.org/10.1016/S0140-9883(00)00054-2. 18 SWAN, L. G.; UGURSAL, V. I. Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew Sustain Energy. Rev 2009;13:1819e35. https://doi.org/10.1016/j.rser.2008.09.033. 19 HALL, L. M.; BUCKLEY, A. R. A review of energy systems models in the UK: prevalent usage and categorisation. Appl Energy. 2016;169(Supplement C):607e28. https://doi.org/10.1016/j.apenergy.2016.02.044. 20 GHEDAMSI, R. et al. Modeling and forecasting energy consumption for re- sidential buildings in Algeria using bottom-up. Energy Build. 2016;121:309e17. https://doi.org/10.1016/j.enbuild.2015.12.030. 21 GEORGIOU, P. N. A bottom-up optimization model for the long-term energy planning of the greek power supply sector integrating mainland and insular electric systems. Computers & Operations Research, v. 66, n. Supplement C, p. 292 – 312, 2016. ISSN 0305-0548. 22 YI, B.-W.; XU, J.-H.; FAN, Y. Inter-regional power grid planning up to 2030 in china considering renewable energy development and regional pollutant control: A multi-region bottom-up optimization model. Applied Energy, v. 184, n. Supplement C, p. 641–658, 2016. ISSN 0306-2619. 23 LEE, C.-Y.; HUH, S.-Y. Forecasting new and renewable energy supply through a bottom-up approach: The case of south korea. Renewable and Sustainable Energy Reviews, v. 69, n. Supplement C, p. 207 – 217, 2017. ISSN 1364-0321. 24 BERNTSEN, P. B.; TRUTNEVYTE, E. Ensuring diversity of national energy scenarios: Bottom-up energy system model with modeling to generate alternatives. Energy, v. 126, p. 886–898, 2017. ISSN 0360-5442. 25 BRILL, J. E. D.; CHANG, S.-Y.; HOPKINS, L. Modeling to generate alternatives: The hsj approach and an illustration using a problem in land use planning. Management Science, v. 28, p. 221–235, 1982. 26 DECAROLIS, J. F. Using modeling to generate alternatives (mga) to expand our thinking on energy futures. Energy Economics, v. 33, n. 2, p. 145 – 152, 2011. ISSN 0140-9883. 27 DECAROLIS, J. F. Using modeling to generate alternatives (mga) to expand our thinking on energy futures. Energy Economics, v. 33, n. 2, p. 145 – 152, 2011. ISSN 0140-9883. 28 TRUTNEVYTE, E. Expanse methodology for evaluating the economic potential of renewable energy from an energy mix perspective. Applied Energy, v. 111, n. Supplement C, p. 593 – 601, 2013. ISSN 0306-2619. 29 TRUTNEVYTE, E. Does cost optimization approximate the real-world energy transition. Energy, v. 106, n. Supplement C, p. 182 – 193, 2016. ISSN 0360-5442. 58 30 KOLTSAKLIS, N. E.; LIU, P.; GEORGIADIS, M. C. An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response. Energy, v. 82, n. Supplement C, p. 865 – 888, 2015. ISSN 0360-5442. 31 KABOLI, S. H. A.; SELVARAJ, J.; RAHIM, N. Long-term electric energy consumption forecasting via artificial cooperative search algorithm. Energy, v. 115, n. Part 1, p. 857 – 871, 2016. ISSN 0360-5442. 32 BEER, J.; WORRELL, E.; BLOKT, K. Long-term energy-efficiency improvements in the paper and board industry. Energy, v. 23, p. 21–42, 1997. 33 WORRELL, E.; PRICE, L. Policy scenarios for energy efficiency improvement in industry Energy Policy, v. 29, p. 1223–1241, 2001. 34 TANAKA, K. Review of policies and measures for energy efficiency in industry sector. Energy Policy, v. 39, p. 6532–6550, 2011. 35 FLEITER, T.; WORRELL, E.; EICHHAMMER, W. Barriers to energy efficiency in industrial bottom-up energy demand models - a review. Renew Sustain Energy, Rev 2011;15(6):3099e111. https://doi.org/10.1016/j.rser.2011.03.025. 36 GIRALDO, L.; HYMAN, B. Energy end-use models for pulp, paper, and paperboard mills. Energy, v. 20, p. 1005–1019, 1995. 