Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/14537
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Almeida, Vitor dos Santos | |
dc.date.accessioned | 2023-12-22T03:03:02Z | - |
dc.date.available | 2023-12-22T03:03:02Z | - |
dc.date.issued | 2016-04-15 | |
dc.identifier.citation | ALMEIDA, Vitor dos Santos. Análise de mistura de componentes de óleo decantado por meio de DOSY/RMN auxiliada por matrizes. 2016. 123 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2016. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/14537 | - |
dc.description.abstract | Um grande desafio, muitas das vezes até comum nos laboratórios, é a análise de misturas. Os métodos convencionais em sua maioria exigem um tratamento prévio das misturas, o que demanda tempo, além de interferir diretamente no equilíbrio do sistema. Hoje em dia, a técnica de Ressonância Magnética Nuclear pode ser usada na análise de misturas medindo-se o coeficiente de difusão dos componentes da mistura, permitindo a obtenção dos espectros de cada componente individualmente por meio de um experimento rápido que não interfere na mistura em si. O experimento mais comum é o DOSY, do inglês Espectroscopia de Difusão Ordenada. Piches, em geral, são produtos que são empregados como matérias-primas na produção de uma variedade de materiais de carbono, tais como: anodos de carbono para produção de alumínio, eletrodos de grafite para a indústria siderúrgia e fibras de carbono. Piches obtidos a partir do alcatrão da hulha, resíduo da produção de coque metalúrgico, são os tradicionalmente mais usados, mas apresentam alto potencial carcinogênico e tem demanda decrescente em função de novas tecnologias empregadas nas coquerias. Piches de petróleo, produzidos a partir de óleos decantados, podem potencialmente constituir uma alternativa mais segura e com maior disponibilidade. O óleo decantado é uma fração pesada obtida nas unidades de craqueamento catalítico fluido no refino de petróleo, e o controle de seu processamento é dificultado pela complexidade de sua composição, que inclui compostos parafínicos, homoaromáticos e heteroaromáticos. O presente trabalho se propõem a investigar a análise por RMN de uma mistura de padrões de substâncias representativas dos tipos de compostos presentes no óleo decantado. Assim, foram escolhidos padrões de Tetracosano, Fenantreno, 9-metil Antraceno, Pireno, Carbazol, 9-metil Carbazol, Dibenzotiofeno, Dibenzofurano, Hexadecano, 1-metil Naftaleno, Tiofeno, Tetrahidrofurano. Todos os experimentos foram realizados no laboratório de RMN do PPGQ-UFRRJ a 20ºC com o espectrômetro de RMN de 500 MHz Bruker Avance III, equipado com sonda BBO, gradiente no eixo z. Para auxiliar na separação dos componentes da mistura foram usados o polímero poli-(etilenoglicol), poli-(vinilpirrolidona), poli-(dimetilsiloxano), poli-(metacrilato de butila) e poli-(acetato de vinila), além do reagente de deslocamento Eu(fod)3. Os resultados obtidos a partir dos experimentos de DOSY-INEPT mostraram que o polímero PMAB foi a matriz que mais auxiliou na separação dos componentes da mistura em questão no presente trabalho, sendo seguido pelas matrizes PAV, PEG e PVP, que também apresentaram resultados satisfatórios | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Diffusion Coefficient | eng |
dc.subject | NMR | eng |
dc.subject | Coeficiente de difusão | por |
dc.subject | DOSY-INEPT | por |
dc.subject | RMN | por |
dc.title | Análise de mistura de componentes de óleo decantado por meio de DOSY/RMN auxiliada por matrizes | por |
