Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/14561
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oliveira, Rodrigo César de Medeiros | |
dc.date.accessioned | 2023-12-22T03:03:09Z | - |
dc.date.available | 2023-12-22T03:03:09Z | - |
dc.date.issued | 2012-06-29 | |
dc.identifier.citation | OLIVEIRA, Rodrigo César de Medeiros. Estudo teórico da ozonólise do canfeno em fase gasosa. 2012. 175 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2012. | por |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/14561 | - |
dc.description.abstract | Neste trabalho, um modelo para a ozonólise do canfeno, que leva à formação de produtos carbonílicos, foi proposto e discutido com base nas propriedades termoquímicas e dados cinéticos obtidos em nível DFT de cálculo. Nosso mecanismo é iniciado pelo ataque eletrofílico do ozônio à dupla ligação do canfeno e produz o intermediário 1,2,3-trioxolano, o qual se decompõe em radical peroxi e compostos carbonílicos num total de 10 reações elementares. As propriedades termodinâmicas (diferenças de entalpia e entropia) foram calculadas a 298K. Para a avaliação termoquímica, cálculos teóricos foram realizados com os funcionais de densidade B3LYP, MPW1PW91 e mPW1K e conjuntos de base 6-31G(d), 6-31G(2d,2p), 6-31+G(d,p) e 6-31+G(2d,2p). Eventualmente, foram realizados cálculos single point para melhorar as energias eletrônicas. Os perfis entálpicos sugerem reações altamente exotérmicas para as etapas individuais, com uma diferença de entalpia global de -179,18 kcalmol-1, determinada em nível B3LYP/6-31+G(2d,2p). As diferenças de energia livre de Gibbs para cada etapa, a 298K, calculadas em níveis B3LYP/6-311++G(2d,2p)//B3LYP/6-31+G(2d,2p) foram usadas para estimar a composição de uma mistura de produtos finais em condições de equilíbrio com 58% de canfenilona e 42% de 6,6-dimetil--caprolactona-2,5-metileno. Para a cinética da reação, a etapa bimolecular O3 + canfeno foi assumida como sendo a etapa determinante do mecanismo global. Um estado de transição para adição de ozônio à dupla ligação foi localizado e os coeficientes de velocidade foram determinados com base na teoria de estado de transição. Este ponto de sela é muito bem representado por uma estrutura fracamente ligada e correções para o erro de superposição de base foram calculadas, seja por considerar o efeito sobre o procedimento de otimização de geometria (descrito aqui como procedimento CP1) ou o efeito do BSSE sobre a energia eletrônica de uma geometria previamente otimizada, incluído a posteriori (descrito aqui como CP2). Geometrias otimizadas foram localizadas para o complexo pré-barreira. Entretanto, a investigação dos perfis energéticos destas estruturas sugere que eles não desempenham um papel importante na cinética da ozonólise do canfeno. Os coeficientes de velocidade, calculados a 298K a partir da informação obtida em níveis mPW1K/6-31+G(d,p), CP1/B3LYP//6-31+G(2d,2p) e CP2/B3LYP//6-31+G(2d,2p) (3,62x10-18, 1,12x10-18 e 1,39x10-18 cm3.molécula-1.s-1) estão em bom acordo com o valor experimental na mesma temperatura, 0,9x10-18 cm3.molécula-1.s-1 (R. Atkinson, S. M. Aschmann, J. Arey. Atmos. Environ. 24, 2647 (1990)). O efeito variacional observado foi muito baixo e as razões entre coeficientes de velocidade convencionais e variacionais são menores que 1.06. Na faixa de 100 a 1000K foi observado um comportamento tipo Arrhenius. A importância das correções BSSE para os coeficientes de velocidade finais deve ser destacada. Além disso, este trabalho contribuirá para uma melhor compreensão da química de monoterpenos na atmosfera, assim como as implicações para o fenômeno da poluição. | por |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq | por |
dc.format | application/pdf | * |
dc.language | por | por |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | por |
dc.rights | Acesso Aberto | por |
dc.subject | Terpenos | por |
dc.subject | ozonólise | por |
dc.subject | termoquímica | por |
dc.subject | teoria de estado de transição | por |
dc.subject | Terpenes | eng |
dc.subject | ozonolysis | eng |
dc.subject | thermochemistry | eng |
dc.subject | transition state theory | eng |
dc.title | Estudo teórico da ozonólise do canfeno em fase gasosa | por |
