Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14601
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLima, Lin Machado de
dc.date.accessioned2023-12-22T03:03:24Z-
dc.date.available2023-12-22T03:03:24Z-
dc.date.issued2019-07-01
dc.identifier.citationLIMA, Lin Machado de. Estudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarina. 2019. 33 f. Dissertação (Mestrado em Quí­mica) - Instituto de Quí­mica, Departamento de Bioquí­mica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14601-
dc.description.abstractA monoamina oxidase [EC 1.4.3.4 (MAO)] é uma enzima localizada na membrana externa da mitocôndria que usa a flavina adenina dinucleotídeo (FAD) como cofator enzimático para catalisar a conversão oxidante de uma amina em seu aldeído correspondente, produzindo também amônia e peróxido de hidrogênio. A atividade das monoamina oxidases regula os níveis de aminas biogênicas presentes nos tecidos, principalmente no cérebro. Monoamina oxidases existem como duas proteínas: MAO-A e MAO-B. Estas isoformas foram definidas primariamente pelas afinidades por substratos e sensibilidade aos inibidores. Assim, a MAO-A oxida preferencialmente serotonina, melatonina, noradrenalina e adrenalina. A MAO-B oxida preferencialmente a feniletilamina, um alcaloide do metabolismo da fenilalanina. A ingestão de feniletilamina promove a liberação de dopamina que atua no cérebro estimulando euforia. Com relação aos inibidores, a MAO-A é inibida preferencialmente por clorgilina. MAO-B é inibida por deprenil e por pargilina. Esses inibidores podem ser usados para o tratamento das doenças degenerativas do cérebro. Desde que estudos têm mostrado que moléculas derivadas de cumarinas obtiveram excelentes resultados como inibidoras destas enzimas, muitas drogas novas derivadas da cumarina vêm sendo sintetizadas, das quais algumas são muito promissoras para o tratamento das doenças de Alzheimer e Parkinson. O alvo desse trabalho foi promover testes de inibição in vitro da MAO da fração mitocondrial de cérebro de rato Wistar com novos produtos derivados da cumarina. Dentre os compostos testados, dois deles se mostraram promissores como inibidores da MAO de fração mitocondrial de cérebro de rato wistar, atingindo mais de 60% de inibição da atividade da monoamina oxidase.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMonoamina oxidasepor
dc.subjectCumarinapor
dc.subjectInibidores de enzimaspor
dc.subjectMonoamine oxidaseeng
dc.subjectCoumarineng
dc.subjectEnzymes Inhibitorseng
dc.titleEstudo da inibição da monoamina oxidase por novos compostos sintéticos derivados de cumarinapor
dc.title.alternativeStudy of the inhibition of monoamine oxidase by new synthetic compounds derived from coumarineng
dc.typeDissertaçãopor
dc.description.abstractOtherMonoamine oxidase [EC 1.4.3.4 (MAO)] is an enzyme located in the outer membrane of the mitochondria, which uses flavin adenine dinucleotide (FAD) as a cofactor to catalyze the oxidant conversion of an amine in its corresponding aldehyde, also producing ammonia and hydrogen peroxide. MAO activity regulates the levels of biogenic amines present in tissues, especially in the brain. MAO exists as two proteins: MAO-A and MAO-B. These isoforms were defined primarily by substrate affinities and inhibitor sensitivity. Accordingly, MAO-A oxidizes, preferably, serotonin, melatonin, noradrenaline and adrenaline. MAO-B preferably oxidizes phenylethylamine, an alkaloid from the metabolism of phenylalanine. The ingestion of phenylethylamine promotes the release of dopamine that acts in the brain stimulating euphoria. Concerning the inhibitors, MAO-A is preferentially inhibited by clorgiline. MAO-B is inhibited by deprenyl and pargyline. These inhibitors can be used in the treatment of degenerative brain diseases. Since studies have shown that molecules derived from coumarins achieved excellent results as inhibitors of these enzymes, several new drugs derived from coumarin have been synthesized, which a few are very promising in the treatment of Alzheimer's and Parkinson's diseases. This study aimed to promote in vitro inhibition tests of MAO with new substances derived from coumarin. Among the compounds tested, two of them were shown to be promising as MAO inhibitors of mitochondrial fraction of wistar rat brain, reaching more than 60% inhibition of monoamine oxidase activity.eng