37 GIRALDO, L.; HYMAN, B. An energy process-step model for manufacturing paper and paperboard. Energy, v. 21, p. 667–681, 1996. 38 FARLA, J.; BLOK, K.; SCHIPPER, L. Energy efficiency developments in the pulp and paper industry: A cross-country comparison using physical production data. Energy Policy, v. 97, p. 745–758, 1997. 39 KRAMER, K. J. et al. Energy efficiency improvement and cost saving opportunities for the pulp and paper industry. https://www.energystar.gov/ia/business/industry/downloads/Pulpand- Paper-Energy-Guide.pdf, 2009. 40 FRACARO, G. et al. Energy efficiency improvement and cost saving opportunities for the pulp and paper industry. Energies, 2012;5:3550e72. https://doi.org/10.3390/en5093550. 41 CAMIOTO, F. D. C.; MARIANO, E. B.; REBELATTO, D. A. D. N. efficiency in Brazil’s industrial sectors in terms of energy and sustainable development. Environ Sci Pol, 2014;37:50e60. https://doi.org/10.1016/j.envsci.2013.08.007. 42 DA SILVA, F. L. C. et al. Forecast of long-term electricity consumption of the industrial sub-sector of pulp and paper in Brazil using a bottom-up approach. Procedia Computer Science, 2015;55:514e22. https://doi.org/10.1016/j.procs.2015.07.028. 43 DA SILVA, F. L. C. et al. A bottom-up bayesian extension for long term electricity consumption forecasting. Energy, 2019;198:210;167. http://dx.doi.org/10.1016/j.energy.2018.10.201. 44 DA SILVA, F. L. C. et al. Statistical and Artificial Neural Networks Models for Electricity Consumption Forecasting in the Brazilian Industrial Sector. Energies, 2022; 15, 588. https://doi.org/10.3390/en15020588. 45 PAO, H. T.; TSAI, C. M. Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil. Energy, 2011;36:2450e8. https:// doi.org/10.1016/j.energy.2011.01.032. 46 MAÇAIRA, P. M.; ELSLAND, R.; SOUZA, R. C.; OLIVEIRA, F. L. C.; FERNANDES, G Forecasting residential electricity consumption: a bottom-up approach for Brazil by region Energy Efficiency , 2020; 13,911–934. https://doi.org/10.1007/s12053-020-09860-w 59 47 MAÇAIRA, P. M.; SOUZA, R. C.; OLIVEIRA, F. L. C. Modelling and Forecasting the Residential Electricity Consumption in Brazil with Pegels Exponential Smoothing Techniques. Procedia Computer Science. 328-335 p, 2015 48 CABRAL, J. A.; CABRAL, M. V. F.; JÚNIOR, A. O. P.Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil. Utilities Policy. 101108 p, 2020 49 IRFFI, G. et al. Previsão da demanda por energia elétrica para classes de consumo na região Nordeste, usando OLS dinâmico e mudança de regime. Econ. Apl.. 13, 2009. https://doi.org/10.1590/S1413-80502009000100004 50 RODRIGUES, A. GreenSDN: energy efficiency in software defined networks. São Paulo, 20016 Dissertação (Engenharia de Computação) - Universidade de São Paulo. 51 EVERITT, B. S. et al. Cluster Analysis, 5a. edição. Wiley, United Kingdom, 2011. 52 HARTIGAN, J. A.; WONG, M. A. Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 1979, 28, 100-108. doi: 10.2307/2346830. 53 MACQUEEN, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M. Le Cam & J. Neyman, 1967, 1, pp. 281-297. Berkeley, CA: University of California Press. 54 LLOYD, S. P. Least squares quantization in PCM. Technical Note, Bell Laboratories. Published in 1982 in IEEE Transactions on Information Theory, 28, 128-137. 55 FORGY, E. W. Cluster analysis of multivariate data: efficiency vs interpretability of classifications. Biometrics, 1965, 21, 768-769. 56 LINDEN, R. Técnicas de Agrupamento. Revista de Sistemas de Informação da FSMA, n. 4 (2009) pp. 18-36, http://www.fsma.edu.br/si/sistemas.html 57 EHLERS, R.S. Análise de séries temporais, 5a. edição. 2009. 