dc.title.alternative | Theoretical study of the camphene ozonolysis in gas phase | eng |
dc.type | Dissertação | por |
dc.description.abstractOther | In this work, a chemical model for camphene ozonolysis, leading to carbonyl final products, is proposed and discussed on the basis of the thermochemical properties and kinetic data obtained at DFT levels of calculation. The mechanism is initiated by the electrophilic attack of ozone to the double bond in camphene leading to a 1,2,3-trioxolane intermediate, which decomposes to peroxy radicals and carbonyl compounds in a total of 10 elementary reactions. The thermodynamic properties (enthalpy and entropies differences) are calculated at 298K. For the thermochemical evaluation, theoretical calculations are performed with the B3LYP, MPW1PW91 and mPW1K density functionals and the basis sets 6-31G(d), 6-31G(2d,2p), 6-31+G(d,p) and 6-31+G(2d,2p). Eventually, single point calculations adopting the 6-311++G(2d,2p) basis set are performed in order to improve the electronic energies. The enthalpy profiles suggest highly exothermic reactions for the individual steps, with a global enthalpy difference of -179.18 kcalmol-1, determined at the B3LYP/6-31+G(2d,2p) level. The Gibbs free energy differences for each step, at 298K, calculated at the B3LYP/6-311++G(2d,2p)//B3LYP/6-31+G(2d,2p) level, are used to estimate the composition of a final product mixture under equilibrium conditions as 58% of camphenilone and 42% of 6,6-dimethyl--caprolactone-2,5-methylene. For the reaction kinetics, the bimolecular O3 + camphene step is assumed to be rate determining in the global mechanism. A saddle point for the ozone addition to the double bond is located and rate constants are determined on the basis of the transition state theory. This saddle point is well represented by a loosely bound structure and corrections for the basis set superposition error (BSSE) are calculated, either by considering the effect over the geometry optimization procedure (here referred as CP1 procedure), or the effect of the BSSE over the electronic energy of a previously optimized geometry, included a posteriori (here referred as CP2). Optimized geometries are located for the pre-barrier complex. However, the investigation of the energetic profiles of these structures suggests that they do not play any important role in the kinetics of the ozonolysis of camphene. The rate coefficients, calculated at 298K from the data obtained at the mPW1K/6-31+G(d,p), CP1/B3LYP//6-31+G(2d,2p) and CP2/B3LYP//6-31+G(2d,2p) levels (3.62x10-18, 1.12x10-18 and 1.39x10-18 cm3.molecule-1.s-1), are found in good agreement with the available experimental data at the same temperature, 0.9x10-18 cm3.molecule-1.s-1 (R. Atkinson, S. M. Aschmann, J. Arey. Atmos. Environ. 24, 2647 (1990)). The observed variational effect was found to be very low and the ratios between conventional and variational rate constants are less than 1.06. In the range from 100 to 1000K the Arrhenius behavior is observed. The importance of the BSSE corrections for the final rate constants must be pointed out. Furthermore, this work will contribute to a better understanding of the chemistry of monoterpenes in the atmosphere, as well as the implications for the phenomena of pollution. | eng |
dc.contributor.advisor1 | Bauerfeldt, Glauco Favilla | |
dc.contributor.advisor1ID | 069.023.487-23 | por |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1876040291299143 | por |
dc.contributor.referee1 | Klachquin, Graciela Arbilla de | |
dc.contributor.referee2 | Silva, Clarissa Oliveira da | |
dc.creator.ID | 102.534.047-70 | por |
dc.creator.Lattes | http://lattes.cnpq.br/8622286826964135 | por |
dc.publisher.country | Brasil | por |
dc.publisher.department | Instituto de Ciências Exatas | por |
dc.publisher.initials | UFRRJ | por |
dc.publisher.program | Programa de Pós-Graduação em Química | por |
