Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14585
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCampos, Daniel Ananias Reis de
dc.date.accessioned2023-12-22T03:03:17Z-
dc.date.available2023-12-22T03:03:17Z-
dc.date.issued2017-11-27
dc.identifier.citationCAMPOS, Daniel Ananias Reis de. Síntese do biodiesel: estudo da influência de sais de metais alcalinos na cinética da metanólise em meio básico. 2017. 146 f.. Dissertação( Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ, 2017.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14585-
dc.description.abstractPara avaliar a influência dos íons sódio e potássio na cinética da metanólise do óleo de soja, com o CH3ONa como catalisador, realizou-se um estudo empregando diferentes sais – CH3COOK, CH3COONa, KI, KBr, KCl e NaCl – nesta reação. As condições empregadas foram: temperaturas de 40,0, 50,0 e 60,0 °C e velocidades de agitação de 400 e 800 rpm. As constantes de velocidade observadas (kobs) foram determinadas a partir dos dados obtidos pelo monitoramento on-line do índice de refração da mistura reacional. Os valores de kobs foram comparados e conclui-se que a velocidade da agitação possui uma influência maior no valor de kobs do que os efeitos provocados pelo aumento de temperatura ou dos aditivos empregados. Ambos os íons alcalinos – K+ e Na+ – proporcionaram um aumento dos valores de kobs pelo estabilização da estrutura do estado de transição. O CH3COOK foi o aditivo mais eficiente pois ele aumenta a kobs nas três temperaturas e em ambas agitações. O aumento da kobs com este aditivo variou de 21% (400 rpm e 40,0 °C) a 90% (800 rpm e 40,0 °C ) e o mais substancial aumento ocorreu à 800 rpm. O CH3COONa foi menos efetivo que o CH3COOK de modo que o aumento da kobs foi de 3,1% (800 rpm e 60,0 °C) a 60% (800 rpm e 40,0 °C). O íon K+ forneceu melhores resultados porque forma um par iônico menos estável com o íon metóxido em relação ao Na+, o que proporciona menor energia de ativação para as reações com sais de potássio. Em geral, os cloretos (KCl e NaCl) foram prejudiciais à reação a 400 rpm, mas o KCl aumentou a constante de velocidade a 400 rpm e 40,0 °C. O KI trouxe aperfeiçoamentos nos valores das constantes cinéticas similares àqueles do CH3COOK a 400 rpm, mas eles foram indiferentes a 800 rpm. O uso do KBr proporcionou um aumento na constante de velocidade em 34% a 800 rpm e 40,0 °C, sendo estatisticamente indiferente nas outras condições reacionais estudadaspor
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectrefratometriapor
dc.subjecttransesterificaçãopor
dc.subjectcatálise alcalinapor
dc.subjectbiocombustíveispor
dc.subjectrefractometryeng
dc.subjecttransesterificationeng
dc.subjectalkaline catalysiseng
dc.subjectbiofuelseng
dc.titleSíntese do biodiesel: estudo da influência de sais de metais alcalinos na cinética da metanólise em meio básicopor
dc.title.alternativeBiodiesel Synthesis: A study of the influence of alkali metals salts on the kinetics of methanolysis in basic mediumeng
dc.typeDissertaçãopor
dc.description.abstractOtherTo evaluate the influence of sodium and potassium ions on the kinetics of soybean oil methanolysis with CH3ONa, a study was carried out using different salts (CH3COOK, CH3COONa, KI, KBr, KCl and NaCl) in this reaction. The conditions employed were: 40.0, 50.0 and 60.0 ° C temperatures and speed agitation of 400 and 800 rpm. The observed velocity constants (kobs) were determined from the data obtained by the on-line monitoring of the refractive index of the reaction mixture. The kobs were compared and it was concluded that the stirring speed has a greater influence on the kobs than the effects caused by the temperature increase or the additives employed. Both alkaline ions (K+ and Na+) provided an increase in