58 MORETTIN, P. A.; TOLOI, C. M. C. Ánálise de séries temporais, 2a. edição. E. Blücher, São Paulo, 2006. 59 BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. C. Time Series Analysis: Forecasting and Control, 4a. edição. Wiley, New Jersey, 2008. 60 SARNAGLIA, A. J. Q.; REISEN, V. A. Estimação Robusta em Processos Periódicos Auto-regressivos na Presença de Outliers Aditivos. In: 19o SINAPE, n. 19°. 2010, São Pedro, 2010. 61 GRANGER, C. W. J.; NEWBOLD, P. Forecasting Economic Time Series, Academic Press, New York, 1977. 62 HYNDMAN, R. ATHANASOPOULOS, G. Forecasting: Principles and Practice. 2. ed. Monash University, Australia 63 MATOS, D. B. Técnicas de Estimação de Parâmetros Utilizadas para a Modelagem Matemática de Propulsores Eletromecânicos. Ijuí, 2018 Dissertação (Modelagem Matemática) - Universidade Regional do Noroeste do Estado do Rio Grande do Sul. 64 PANKRATZ, A. Forecasting with Dynamic Regression Models. 1 ed. John Wiley & Sons, 1991. 65 ZANINI, A. Redes Neurais e Regressão Dinâmica: um modelo híbrido para a previsão de curto prazo da demanda de gasolina automotiva no Brasil. Rio de Janeiro, 2000 Dissertação (Engenharia Elétrica) - Pontifícia Universidade Católica do Rio de Janeiro. 60 66 WEST, M.; Harrison, J. Bayesian Forecasting and Dynamic Models. 2 ed. Springer, 1997. 67 MCCULLOCH, W. S; PITTS, W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 115–133 p, 1943. 68 DA SILVA, I. N.; SPATTI, D. H.; FLAUZINO, R. A. Redes Neurais Artificiais: para engenharia e ciências aplicadas. 2 ed. São Paulo: Artliber, 2016. 69 EMPRESA DE PESQUISA ENERGÉTICA. Eficiência Energética. Disponível em: https://www.epe.gov.br/pt/abcdenergia/eficiencia-energetica. Acesso em: 3 fev. 2022 70 DA SILVA, F. L. C. Extensão Estocástica Bayesiana da Abordagem Bottom-up Determinística para a Previsão de Longo Prazo do Consumo de Energia. Rio de Janeiro, 2017 Tese (Engenharia Elétrica) - Pontifícia Universidade Católica do Rio de Janeiro. 71 MATHEWS, J. A.; BARONI, P. The industrial logistic surface: Displaying the impact of energy policy on uptake of new technologies, Energy, v. 57, p. 733–740, 2013. http://dx.doi.org/10.1016/j.energy.2013.05.048. 72 JAFFE, A. B.; STAVINS, R. N. The energy paradox and the diffusion of con- servation technology, Resource and Energy Economics, v. 16, p. 91–122, 1994. https://doi.org/10.1016/0928-7655(94)90001-9 73 INMETRO. Informação ao Consumidor. Disponível em: http://www.inmetro.gov.br/consumidor/tabelas.asp. Acesso em: 3 fev. 2022. 74 PROCEL. PROCEL INFO. Disponível em: http://www.procel.gov.br/main.asp?View=B70B5A3C-19EF-499D-B7BC-D6FF3BABE5FA. Acesso em: 3 fev. 2022. 75 PROCEL. Edificações. Disponível em: http://www.procelinfo.com.br/main.asp?TeamID=%7B82BBD82C-FB89-48CA-98A9- 620D5F9DBD04%7D. Acesso em: 3 fev. 2022.por
dc.subject.cnpqProbabilidade e Estatísticapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74691/2022%20-%20Douglas%20Bortolassi%20Filgueiras.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6906
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-05T13:48:53Z No. of bitstreams: 1 2022 - Douglas Bortolassi Filgueiras.pdf: 1146761 bytes, checksum: 2ce4c5cdbb41158a3ad86d59b5a1b0b1 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-09-05T13:48:53Z (GMT). No. of bitstreams: 1 2022 - Douglas Bortolassi Filgueiras.pdf: 1146761 bytes, checksum: 2ce4c5cdbb41158a3ad86d59b5a1b0b1 (MD5) Previous issue date: 2022-05-30eng
Appears in Collections:Mestrado em Modelagem Matemática e Computacional

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Douglas Bortolassi Filgueiras.pdf2022 - Douglas Bortolassi Filgueiras1.12 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.