dc.relation.references | ADAMO, C., BARONE, V. Toward Reliable Adiabatic Connection Models Free from Adjustable Parameters. Chemical Physics Letters, 1997, v274, pp 242-250. ALVARADO, A., TUAZON, E. C., ASCHMANN, S. M., ATKINSON, R., AREY, J. Products of the Gas-Phase Reactions of O (3P) Atoms and O3 with α-Pinene and 1,2-Dimethyl-1-Cyclohexene. Journal of Geophysical Research, 1998, 103, pp 25541-25551. AREY, J., CROWLEY, D.E., CROWLEY, M., RESKETO, M., LESTER, J. Hydrocarbon Emissions from Natural Vegetation in California’s South Coast Air Basin. Atmospheric Environment, 1995, v29, pp 2977-2988. AREY, J., WINER, A. M., ATKINSON, R., ASCHMANN, S. M., LONG, W. D., MORRISON, C. L., OLSZYK, D. M. Terpenes Emitted from Agricultural Species Found in California’s Central Valley. Journal of Geophysical Research, 1991, v96, pp 9329-9336. ATKINSON, R. Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds: 1. Alkanes and Alkenes. Journal of Physical and Chemical Reference Data, 1997, v26, pp 215-290. ATKINSON, R. Kinetics and Mechanism of the Gas-Phase Reactions of the NO3 Radical with Organic Compounds. Journal of Physical and Chemical Reference Data, 1990, v20, pp 459-507. ATKINSON, R., AREY, J. Atmospheric Chemistry of Biogenic Organic Compounds, Accounts on Chemical Research, v31, pp 574-583 ATKINSON, R., AREY, J., ASCHMANN, S. M., CORCHNOY, S. B. , SHU, Y. Rate Constants for the Gas-Phase Reactions of Cis-3-Hexen-1-ol, Cis-3-Hexenylacetate, Trans-2-Hexenal, and Linalool with OH and NO3 Radicals and O3 at 296 ± 2 K, and OH radical Formation Yields from the O3 Reactions. International Journal of Chemical Kinetics, 1995, v27, pp 941-955. ATKINSON, R., ASCHMAN, D., PITTS, J. N. Rate Constants for the Gas-Phase Reactions of the OH Radical with a Series of Monoterpenes at 294 ± 1 K. International Journal of Chemical Kinetics, 1986, v18, pp 287-294. ATKINSON, R., ASCHMAN, D., WINER, A. T. , PITTS, J. N. Kinetics and Atmospheric Implications of the Gas-Phase Reactions of Nitrate Radicals with a Series of Monoterpenes and Related Organics at 294 ± 2 K. Environmental Science Technology, 1985, V19, pp 159-167. ATKINSON, R., ASCHMANN, S. M., AREY, J. Rate Constants for the Gas-Phase Reactions of OH and NO3 Radicals and O3 with Sabinene and Camphene at 296 ± 2K. Atmospheric Environment, 1990, v24, pp 2647-2654. 142 ATKINSON, R., CARTER, W. P. L. Reactions of Alkoxy Radicals under Atmospheric Conditions: The Relative Importance of Decomposition Versus Reaction with O2. Journal of Atmospheric Chemistry, 1991, v13, pp 195-210. ATKINSON, R., HASEGAWA, D., ASCHMANN, S. M. Rate Constants for the Gas-Phase Reactions of O3 with a Series of Monoterpenes and Related Compounds at 296 ± 2 K. International Journal of Chemical Kinetics, 1990a, v22, pp 871-887. BABOUL, A. G., SCHELEGEL, H. B. Improved Method for Calculating Projected Frequencies Along a Reaction Path. Journal of Chemical Physics, 1997, v107, pp 9413-9417. BECKE, A. D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. Journal of Chemical Physics, 1993, v98, pp 5648-5652. BERNDT, T.; BÖGE, O. Products and Mechanism of the Gas-Phase Reaction of NO3 Radicals with α-Pinene. Journal of Chemical Society Faraday Transactions, 1997, v93, pp 3021-3027. BOYS, S. F., Bernardi, F. Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures With Reduced Errors. Molecular Physics, 1970, v19, pp 553-566. CALOGIROU, A., DUANE, M., KOTZIAS, D., LAHANIATI, M., LARSEN, B. R. Polyphenylenesulfide, Noxon® an Ozone Scavenger for the Analysis of Oxygenated Terpenes in Air. Atmospheric Environment, 1997, v31, pp 2741-2751. CALOGIROU, A., KOTZIAS, D., KETTRUP, A. Atmospheric Oxidation of Linalool. Naturwissenschaften, 1995, v82, pp 288-289. CALOGIROU, A. LARSEN, B. R., KOTZIAS, D. Gas-Phase Terpene Oxidation Products: A Review. Atmospheric Environment, 1999, v33, pp 1423-1439. CICCIOLI, P., BRANCALEONI, E., FRATTONI, M., CECINATO, A., BRACHETTI, A. Ubiquitous Ocorrence of Semi-Volatile Carbonyl Compounds in Tropospheric Samples and Their Possible Sources. Atmospheric Environment, 1993, v27, pp 1891-1901. CHAN, W. T., HAMILTON, I. P. Mechanisms for the Ozonolysis of Ehtene and Propene: Reliability of Quantum Chemical Predictions. Journal of Chemical Physics, 2003, v118, pp 1688-1701. CORCHNOY, S. B., ATKINSON, R. Kinetics of the Gas-Phase Reactions of Hydroxyl and Nitrogen Oxide (NO3) Radicals with 2-Carene, 1,8-Cineole, p-Cymene, and Terpinolene. Environmental Science Technology, 1990, v24, pp 1497-1502. CRAMER, C. J. Essentials of Computational Chemistry Theories and Models. Hoboken: 2nd ed. John Wiley and Sons: 2004. 