the values of the kobs by the stabilization of the transition state structure. CH3COOK was the most efficient additive because it increases the kobs values at all three temperatures and in both speed agitation. The increase in kobs ranged from 21% (400 rpm and 40.0 °C) to 90% (800 rpm and 40.0 °C) and the most substantial increase occurred at 800 rpm. CH3COONa was less effective than CH3COOK so the increase of kobs was from 3.1% (800 rpm and 60.0 °C) to 60% (800 rpm and 40.0 °C). The K+ ion gave better results because it forms a less stable ionic pair with the methoxide in relation to Na+, which provides less activation energy for reactions with potassium salts. In general, chlorides (KCl and NaCl) negatively affected methanolysis at 400 rpm, but KCl increased kobs at 400 rpm and 40.0 °C. The KI brought improvements in kobs values similar to those of the CH3COOK at 400 rpm, but they were indifferent at 800 rpm. The use of KBr provided an increase in the kobs value in 34% at 800 rpm and 40.0 °C and statistically null effect in the other reactional conditions studied.eng
dc.contributor.advisor1Rocha Junior, Jose Geraldo
dc.contributor.advisor1ID10065668723por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7721155377063365por
dc.contributor.advisor-co1Bauerfeldt, Glauco Favilla
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1876040291299143por
dc.contributor.referee1Rocha Junior, José Geraldo
dc.contributor.referee2Bastos, Flavio Adriano
dc.contributor.referee3Silva, Clarissa Oliveira da
dc.creator.ID13113121701por
dc.creator.Latteshttp://lattes.cnpq.br/1284964385258470por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAGÊNCIA NACIONAL DE PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Biodiesel. Disponível em: <http://www.anp.gov.br/wwwanp/biocombustiveis/biodiesel>. Acesso em: 15 de mar. 2017. AGÊNCIA NACIONAL DE PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Boletim Mensal do Biodiesel – Janeiro de 2017. Disponível em: <http://www.anp.gov.br/wwwanp/images/publicacoes/boletinsanp/ Boletim_Mensal_do_Biodiesel/Boletim_Biodiesel_JANEIRO_2017.pdf>. Acesso em: 15 de mar. 2017. AGÊNCIA NACIONAL DE PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Consumo de combustíveis no Brasil caiu 4,5% na comparação entre 2016 e 2015. Disponível em: <http://www.anp.gov.br/wwwanp/noticias/3585-consumo-de-combustiveis-no-brasilcaiu- 4-5-na-comparacao-entre-2016-e-2015>. Acesso em: 15 de mar. 2017. AGÊNCIA NACIONAL DE PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Dados Estatísticos. Disponível em: <http://www.anp.gov.br/wwwanp/dados-estatisticos>. Acesso em: 15 de mar. 2017. ARANTES, H. Oferta de glicerina e produção de Biodiesel. Disponível em: <http://biomercado.com.br/not_detalhe.php?noticia=1248>. Acesso em: 16 de mar. 2017. ATADASHI, I.M.; AROUA, M.K.; ABDUL AZIZ, A.R.; SULAIMAN, N.M.N. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry, v. 19, p. 14-26, 2013. AVHAD, M.R.; MARCHETTI, J.M. A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews, v. 50, p.696-718, 2015 BALL, D. W. Físico-química v. 2. São Paulo: Pioneira Thomson Learning, 2006. BASTOS, A. C. L. M.; RODRIGUES, E. M. S.; SOUZA, J. P. I. Físico-Química. Belém: UFPA, 2011. 79 BHARATHIRAJA, B.; CHAKRAVARTHY, M.; RANJITH KUMAR, R.; YUVARAJ, D.; JAYAMUTHUNAGAI, J.; PRAVEEN KUMAR, R.; PALANI, S.. Biodiesel production using chemical and biological methods – A review of process, catalyst, acyl acceptor, source and process variables. Renewable and Sustainable Energy Reviews, v. 38, p. 368–382, 2014. BP. Statistical Review of World Energy, June 2016. Disponível em: <https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bpstatistical- review-of-world-energy-2016-full-report.pdf/>. Acesso em: 18 de mar. 2017. BRAZ, D. ENEM 2015 e as