dc.title.alternative | Mixing analysis of oil components decanted by means of DOSY / RMN assisted by matrices | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | The analysis of mixtures is a common place challenge in the laboratory. Conventional methods demand a previous treatment which may be time consuming. At present, Nuclear Magnetic Resonance may be employed for the analysis of mixtures by using the DOSY (diffusion ordered spectroscopy) technique, whereby the different components of a mixture are separated by their diffusion coefficients. Pitches, in general, are products which are employed as starting material for the production of a variety of carbon materials, such as anodes for the production of aluminum, graphite electrodes for the steel industry, and carbon fibers. Pitches obtained from coal tar, itself a residue in the production of coke, are the most traditionally used. However, it is a carcinogen and therefore has had its use greatly diminished. Petroleum pitches, which are produced from decanted oil, may be a safer and less expensive alternative. The decanted oil is a heavy fraction obtained from catalytic cracking of petroleum. The difficulties in controlling its processing are derived from its complex composition, which includes paraffins, aromatic and heteroaromatic compounds. The present work investigates the analysis by NMR-DOSY of a mixture of model compounds present in decanted oil. Thus, a mixture of Tetracosane, Phenanthrene, 9-Mehylanthracene, Pyrene, Carbazole, 9-metil Carbazol, Dibenzothiophene, Dibenzofuran, Hexadecane, 1-Methylnaphthalene, Thiophene, Tetrahydrofuran was analyzed by NMR with an Avance III 500 MHz NMR spectrometer equipped with a BBO probe with a gradient on z-axis, at 20ºC. To help in the separation by diffusion, the following polymers were used: poly-(ethyleneglycol), poly-(vinylpyrrolidone), poly-(dimethylsiloxan), poly-(butylmethacrylate) e poly-(vinylacetate).The shift reagent Eu(fod)3 was also employed. The results from DOSY-INEPT experiments show that poly-(butylmethacrylate) is the matrix which afforded the best separation of the different components of the mixture, followed by poly-(vinylacetate), poly-(ethyleneglycol) and finally, poly-(vinylpyrrolidone), which showed satisfactory results | eng |
dc.contributor.advisor1 | Rumjanek, Victor Marcos | |
dc.contributor.advisor1ID | 435.539.087-06 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/6167025404438965 | por |
dc.contributor.advisor-co1 | Castro, Alexandre Taschetto de | |
dc.contributor.advisor-co1ID | 2399404742 | por |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3881813210889062 | por |
dc.contributor.referee1 | Ruiz, Naira Machado da Silva | |
dc.contributor.referee2 | Barreto Jr., Cleber Bomfim | |
dc.creator.ID | 119.143.827-90 | por |
dc.creator.Lattes | http://lattes.cnpq.br/7100510933977310 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Exatas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ADAMS, R. W. et al. Resolving natural product epimer spectra by matrix-assisted DOSY. Organic & biomolecular chemistry, v. 9, n. 20, p. 7062–4, 2011. ALBERT, K; On-line LC-NMR and Related Techiquer; Albert, K., Ed.; Willey: Chichester, Sussex, 2002. ALCALDE, G. L.; JOYCE, R. E.; DAY, I. J. Size-exclusion chromatographic NMR of polymer mixtures. Magnetic resonance in chemistry : MRC, v. 52, n. 12, p. 760–3, 2014. ANTALEK, B. Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results. Concepts in Magnetic Resonance Part A: Bridging Education and Research, v. 14, p. 225–258, 2002. AVRAM, L.; COHEN, Y. Diffusion NMR of molecular cages and capsules. Chem. Soc. Rev., v. 44, n. 2, p. 586–602, 2015. BARJAT, H.; MORRIS, G.; SWANSON, A. A three-dimensional DOSY-HMQC experiment for the high-resolution analysis of complex mixtures. Journal of Magnetic Resonance, v. 131, n. 1, p. 131–8, 1998. BOTANA, A. et al. High resolution 13C DOSY: The DEPTSE experiment. Journal of Magnetic Resonance, v. 211, n. 1, p. 25–29, 2011. CARR, H.; PURCELL, E. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Physical Review, v. 94, n. 3, p. 630–638, 1954. CASSANI, J.; NILSSON, M.; MORRIS, G. A. Flavonoid Mixture Analysis by Matrix-Assisted Diffusion-Ordered Spectroscopy. Journalof Natural Products, v. 75, p. 131–134, 2012. CAYTAN, E. et al. Precise and accurate quantitative (13)C NMR with reduced experimental time. Talanta, v. 71, n. 3, p. 1016–21, 2007. CHAUDHARI, S. R.; SRINIVASA; SURYAPRAKASH, N. A versatile resolving agent for diffusion edited separation of enantiomers, complex mixtures and constitutional isomers. RSC Advances, v. 2, n. 23, p. 8689, 2012. CHAUDHARI, S. R.; SRINIVASA; SURYAPRAKASH, N. Cyclodextrin and its complexation for resolution of isomers using diffusion ordered spectroscopy. Journal of Molecular Structure, v. 1033, p. 75–78, 2013. COHEN, Y.; AVRAM, L.; FRISH, L. Diffusion NMR Spectroscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter - New Insights. Angewandte Chemie International Edition, v. 44, n. 4, p. 520–554, 2005. EASTEAL, J. A. Tracer diffusion in aqueous sucrose and urea solutions. Can. J. Chem., v. 68, p. 0–4, 1990. FORRESTER, A. T.; GUDMUNDSEN, R. A.; JOHNSON, P. O. Photoelectric mixing of incoherent light. Physical Review, v. 99, p. 1691–1700, 1955. GIBBS, S. J.; JOHNSON, C. S. A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. Journal of Magnetic Resonance, v. 93, n. 2, p. 395– 121 402, 1991. GIL, V. M. S.; GERALDES, C. F. G. C. Ressonância Magnética Nuclear, Fundação Calouste Gulbenkian: Lisboa, 1987, p. 549-552. GLANZER, S.; ZANGGER, K. Directly decoupled diffusion-ordered NMR spectroscopy for the analysis of compound mixtures. Chemistry - A European Journal, v. 20, p. 11171–11175, 2014. GOZANSKY, E. K.; GORENSTEIN, D. G. DOSY-NOESY: Diffusion-Ordered NOESY. Journal of Magnetic Resonance, Serie B, v. 96, p. 94–96, 1996. GUANG, J.; HOPSON, R.; WILLIARD, P. G. Diffusion Coefficient-Formula Weight (D-FW) Analysis of 2H Diffusion-Ordered NMR Spectroscopy (DOSY). The Journal of Organic Chemistry, v. 80, n. 18, p. 9102–9107, 2015. HAHN, E. Spin Echoes. Physical Review, v. 80, n. 4, p. 580–594, 1950. HAKANSSON, B. et al. The influence of a nonconstant Magnetic-field gradient on PFG NMR diffusion experiments. A Brownian-Dynamics computer simulation study. Journal Of Magnetic Resonance, v. 124, n. 2, p. 343–351, 1997. HUANG, S. et al. Polydimethylsiloxane: a general matrix for high-performance chromatographic NMR spectroscopy. Angewandte Chemie (International ed. in English), v. 53, n. 43, p. 11592–5, 2014. JOHNSON JR., C. S. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Progress in Nuclear Magnetic Resonance Spectroscopy, v. 34, p. 203–256, 1999. KAGAN, G. et al. Internally referenced diffusion coefficient-Formula weight (D-FW) analysis of 31P diffusion-ordered NMR spectroscopy (DOSY). Organic Letters, v. 11, n. 21, p. 4818–4821, 2009. KAGAN, G. et al. 6Li diffusion-ordered NMR spectroscopy (DOSY) and applications to organometallic complexes. Organic letters, v. 12, n. 3, p. 520–523, 2010. KAPUR, G. S.; FINDEISEN, M.; BERGER, S. Analysis of hydrocarbon mixtures of diffusion-ordered NMR spectroscopy. Fuel, v. 79, n. 11, p. 1347–1351, 2000. KAVAKKA, J. S. et al. Enhanced chromatographic NMR with polyethyleneglycol. A novel resolving agent for diffusion ordered spectroscopy. Magnetic Resonance in Chemistry, v. 48, n. June, p. 777–781, 2010. KAVAKKA, J. S.; KILPELÄINEN, I.; HEIKKINEN, S. General chromatographic NMR method in liquid state for synthetic chemistry: polyvinylpyrrolidone assisted DOSY experiments. Organic letters, v. 11, n. 6, p. 1349–52, 2009. LI, D. et al. Characterization of reactive intermediates by multinuclear diffusion-ordered NMR spectroscopy (DOSY). Accounts of chemical research, v. 42, n. 2, p. 270–280, 2009. LIU, W.; WU, J.