607 pp. CRIEGEE, R., WENNER, G. Die Ozonisierung des 9,10-Oktalins. Liebigs Annals of Chemistry, 1949, v564, pp 9-15. 143 DAUDEY, J. P., CLAVERIE, P., MALRIEU, J. P. Perturbative Ab Initio Calculations of Intermolecular Energies. I. Method. International Journal of Quantum Chemistry, 1974, v8, pp 1-15. EBERHARD, J., MÜLLER, C, STOCKER, D.W., KERR, J.A. Isomerization of Alkoxy Radicals under Atmospheric Conditions. Environmental Science and Technology, 1995, v29, pp 232-241. FAMULARI, A., SPECCHIO, R., SIRONI, M., RAIMONDI, M. New Basis Set Superposition Error Free Ab Initio MO-VB Interaction Potential: Molecular-Dynamics Simulation of Water and Supercritical Conditions. Journal of Chemical Physics, 1998, v108, pp 3296-4003. FUKUI, K. Formulation of Reaction Coordinate. Journal of Physical Chemistry, 1970, v74, pp 4161-4163. FLYNN, T., SOUTHWELL, J. A. Essential Oil Constituents of the Genus Zieria. Phytochemistry. 1987, v26, pp 1673-1686. FUZZI, S., ANDREAE, M. O., HUEBERT, B. J., KULMALA, M., BOND,T. C., BOY, M., DOHERTY, S. J., GUENTHER, A., KANAKIDOU, M., KAWAMURA, K., KERMINEN, V.M., LOHMANN, U., RUSSELL, L. M. , PÖSCHL, U. Critical Assessment of the Current State of Scientific Knowledge, Terminology, and Research Needs Concerning the Role of Organic Aerosols in the Atmosphere, Climate, and Global Change. Atmospheric Chemical Physics, 2006, v6, pp 2017-2038. GALANO, A., IDABOY, J. R. A. A New Approach to Counterpoise Correction to BSSE. Journal of Computational Chemistry, 2006, v27, pp 1203-1210. Gaussian 03, Revision, FRISCH, M. J.; TRUCKS, G. W.; SCHLEGEL, H. B.; SCUSERIA, G. E.; ROBB, M. A.; CHEESEMAN, J. R.; MONTGOMERY, JR., J. A.; VREVEN, T.; KUDIN, K. N.; BURANT, J. C.; MILLAM, J. M.; IYENGAR, S. S.; TOMASI, J.; BARONE, V.; MENNUCCI, B.; COSSI, M.; SCALMANI, G.; REGA, N.; PETERSSON, G. A.; NAKATSUJI, H.; HADA, M.; EHARA, M.; TOYOTA, K.; FUKUDA, R.; HASEGAWA, J.; ISHIDA, M.; NAKAJIMA, T.; HONDA, Y.; KITAO, O.; NAKAI, H.; KLENE, M.; LI, X.; KNOX, J. E.; HRATCHIAN, H. P.; CROSS, J. B.; BAKKEN, V.; ADAMO, C.; JARAMILLO, J.; GOMPERTS, R.; STRATMANN, R. E.; YAZYEV, O.; AUSTIN, A. J.; CAMMI, R.; POMELLI, C.; OCHTERSKI, J. W.; AYALA, P. Y.; MOROKUMA, K.; VOTH, G. A.; SALVADOR, P.; DANNENBERG, J. J.; ZAKRZEWSKI, V. G.; DAPPRICH, S.; DANIELS, A. D.; STRAIN, M. C.; FARKAS, O.; MALICK, D. K.; RABUCK, A. D.; RAGHAVACHARI, K.; FORESMAN, J. B.; ORTIZ, J. V.; CUI, Q.; BABOUL, A. G.; CLIFFORD, S.; CIOSLOWSKI, J.; STEFANOV, B. B.; LIU, G.; LIASHENKO, A.; PISKORZ, P.; KOMAROMI, I.; MARTIN, R. L.; FOX, D. J.; KEITH, T.; AL-LAHAM, M. A.; PENG, C. Y.; NANAYAKKARA, A.; CHALLACOMBE, M.; GILL, P. M. W.; JOHNSON, B.; CHEN, W.; WONG, M. W.; GONZALEZ, C.; AND POPLE, J. A.; GAUSSIAN, INC., PITTSBURGH PA, 2003. 144 GERON, C., RASMUSSEN, R., ARNTS, R., GUENTHER, A. A Review and Synthesis of Monoterpene Speciation from Forests in the United States. Atmospheric Environment, 2000, v34, pp 1761-1781. GILLIES, C. W., KUCZKOWSKI, R. L. Mechanism of Ozonolysis. Microwave Spectrum, Structure, and Dipole Moment of Ethylene Ozonide. Journal of the American Chemical Society, 1972, v94, pp 6337-6343. GODDARD, W. A. III , HARDING, L. B. The Description of Chemical Bonding from Ab Initio Calculations. Annual Review of Physical Chemistry, 1978, v29, pp 363-396. GOLDAN, P. D., KURSTER, W. C., FEHSENFELD, F. C., MONTZKA, S. A. The Observation of a C5 Alcohol Emission in a North American Pine Forest. Geophysical Research Letters, 1993, v20, pp 1039-1042. GROSJEAN, D., WILLIAMS, E. L., GROSJEAN, E, ANDINO, J. M., SEINFELD, J. H. Atmospheric Oxidation of Biogenic Hydrocarbons: Reaction of Ozone with Beta-Pinene, D-Limonene and Trans-Caryophyllene. Environmental Science and Technology, 1993, v27, pp 2754-2758. GROSJEAN, D., WILLIAMS, E. L., SEINFELD, J. H. Atmospheric Oxidation of Selected Terpenes and Related Carbonyls: Gas-Phase Carbonyl Products. Environmental Science and Technology, 1992, v26, pp 1526-1533. GROSJEAN, E., GROSJEAN, D. Rate Constants for the Gas-Phase Reactions of Ozone with Unsaturated Aliphatic Alcohols. International Journal of Chemical Kinetics, 