miragens: “Pegadinhas”? Disponível em: <http://fisicanaveia.blogosfera.uol.com.br/2015/10/29/o-enem-2015-e-as-miragens/>. Acesso em: 7 fev. 2017. CHEN, Y. H.; HUANG, Y. H.; LIN, R. H.; SHANG, N. C. A continuous-flow biodiesel production process using a rotating packed bed. Bioresource Technology, v. 101, p. 668-673, 2010. DARNOKO, D. e CHERYAN, M. Kinetics of palm oil transesterification in a batch reactor. Journal of the American Oil Chemists' Society, v. 77, p. 1262-1267, 2000. DIRECT INDUSTRY. Disponível em: <http://www.directindustry.com/prod/bellinghamstanley- xylem-brand/product-25236-1638486.html#product-item_1566585>. Acesso em: 7 fev. 2017. DIRECT INDUSTRY. Disponível em: <http://www.directindustry.com/prod/ariana-industriegmbh/ product-163009-1693778.html>. Acesso em: 9 fev. 2017. DIRECT INDUSTRY. Disponível em: <http://www.directindustry.com/prod/mettler-toledoanalytical- instruments/product-98369-891825.html>. Acesso em: 7 fev. 2017. ESIPOVICH, A.; DANOV, S.; BELOUSOV, A.; ROGOZHINA, A. Improving methods of CaO transesterification activity. Journal of Molecular Catalysis A: Chemical, v. 395, p. 225, 2014. EUROPEAN BIOMASS INDUSTRY ASSOCIATION. Biodiesel Market. Disponível em: <http://www.eubia.org/cms/wiki-biomass/biofuels-for-transport/biodiesel/>. Acesso em: 9 set. 2017. 80 FERRARO, N. Lei de Snell-Descartes. Disponível em: <http://osfundamentosdafisica.blogspot.com.br/2012_09_01_archive.html>. Acesso em: 7 fev. 2017. FINE WINE GIFT STORE. Disponível em: <http://www.finewinegiftstore.com/product/adeadvanced- optics-tri-scale-clinical-refractometer-urine-specific-gravity-urine-refractive-indexand- blood-serum-protein-veterinarian/>. Acesso em: 7 fev. 2017. FOGLER, H.S. Elements of Chemical Reaction Engineering. New Jersey: Pearson Education Inc., 2006. FROEHNER, S.; LEITHOLD, J.; LIMA Jr, L. F. Transesterificação de óleos vegetais: caracterização por cromatografia em camada delgada e densidade. Química Nova, v. 30, p. 2016-2019, 2007. GHANEI, R.; MORADI, G. R.; TAHERPOURKALANTARI, R.; ARJMANDZADEH, E. Variation of physical properties during transesterification of sunflower oil to biodiesel as an approach to predict reaction progress. Fuel Processing Technology, v. 92, p. 1593-1598, 2011. GLYSTRA, C.; BARTLETT, S. World biodiesel production/consumption to rise 14% by 2020: OECD/FAO. Disponível em: <http://www.platts.com/latestnews/ agriculture/london/world-biodiesel-productionconsumption-to-rise-26485632>. Acesso em: 18 de mar. 2017. HAJJARIA, M.; TABATABAEIA, M.; AGHBASHLOD, M.; GHANAVATIA, H. A review on the prospects of sustainable biodiesel production: A global scenario with an emphasis on waste-oil biodiesel utilization. Renewable and Sustainable Energy Reviews, v. 72, p. 445- 464, 2017. HAMEED, B.H.; LAI, L.F.; CHIN, L.H. Production of biodiesel from palm oil (Elaeis guineensis) using heterogeneous catalyst: An optimized process. Fuel Processing Technology, v. 90, p. 606–610, 2009. HASAN M.M.; RAHMAN, M.M. Performance and emission characteristics of biodiesel– diesel blend and environmental and economic impacts of biodiesel production: A review. Renewable and Sustainable Energy Reviews, v. 74, p. 938 – 948, 2017. 81 INSTRUMENTOS GPS. Refratômetros – Princípios de Aferição. Disponível em: <http://www.gpsil.com/our-products/refractometers/measuring-pri/#>. Acesso em: 7 fev. 2017. ISTADI, I.; PRASETYO, S.A.; NUGROHO, T.S. Characterization of K2O/CaO-ZnO Catalyst for Transesterification of Soybean Oil to Biodiesel. Procedia Environmental Sciences, v. 23, p. 394-399, 2015. JÚNIOR, José Geraldo Rocha. Síntese de biodiesel: estudo da influência de Catalisadores alcalinos na reação de metanólise por monitoramento online do índice de refração. 156f. 2014. Tese (Doutorado), Universidade de Campinas - UNICAMP, Campinas. 