-J. Mixture Pseudo-Chromatographic Separation by Matrix-Assisted Diffusion Ordered Spectroscopy. JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, v. 35, n. 1, p. 77–81, 2013. LOH, W. A TÉCNICA DE DISPERSÃO DE TAYLOR PARA ESTUDOS DE DIFUSÃO EM LÍQUIDOS E SUAS APLICAÇÕES. Química nova, v. 20, n. 5, p. 541–545, 1997. 122 MORRIS, K. F.; JOHNSON, C. S. Diffusion-ordered 2-dimensional nuclear-magnetic-resonance spectroscopy. Journal of the American Chemical Society, v. 114, p. 3139–3141, 1992. MORRIS, K. F.; STILBS, P.; JOHNSON JR., C. S. Analysis of mixtures based on molecular size and hydrophobicity by means of diffusion-ordered 2D NMR. Analytical Chemistry, v. 66, n. 2, p. 211–215, 1994. NILSSON, M. et al. Improving pulse sequences for 3D DOSY: COSY-IDOSY. Chemical Communications, n. 13, p. 1737, 2005. NILSSON, M. et al. Biexponential fitting of diffusion-ordered NMR data: Practicalities and limitations. Analytical Chemistry, v. 78, n. 9, p. 3040–3045, 2006. NOVOA-CARBALLAL, R. et al. NMR methods for unravelling the spectra of complex mixtures. Natural product reports, v. 28, n. 1, p. 78–98, 2011. PADUANO, L. et al. Diffusion properties of cyclodextrins in aqueous solution at 25°C. Journal of Solution Chemistry, v. 19, n. 1, p. 31–39, 1990. PAGES, G.; DELAURENT, C.; CALDARELLI, S. Simplified analysis of mixtures of small molecules by chromatographic NMR spectroscopy. Angewandte Chemie - International Edition, v. 45, p. 5950–5953, 2006. PELTA, M. D. et al. Pulse sequences for high-resolution diffusion-ordered spectroscopy (HR-DOSY). Magnetic Resonance in Chemistry, v. 36, n. 10, p. 706–714, 1998. PEMBERTON, C. et al. NMR chromatography using microemulsion systems. Langmuir, v. 27, p. 4497–4504, 2011. PESSINE, F.; CALDERINI, A.; ALEXANDRINO, G. Review: Cyclodextrin Inclusion Complexes Probed by NMR Techniques. Researchgate.Net, v. 1, 1998. POGGETTO, G. F. D. “EXPERIMENTOS DE DOSY UTILIZANDO RMN DE 19F PARA O ESTUDO DE MISTURAS COMPLEXAS”. DISSERTAÇÃO, UNIVERSIDADE ESTADUAL DE CAMPINAS, 2015. ROGERSON, A. K. et al. Simultaneous enhancement of chemical shift dispersion and diffusion resolution in mixture analysis by diffusion-ordered NMR spectroscopy. Chem Commun (Camb), v. 47, n. 25, p. 7063–7064, 2011. SALVIA, M.-V. et al. AuNP115-Nanoparticle-assisted NMR detection of organic anions: from chemosensing to chromatography.Journal of the American Chemical Society, v. 137, n. 2, p. 886–92, 2015. SOUZA, A. A. DE. Aplicação Da Espectroscopia De Ressonância Magnética Nuclear Para Estudos De Difusão Molecular Em Líquidos: a Técnica Dosy. Química nova, v. 25, n. 6, p. 1022–1026, 2002. SOUZA, A. A.; MARSIOLI, A. J.; FERREIRA, A. G.; LAVERDE JR., A.; FUJIWARA, F. Y.; FIGUEIREDO, I. M.; VIZZOTTO, L.; FERNANDES, S. A. . “Fundamentos e Aplicações da Ressonância Magnética Nuclear – Difusão Molecular por RMN”. 1°. ed. Rio de Janeiro: AUREMN, 2009. STCHEDROFF, M. J. et al. 2D and 3D DOSY methods for studying mixtures of oligomeric dimethylsiloxanes. Physical Chemistry Chemical Physics, v. 6, n. 13, p. 3221, 2004. 123 STEJSKAL, E. O.; TANNER, J. E. Spin diffusion measurements: spin echoes in the presence of a time-dependant field gradient. The Journal of chemical physics, v. 42, n. 1, p. 5, 1965. STILBS, P. Molecular self-diffusion coefficients in Fourier transform nuclear magnetic resonance spectrometric analysis of complex mixtures. Analytical Chemistry, v. 53, n. 13, p. 2135–2137, 1981. STILBS, P. Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Progress in Nuclear Magnetic Resonance Spectroscopy, v. 19, n. 1, p. 1–45, 1987. SUBRAMANIAN, H.; JASPERSE, C. P.; SIBI, M. P. Characterization of Brønsted Acid–Base Complexes by 19F DOSY. Organic Letters, p. 150302123116006, 2015. SWAN, I. et al. Sample convection in liquid-state NMR: Why it is always with us, and what we can do about it. Journal of Magnetic Resonance, v. 252, p. 120–129, 2015. TAYLOR, G. Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. Royal Soc. London Ser A, v. 219, p. 186, 1953. TORMENA, C. F. et al. Matrix-assisted diffusion-ordered spectroscopy: Mixture resolution by NMR using SDS micelles. Magnetic Resonance in Chemistry, v. 48, n. April, p. 550–553, 2010. TORMENA, C. F. et al. Matrix-assisted diffusion-ordered spectroscopy: application of surfactant solutions to the resolution of isomer spectra. Magnetic Resonance in Chemistry, v. 50, n. 6, p. 458–465, 2012. VIEIRA, M. G. S. et al. Natural product mixture analysis by matrix-assisted DOSY using Brij surfactants in mixed solvents. RSC Adv., v. 4, n. 79, p. 42029–42034, 2014. VIEL, S.; CALDARELLI, S. Improved 3D DOSY-TOCSY experiment for mixture analysis. Chemical communications (Cambridge, England), n. 17, p. 2013–5, 2008. VIEL, S.; ZIARELLI, F.; CALDARELLI, S. Enhanced diffusion-edited NMR spectroscopy of mixtures using chromatographic stationary phases. Proceedings of the National Academy of Sciences of the United States of America, v. 100, n. 17, p. 9696–8, 2003. VITORGE, B.; JEANNERAT, D.; JEANNEAT, D. NMR diffusion measurements in complex mixtures using constant-time-HSQC-IDOSY and computer-optimized spectral aliasing for high resolution in the carbon dimension. Analytical chemistry, v. 78, n. 15, p. 5601–6, 2006. VIZZOTTO, L. “ESTUDO E APLICAÇÕES DAS TÉCNICAS DE RMN HR-MAS E DOSY EM PLANTAS E EXTRATOS DE PLANTAS DA ORDEM RUTALES”. TESE DE DOUTORAMENTO,UNIVERSIDADE FEDERAL DE SÃO CARLOS, 2004. WU, D.; CHEN, A.; JOHNSON, JR., C. S. Heteronuclear-Detected Diffusion-Ordered NMR Spectroscopy through Coherence Transfer. Journal of Magnetic Resonance, Series A, v. 123, n. 2, p. 215–218, 1996. ZOU, G.; LIU, Z.; WANG, C. Flow injection analysis methods for determination of diffusion coefficients. Analytica Chimica Acta, v. 350, n. 2, p. 277–278, 1997. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/4897/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/14878/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/21160/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/27546/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/33914/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/40294/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/46664/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/53076/2016%20-%20Vitor%20dos%20Santos%20Almeida.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/1437 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-02-15T16:34:59Z No. of bitstreams: 1 2016 - Vitor dos Santos Almeida.pdf: 2652432 bytes, checksum: 7f27ae8d8b345f1dc55ee863302bfda7 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2017-02-15T16:34:59Z (GMT). No. of bitstreams: 1 2016 - Vitor dos Santos Almeida.pdf: 2652432 bytes, checksum: 7f27ae8d8b345f1dc55ee863302bfda7 (MD5) Previous issue date: 2016-04-15 | eng |
Appears in Collections: | Mestrado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2016 - Vitor dos Santos Almeida.pdf | Documento principal | 2.59 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.