1994, v26, pp 1185-1191. GROSJEAN, E., GROSJEAN, D. The Gas Phase Reaction of Unsaturated Oxygenates with Ozone: Carbonyl Products and Comparison with the Alkene-Ozone Reaction. Journal of Atmospheric Chemistry, 1997, v27, pp 271-289. GUENTHER, A., GERON, C., PIERCE, T., LAMB, B., HARLEY, P., FALL, R. Natural Emissions of Non-Methane Volatile Organic Compounds, Carbon Monoxide, and Oxides of Nitrogen from North America. Atmospheric Environment, 2000, v34, pp 2205-2230. GUENTHER, A., HEWITT, C.N., ERICKSON, D., FALL, R., GERON, C., GRAEDEL, T., HARLEY, P., KLINGER, L., LERDAU, M., MCKAY, W.A., PIERCE, T., SCHOLES, B., STEINBRECHER, R., TALLAMRAJU, R., TAYLOR, J. ZIMMERMAN, P. A Global Model of Natural Volatile Organic Compound Emissions. Journal of Geophysical Research, 1995, v100, pp 8873-8892. 145 GUENTHER, A., ZIMMERMAN, P., WILDERMUTH, M. Natural Volatile Organic Compound Emission Rate Estimates for U.S. Woodland Landscapes. Atmospheric Environment, 1994, v28, pp 1197-1210. GUTBROD, R., KRAKA, E., SCHINDLER, R. N., CREMER, D. Kinetic and Theoretical Investigation of the Gas-Phase Ozonolysis of Isoprene: Carbonyl Oxides as an Important Source for OH Radicals in the Atmosphere. Journal of the American Chemistry Society, 1997, v119, pp 7330-7342. HAKOLA, H., AREY, J., ASCHMANN, S. M., ATKINSON, R. Product Formation from the Gas-Phase Reactions of OH Radicals and O3 with a Series of Monoterpenes. Journal of Atmospheric Chemistry, 1994, v18, pp 75-102. HALLQUIST, M., WANGBERG, E. & LJUNGSTROM, E. Atmospheric Fate of Carbonyl Oxidation Products Originating from α-Pinene and Δ3-Carene: Determination of Rate of Reaction with OH and NO3 Radicals, UV Absorption Cross Sections, and Vapor Pressures. Environmental Science and Technology, 1997, v31, pp 3166-3172. HARTREE, D. R., HARTREE, W., SWIRLES, B. Self-Consistent Field, Including Exchange and Superposition of Configurations, with Some Results for Oxygen. Philosophical Transactions of the Royal Society, 1939, v238, pp 229-247. HATAKEYAMA, S., AKIMOTO, H. Reactions of Criegee Intermediates in the Gas Phase. Research on Chemical Intermediates, 1994, v20, pp 503-524. http://2.bp.blogspot.com/_mzbP1_ghrSU/SKh2J6y4d4I/AAAAAAAAAbo/Zte_IBiwGkw/s400/canfora.jpg, acessado em 05/02/2011. http://ccbdb.nist.gov/thermo.asp, acessado em 28/02/2011. http://chemicalland21.com/specialtychem/perchem/camphene.htm, acessado em 30/05/2011. http://en.wikipedia.org/wiki/Cinnamoum_camphora, acessado em 03/07/2012. IDABOY, J. R. A., DÍEZ, N. M., BUNGE, A. V. A Quantum Chemical and Classical Transition State Theory Explanation of Negative Activation Energies in OH Addition to Substituted Ethenes. Journal of the American Chemical Society, 2000, v122, pp 3715-3720. JANSEN, H. B., ROSS, P. Non-Empirical Molecular Orbital Calculations on the Protonation of Carbon Monoxide. Chemical Physics Letters, 1969, v3, pp 140-143. JANG, M., KAMENS, R. M. Newly Characterized Products and Composition of Secondary Aerosols from the Reaction of α-pinene with Ozone. Atmospheric Environment, 1999, v33, pp 459-474. JAOUI, M., KAMENS, R. M. Gas Phase Photolysis of Pinonaldehyde in the Presence of Sunlight. Atmospheric Environment, 2003a, v37, pp 1835-1851. 146 JAOUI, M., KAMENS, R. M. Mass Balance of Gaseous and Particulate Products Analysis from α-Pinene/NO x/Air in the Presence of Natural Sunlight. Journal of Geophsyical Research, 2001, v106, pp 12541-12558. JAOUI, M. KAMENS, R. M. Mass Balance of Gaseous and Particulate Products from β-Pinene/O3/Air in the Absence of Light and β-Pinene/NOx/Air in the Presence of Natural Sunlight. Journal of Atmospheric Chemistry. 