2013. LEE, H.V.; JUAN, J.C.; ABDULLAH, N.F.B.; NIZAH, R.; TAUFIQ-YAP, Y.H. Heterogeneous base catalysts for edible palm and non-edible Jatropha-based biodiesel production. Chemistry Central Journal, 2014. LEUNG, D.Y.C.; WU, X.; LEUNG, M.K.H. A review on biodiesel production using catalyzed transesterification. Applied Energy, v. 87, p. 1083–1095, 2009. LIU, X.; PIAO, X.; WANG, Y.; ZHU, S.; HE, H. Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel, v. 87, p. 1076- 1082, 2008. MA, F.; CLEMENTS, L. D.; HANNA, M. A. The effect of mixing on transesterification of beef tallow. Bioresource Technology, v. 69, p. 289-293, 1999. MAPELE, Renilson. Estudos auxiliares para a interpretação do efeito salino na produção do biodiesel. 2017. 55f. Monografia (Graduação em Engenharia Química), Universidade Federal Rural do Rio de Janeiro – UFRRJ, Seropédica. 2017. MEDICAL EXPO. Disponível em: <http://www.medicalexpo.com/pt/prod/kernsohn/ product-69008-665391.html>. Acesso em: 7 fev. 2017. MEDICAL EXPO. Disponível em: <http://www.medicalexpo.com/pt/prod/auxilabsl/ product-84127-643311.html>. Acesso em: 9 fev. 2017. MERCHANT RESEARCH & CONSULTING, LTD. Biodiesel: 2017 World Market Outlook and Forecast up to 2021. Disponível em: http://mcgroup.co.uk/researches/biodiesel>. Acesso em: 15 de mar. 2017. 82 PERRY, H.R.; GREEN; D.W. Perry’s Chemical engineers’ handbook. 8. ed. Estados Unidos da América: McGraw-Hill Professi, 2007. PULLEN, J.; SAEED, K. Investigation of the factors affecting the progress of base-catalyzed transesterification of rapeseed oil to biodiesel FAME. Fuel Processing Technology, v. 130, p. 127-135, 2015. PUNA, J.F.; GOMES, J.F.; BORDADO, J.C.; CORREIA, M.J.N.; DIAS, A.P.S. Biodiesel production over lithium modified lime catalysts: Activity and deactivation. Applied Catalysis A: General, v. 470, p. 451-457, 2014. RAHIMI, M.; AGHEL, B.; ALITABAR, M.; SEPAHVAND, A.; GHASEMPOUR, H.R.. Optimization of biodiesel production from soybean oil in a microreactor. Energy Conversion and Management, v. 79, p. 599-605, 2014. RASHID, U.; ANWAR, F. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy & Fuels, v. 22, p. 1306–1312, 2008. RASHTIZADEH, E.; FAEZEH FARZANEH, F. Transesterification of soybean oil catalyzed by Sr–Ti mixed oxides nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, v. 44, p. 917-923, 2013. REFRAÇÃO DE UM RAIO LASER VERDE. Disponível em: <https://www.youtube.com/watch?v=IFDatI4bGa4>. Acesso em: 9 de mai. 2017. REFRACTOMETER SALES. How does a refractometer works? Disponível em: <http://www.refractometersales.com/newsinfo.asp?id=35>. Acesso em: 7 fev. 2017. RENEWABLE FUELS ASSOCIATION. World Fuel Ethanol Production. Disponível em: <http://ethanolrfa.org/resources/industry/statistics/#1454099103927-61e598f7-7643>. Acesso em: 18 de mar. 2017. RICHARD, R.; LI, Y.; DUBREUIL, B.; THIEBAUD-ROUD, S.; PRAT, L. On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography. Bioresource Technology, v. 102, p. 6702–6709, 2011. 83 RICHARD, R.; THIEBAUD-ROUX, S.; PRAT, L. Modelling the kinetics of transesterification reaction of sunflower oil with ethanol in microreactors. Chemical Engineering Science, v. 87, p. 258-269, 2013. SERWAY, R. A. Fundamentos de física v. 2. São Paulo: Cengage Learning, 2012. SHAHBAZI, M. R.; KHOSHANDAM, B.; NASIRI, M.; GHAZVINI. Biodiesel production via alkali-catalyzed transesterification of Malaysian RBD palm oil – characterization, kinetics model. Journal of the Taiwan Institute of Chemical Engineers, v. 43, n. 4, p. 504-510, 2012. SINGH, A.; HE, B.; THOMPSON, J.; GERPEN, J. V. Process optimization of biodiesel production using alkaline catalysts. Applied Engineering in Agriculture, v. 22, n. 4, p. 597- 600, 2006. SREE, R.; KURIAKOSE, S. Alkali salts of heteropoly tungstates: Efficient catalysts for the synthesis of biodiesel from edible and non-edible oils. Journal of Energy Chemistry, v. 24, p. 87-92, 2015. STANTON, M.G.; ALLEN, C. B.; KISSLING, R. M.; LINCOLN. A. L.; GAGNÉ, M. R. New catalysts for the ester- interchange reaction: the role of alkali-metal alkoxide clusters in achieving unprecedented reaction rates. Journal American Chemical Society, v. 120, p. 5981, 1998. TAKASE, M.; ZHANG, M.; FENG, W.; CHEN, Y.; ZHAO, T.; COBBINA, S.J.; YANG, L.; WUC, X. Application of zirconia modified with KOH as heterogeneous solid base catalyst to new non-edible oil for biodiesel. Energy Conversion and Management, v. 80, p. 117-125, 2014. TUBINO, M.; JUNIOR, J.G.R.; BAUERFELDT, G.F. Biodiesel synthesis with alkaline catalysts: A new refractometric monitoring and kinetic study. Fuel, v. 125, p. 164-172, 2014. TUBINO, M.; JUNIOR, J.G.R.; BAUERFELDT, G.F. Biodiesel synthesis: A study of the triglyceride methanolysis reaction with alkaline catalysts. Catalysis Communications, v. 75, p. 6-12, 2016. TUBINO, M.; OLIVEIRA, A. Continuous Monitoring of a Transesterification Reaction Using an Analytical Balance. Journal of the Brazilian Chemical Society, p. 1-5, 2017. 84 U.S. ENERGY INFORMATION ADMINISTRATION (EIA). Monthly Biodiesel Production Report, July 2016. Disponível em: <http://www.eia.gov/energyexplained/index.cfm/data/index.cfm?page=biofuel_biodiesel_ho me>. Acesso em: 15 de mar. 2017. VERMA,P.; SHARMA, M. P. Review of process parameters for biodiesel production from different feedstocks. Renewable and Sustainable Energy Reviews, v. 62, p. 1063-1071, 2016. VICENTE, G.; MARTÍNEZ, M.; ARACIL, J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology, v. 92, p. 297-305, 2004. WU, H.; ZHANG, J.; WEI, Q.; ZHENG, J.; ZHANG J. Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts. Fuel Processing Technology, v. 109, p. 13-18, 2012. XIE, W. e LI, H. Hydroxyl content and refractive index determinations on transesterified soybean oil. Journal of the American Oil Chemists' Society, v. 83, n.10, p. 869-872, 2006. XIE, W.; ZHAO, L. Production of biodiesel by transesterification of soybean oil using calcium supported tin oxides as heterogeneous catalysts. Energy Conversion and Management, v. 76, p. 55-62, 2013. YAN, S.; DIMAGGIO, C.; MOHAN, S.; KIM, M.; SALLEY, S. O.; K. Y.; SIMON, K. Y. Advancements in heterogeneous catalysis for biodiesel synthesis. Topics in Catalysis, v. 53, p. 721-736, 2010. YUI, S.; YEH, S. Land use change emissions from oil palm expansion in Pará, Brazil depend on proper policy enforcement on deforested lands. Environmental research letters, v. 8, p. 1-9, 2013. ZABALA, S.; ARZAMENDI, G.; REYERO, I.; GANDÍA, L.M. Monitoring of the methanolysis reaction for biodiesel production by off-line and on-line refractive index and speed of sound measurements. Fuel, v. 121, p. 157-164, 2014. ZABETI, M.; DAUD, W.M.A.W.; AROUA, M.K. Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Applied Catalysis A: General, v. 366, p. 154-159, 2009por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63883/2017%20-%20Daniel%20Ananias%20Reis%20de%20%20Campos.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/4356
dc.originais.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-02-01T14:09:38Z No. of bitstreams: 1 2017 - Daniel Ananias Reis de Campos.pdf: 2676708 bytes, checksum: 144611ee384d3bbce1bc699075248165 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-02-01T14:09:39Z (GMT). No. of bitstreams: 1 2017 - Daniel Ananias Reis de Campos.pdf: 2676708 bytes, checksum: 144611ee384d3bbce1bc699075248165 (MD5) Previous issue date: 2017-11-27eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2017 - Daniel Ananias Reis de Campos.pdfDaniel Ananias Reis de Campos2.61 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.