2003b, v45, pp 101-141. JAY, K., STIEGLITZ, L. Gas phase ozonolysis of camphene in the presence of SO2. Atmospheric Environment, 1989, v23, pp 1219-1221. JIANG, L., WANG, W., XU, Y. Ab Initio Investigation of O3 addition to Double Bonds of Limonene. Chemical Physics, 2010, v368, pp 108-112. JOHNSON, D., MARSTON, G. The Gas-Phase Ozonolysis of Unsaturated Volatile Organic Compounds in the Troposphere. Chemical Society Reviews, 2008, v37, pp 699-716. JOHNSON, D., RICKARD, A. R. Charlotte, McGILL, D., MARSTON, G. The Influence of Orbital Asymmetry on the Kinetics of the Gas-Phase Reactions of Ozone with Unsaturated Compounds. Physical Chemistry Chemical Physics, 2000, v2, pp 323-328. KESTNER, N. R. J. He x He Interaction in the SCF x MO Approximation. Journal of Chemical Physics, 1968, v48, pp 252-257. KOBKO, N., DANNENBERG, J.J. Effect of Basis Set Superposition Error (BSSE) upon Ab Initio Calculations of Organic Transition States. Journal of Physical Chemistry A, 2001, v105, pp 1944-1950. KÖNIG, G., BRUNDA, M., PUXBAUM, H., HEWITT, C.N., DUCKHAM, S.C., RUDOLPH, J. Relative Contribution of Oxygenated Hydrocarbons to the Total Biogenic VOC Emissions of Selected mid-European Agricultural and Natural Plant Species. Atmospheric Environment, 1995, v29, pp 861-874. 147 KROLL, J. H., CLARKE, J. S., DONAHUE, N. M., ANDERSON, J. G. DEMERJIAN, K. L. Mechanism of HOx Formation in the Gas-Phase Ozone−Alkene Reaction. 1. Direct, Pressure-Dependent Measurements of Prompt OH Yields. Journal of Physical Chemistry A, 2001a, v105, pp 1554-1560. KROLL, J. H., SAHAY, R. ANDERSON, J. G., DEMERJIAN, K. L., DONAHUE, N. M. Mechanism of HOx Formation in the Gas-Phase Ozone-Alkene Reaction. 2. Prompt versus Thermal Dissociation of Carbonyl Oxides to Form OH. Journal of Physical Chemistry A, 2001b, v105, pp 4446-4457. KUWATA, K. T., KUJALA, B. J., MORROW, Z. W., TONC, E. Quantum Chemical and RRKM/Master Equation Studies of Cyclopropene Ozonolysis. Computational and Theoretical Chemistry, 2011, v965, pp 305-312. KUWATA, K. T., VALIN, L. C. Quantum Chemical and RRKM/Master Equation Studies of Isoprene Ozonolysis: Methacrolein and Methacrolein Oxide. Chemical Physics Letters, 2007, v451, pp 186-191. KUWATA, K. T., VALIN, L. C., CONVERSE, A. D. Quantum Chemical and Master Equation Studies of the Methyl Vinyl Carbonyl Oxides Formed in Isoprene Ozonolysis. Journal of Physical Chemistry A, 2005, v109, pp 10710-10725. KWOK, E.S.C., ATKINSON, R., AREY, J. Isomerization of -Hydroxy Radicals Formed from the OH Radical Initiated Reactions of C4-C8 1-Alkenes. Environmental Science and Technology, 1996, v30, pp 1048-1052. LAIDIG, W. D., SCHAEFER, H. F. Large Multiconfiguracional Self-Consistent-Field Wave Functions for the Ozone Molecule. Journal of Chemical Physics, 1981, v74, pp 3411-3414. LAMB, B., GAY, D., WESTBERG, H., PIERCE, T. A Biogenic Hydrocarbon Emission Inventory for the U.S.A. Using a Simple Forest Canopy Model. Atmospheric Environment. 1993, v27, pp 1673-1690. LEI, W., DERECSKEI-KOVACS, A., ZHANG, R. Ab Initio Study of OH Addition Reaction to Isoprene. Journal of Chemical Physics, 2000, v113, pp 5354-5361. LEONARDO, T., SILVA, E. C. da, ARBILLA, G. Ozonolysis of Geraniol-Trans, 6-Methyl-5-hepten-2-one, and 6-hydroxy-4-methyl-4-hexenal: Kinetics and Mechanisms, Journal of Physical Chemistry A, 2008, v112, pp 6636-6645. LIU, B., McLEAN, A. D. Accurate Calculation of the Attractive Interaction of Two Ground State Helium Atoms. Journal of Chemical Physics, 1973, v59, pp 4557-4558. LI, Q. S., XU, X. D., ZHANG, S. Predicting Energies and Geometries for Reactions Involved in Atmosphere Chemistry: a Comparison Study between Hybrid DFT Methods. Chemical Physics Letters, 2004, v384, pp 20-24. LYNCH, B. J., FAST, P. L., HARRIS, M., TRUHLAR, D. G. Adiabatic Connection for Kinetics. Journal of Physical Chemistry A, 2000, v104, pp 4811-4815. 148 LYNCH, B. J., TRUHLAR, D. G. How Well Can Hybrid Density Functional Methods Predict Transition State Geometries and Barrier Heights? Journal of Physical Chemistry A, 2001, v105, pp 2936-2941. MacDONALD, R.C, FALL, R. Detection of Substantial Emissions of Methanol from Plants to the Atmosphere, Atmospheric Environment, 1993, v27, pp 1709-1713. MANAHAM, S. E. Fundamentals of Environmental Chemistry. 3rd ed. Boca Raton: CRC Press, 2008. 1264p. MAYER, I. Towards a “Chemical” Hamiltonian. International Journal of Quantum Chemistry, 1983, v23, pp 341-363. MAYER, I, VIBÓK, Á. Intermolecular SCF Method without BSSE: The Closed-Shell Case. Chemical Physics Letters, 1987, v6, pp 558-564. MAYER, I, VIBÓK, Á, VALIRON, P. A Full-CI investigation into the BSSE Problem. Chemical Physics Letters, 1994, v224, pp 166-174. MEUNIER, A., LEVY, B., BERTHIER, G. Corrélation Électronique et Effets de Base dans L'étude de la Liaison Hydrogène: Le Dimère Mixte Ammoniac-Eau. Theorethical Chemistry Accounts, 1973, v29, pp 49-55. NGUYEN, T. L., PEETERS, J., VEREECKEN, L. Theoretical Study of the Gas-Phase Ozonolysis of -Pinene (C10H16), Physical Chemistry Chemical Physics, 2009, v11, pp 5643-5656. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. Release 15b, August 2011, Editor: Russell D. Johnson III. http://cccbdb.nist.gov/ (ver também as referências contidas neste site). NUNES, F. M. N., PEREIRA, P. A. de P., ANDRADE, J. B. de. Reações de Ozonólise de Olefinas em Fase Gasosa. Química Nova, 2000, v26, pp 794-804. NOVAIS, FLORENCE PEREIRA. Estudo Ab Initio da Adsorção de Organofosforados em Titânia. Dissertação de Mestrado, PPGQ/UFJF 2010. NOZIÈRE, B.; BARNES, I.; BECKER, K. Product Study and Mechanisms of the Reactions of α-Pinene and of Pinonaldehyde with OH Radicals. Journal of Geophysical Research, 1999, 104, 23645-23658. OLZMANN, M, KRAKA, E., CREMER, E. GUTBROD, R., ANDERSSON, S. Energetics, Kinetics, and Product Distributions of the Reactions of Ozone with Ethene and 2,3-Dimethyl-2-Butene. Journal of Physical Chemistry, 1997, v101, pp 9421-9429. O’NEIL, M. J. (Ed.) The Merk Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 14th ed. New Jersey: Merk Research Laboratories, Merk Co. Inc., 2006. 2520p PARR, R. G., YANG, W., Density Functional Theory of Atoms and Molecules. New York: 2nd ed. Oxford University Press, 1989. 352p. 149 PALEN, E. J., ALLEN, D. T., PANDIS, S. N.; PAULSON, S. E.; SEINFELD, J. H., FLAGAN, R. C. Fourier Transform Infrared Analysis of Aerosol Formed in the Photo-Oxidation of Isoprene and β-Pinene. Atmospheric Environment, 1992, v26, pp 1239-1251. PAULSON, S.E., SEINFELD, J.H. Atmospheric Photochemical Oxidation of 1-octene: OH, O3, and O (3P) reactions. Environmental Science and Technology, 1992, v26, pp 1165-1173. PENG, C., AYALA, P. Y., SCHLEGEL, H. B., FRISCH, M. J. Usind Redundant Internal Coordinates to Optimize Equilibrum Geometries and Transition States. Journal of Computational Chemistry, 1996, v17, pp 49-56. POPLE, J. A. Nobel Lecture: Quantum Chemical Models. Reviews of Modern Physics, 1999, v71, pp 1267-1274. RASMUSSEN, R.A., WENT, F.W. Volatile Organic Material of Plant Origin in the Atmosphere. Proceedings of the National Academy of Science of the United States of America, 1965, v53, pp 215-220. RASMUSSEN, R.A. Isoprene: Identified as a Forest-Type Emission to the Atmosphere. Environmental Scientific and Technology, 1970, v4, pp 667-671. REED, A. E., WEINHOLD, F. Natural Bond Orbital Analysis of Near-Hartree-Fock Water Dimer. Journal of Chemical Physics, 1983, v78, pp 4066-4073. RUDICH, Y., TALUKDAR, R. K., BURKHOLDER, J. B., RAVISHANKARA, A. R. Reaction of Methylbutenol with the OH Radical: Mechanism and Atmospheric Implications. Journal of Physical Chemistry, 1995, v99, pp 12188-12194. RUDICH, Y., TALUKDAR, R. K., FOX, R. W., RAVISHANKARA, A. R. Rate Coefficients for Reactions of NO3 with a Few Olefins and Oxygenated Olefins. Journal of Physical Chemistry, 1996, v100, pp 5374-5381. SADLEJ, A. J. Exact Perturbation Treatment of the Basis Set Superposition. Journal of Chemical Physics, 1991, v95, pp 6705-6711. SAMUNI, U., HAAS, Y., FAJGAR, R., POLA, J. Matrix Effects in the Low-Temperature Ozonation of Ethylene, Tetramethylene and 1-Hexene. Journal of Molecular Structure, 1998, v449, pp 177-201. SCHELEGEL, H. B. Optimization of Equilibrum Geometries and Transition Structures. Journal of Computational Chemistry, 1982, v3, pp 214-218. SCHUETZLE, D. RASMUSSEN, R. A. The Molecular Composition of Secondary Aerosol Particles Formed from Terpenes. Journal of the Air Pollution Control Association, 1978, v28, pp 236-240. 150 SEINFELD, J. H., PADIS. S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Hoboken: 2nd ed. John Wiley , Sons: 2006. 1232p. SEUFERT, G; BARTZIS, J.; BOMBOI, T.; CICCIOLI, T.; CIESLIK, S.; DLUGI, R.; FOSTER, P.; HEWITT, C. N.; KESSELMEIER, J.; KOTZIAS, D.; LENZ, R.; MANES, F.; PASTOR, R. P.; STEINBRECHER, R.; TORRES, L.; VALENTINI, R., VERSINO, B. An Overview of the Castelporziano Experiments. Atmospheric Environment, 1997, v31, pp 5-17. SHOREES, B., ATKINSON, R., AREY, S. Kinetics of the Gas-Phase Reactions of β-Phellandrene with OH and NO3 Radicals and O3 at 297 ± 2 K. International Journal of Chemical Kinetics, 1991, v23, pp 897-906. SHU, Y., ATKINSON, R. Rate Constants for the Gas-Phase Reactions of O3 with a Series of Terpenes and OH Radical Formation from the O3 Reactions with Sesquiterpenes at 296 ± 2 K. International Journal of Chemical Kinetics, 1994, v26, pp 1193-1205. SHU, Y., KWOK, E. S. C., TUAZON, E. C., ATKINSON, R., AREY, J. Products of the Gas-Phase Reactions of Linalool with OH Radicals, NO3 Radicals, and O3. Environmental Science and Technology, 1997, v31, pp 896-904. SIMON, S., DURAN, M., DANNENBERG, J. J. How Does Basis Set Superposition Error Change the Potential Surfaces for Hydrogen Bonded Dimers? Journal of Chemical Physics, 1996, v105, pp 11024-11031. SKOV, H., HJORTH, J., LOHSE, C., JENSEN, N.R., RESTELLI, G. Products and Mechanisms of the Reactions of the Nitrate Radical (NO3) with Isoprene, 1,3-Butadiene and 2,3-Dimethyl-1,3-Butadiene in Air. Atmospheric Environment, 1992, v26, pp 2771-2783. SMITH, A. M., RIGLER, E., KWOK, E. S. C., ATKINSON, R. Kinetics and Products of the Gas-Phase Reactions of 6-Methyl-5-hepten-2-one and trans-Cinnamaldehyde with OH and NO3 Radicals and O3 at 296 ± 2 K. Environmental Scientific and Technology, 1996, v30, pp 1781-1785. SUENRAM, R. D., LOVAS, F. J. Dioxirane. Its Synthesis, Microwave Spectrum, Structure, and Dipole Moment. Journal of the American Chemical Society, 1978, v100, pp 5117-5122. SUN, T., WANG, Y., ZHANG, C., SUN. X., WANG, W. The Chemical Mechanism of the Limonene Ozonolysis Reaction in the SOA Formation: A Quantum Chemistry and Direct Dynamic Study. Atmospheric Environment, 2011, v45, pp 1725-1731. TRAINER, M., HSIE, E., MCKEEN, S. A., TALLAMJARU, R., PARRISH, D. D, FEHSENFELD, F. C., LIU, S.C. Impact of Natural Hydrocarbons on Hydroxyl and Peroxy Radicals at a Remote Site. Journal of Geophysical Research, 1987, v92, pp 11879-11894. TUAZON, E.C., ATKINSON, R.A Product Study of the Gas-Phase Reaction of Isoprene with the OH Radical in the Presence of NOx. International Journal of Chemical Kinetics, 1990, v22, pp 1221-1236. 151 VINCKIER, C., COMPERNOLLE, F., SALEH, A. M. Qualitative Determination of the Non-Volatile Reaction Products of the Alpha-Pinene Reaction with Hydroxyl Radicals. Bulletin des Societes Chimiques Belges, 1997, v106, pp 501-513. WÄNGBERG, I., BARNES, I., BECKER, K. H. Product and Mechanistic Study of the Reaction of NO3 Radicals with α-Pinene. Environmental Scientific and Technology, 1997, v31, pp 2130-2135. WHEELER, S. E., ESS, D. H., HOUK, K. N. J. Thinking Out of the Black Box: Accurate Barrier Heights of 1,3-Dipolar Cycloadditions of Ozone with Acetylene and Ethylene. Journal of Physical Chemistry A, 2008, v112, pp 1789-1807. YONGHUI, S., ATKINSON, R. Atmospheric Lifetimes and Fates of a Series of Sesquiterpenes. Journal of Geophysical Research, 1995, v100, pp 7275-7281. ZHANG, D., ZHANG, R. Ozonolysis of -pinene and -pinene: Kinetics and Mechanism. Journal of Chemical Physics, 2005, v122, pp 114308-114319. ZHAO, Y., TISHCHENKO, O., GOUR, J.R., LI, W., LUTZ, J.J., PIECUCUCH, P., TRUHLAR, D. G. Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone. Journal of Physical Chemistry A, 2009, v113, pp 5786-5799. | por |
dc.subject.cnpq | Química | por |
dc.thumbnail.url | https://tede.ufrrj.br/retrieve/61510/2012%20-%20Rodrigo%20C%c3%a9sar%20de%20Medeiros%20Oliveira.pdf.jpg | * |
dc.originais.uri | https://tede.ufrrj.br/jspui/handle/jspui/3792 | |
dc.originais.provenance | Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-08-11T14:04:08Z No. of bitstreams: 1 2012 - Rodrigo César de Medeiros Oliveira.pdf: 4484398 bytes, checksum: 21aaa825eea0647ded40a33efbd98877 (MD5) | eng |
dc.originais.provenance | Made available in DSpace on 2020-08-11T14:04:08Z (GMT). No. of bitstreams: 1 2012 - Rodrigo César de Medeiros Oliveira.pdf: 4484398 bytes, checksum: 21aaa825eea0647ded40a33efbd98877 (MD5) Previous issue date: 2012-06-29 | eng |
Appears in Collections: | Mestrado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2012 - Rodrigo César de Medeiros Oliveira.pdf | 2012 - Rodrigo César de Medeiros Oliveira | 4.38 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.