dc.contributor.advisor1Salles, Cristiane Martins Cardoso de
dc.contributor.advisor1IDCPF: 035.399.287-90por
dc.contributor.advisor-co1Bastos, Frederico Freire
dc.contributor.advisor-co1IDCPF: 082.617.467-76por
dc.contributor.referee1Vieira, André Luiz Gomes
dc.contributor.referee2Fernandes, Daniele Corrêa
dc.contributor.referee3Santos, André Marques dos
dc.contributor.referee4Bastos Neto, Jayme da Cunha
dc.creator.IDCPF: 805.264.627-87por
dc.creator.Latteshttp://lattes.cnpq.br/4443098894988565por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.references1.(JPND), E.J.-N.([s.d.]). de JPND Research. Disponível em:˂http://www.neurodegenerationresearch.eu/about/what/˃. Acesso em maio de 2013. 2.Alzheimer’s association. , de Alzheimer’s Australia. Disponível em:˂http://www.fightdementia.org.au/understanding-dementia/section-1-about-dementia.aspx˃. Acesso em maio de 2013. 3.ANNAMALAI, B.; WON, J.S.; CHOI, S.; SINGH, I.; SINGH, A.K.. Role of s-nitrosoglutathione mediated mechanisms in tau hyper-phosphorylation. Biochemical andBiophysical Research Communications, 458, nº1, 214-219, 2015. 4.Associação Brasileira de Alzheimer (Abraz). Disponível em: ˂http://www.portalnovidade.com.br/materia/7315/doenca-neurodegenerativa-acomete-milhoes-em-todo-o-mundo.html˃. Acesso em 15 de abril de 2015. 5.AZIMI, S.; RAUK, A.. On the involvement of copper binding to the N-terminus of theamyloid beta peptide of Alzheimer’s disease: a computational study on model systems.International Journal of Alzheimer’s Disease, 2011, Article ID 539762, 1-15, 2011. 6.BARNHAM, K.J.; MASTERS, C.L.; BUSH, A.I.. Neurodegenerative diseases andoxidative stress. Nature Reviews Drugs Discovery, 3, 205-214, 2004. 7.BARNHAN, K.J.; BUSH, A.L.. Metals in Alzheimer’s and Parkinson’s diseases. CurrentOpinion in Chemical Biology, 12, nº 2, 222-228, 2008. 8.BARREIROS, A.L.B.S.; DAVID, J.M.; DAVID, J.P.. Estresse oxidativo: relação entregeração de espécies relativas e defesa do organismo. Química nova, 29, nº 1, 113-123,2006. 9.BARTUS, R.T.; DEAN, R.L.; BEER, B.; LIPPA, A.S.. The cholinergic hypothesis ofgeriatric memory dysfunctions. Science, 217, 408-417, 1982. 10.BENNET, B.M.; REYNOLDS, J.N.; PRUSKY, G.T.; DOUGLAS, R.M.; SUTHERLAND,R.J.; THATCHER, G.R.. Cognitive deficits in rat after forebrain cholinergic depletion arereversed by a novel no mimetic nitrate ester. Neuropsychopharmacology, 32, nº 3, 505-513, 2006. 11.BERGER-SWEENEY, J.; ARNOLD, A.; GABEAU, D,; MILLS, J.. Sex differences inlearning and memory in mice: effects of sequence of testing and cholinergic blockade.Beharvioral Neuroscience, 109, nº 5, 859-873, 1995. 12.BUSH, A.L.; PETTINGELL, W.H.; MULTHAUP, G.; d PARADIS, M.; VONSATTEL,J.P.; GUSELLA, J.F.; BEYREUTHER, K.; MASTERS, C.L.; TANZI, R.E.. Rapideinduction of Alzheimer A beta amyloid formation by zinc. Science, 265, nº 5177, 1464-1467, 1994. 13.CHARTIER-HARLIN, M.C.; CROWFORD, F.; HOULDEN, H.; WARREN, A.;HUGHES, D.; FIDANI, L.; GOATE, A.; ROSSOR, M.; ROQUES, P.; HARDY, J.. Early-onset Alzheimer’s disease caused by mutations st codon 717 of Beta-amyloid precursorprotein gene. Nature, 353, 844-846, 1991. 14.CITRON, M.; OUTERSDORF, T.; HAASS, C.; McCONLOQUE, L.; HUNG, A.Y.;SEUBERT, P.; VIGO-PELFREY, C.; LIEBERBURG, I.; SELDKOE, D.J.. Mutation ofbeta-amyloid precursor protein in familial Alzheimer’s disease increases beta-proteinproduction. Nature, 360, nº 6405, 672-674, 1992. 15.COYLE, J.T.; PRICE, D.L.; DeLONG, M.R.. Alzheimer’s disease: a disorder of corticalcholinergic innervation. Science, 219, 1184-1190, 1983. 16.CRADDOCK, T.J.; TUSZYNSKI, J.A.; CHOPRA, D.; CASEY, N.; GOLDSTEIN, L.E.;HAMEROFF, S.R.; TANZI, R.E.. The zinc dyshomeostasis hypothesis of Alzheimer’sdisease. Plos One, 7, nº 3, 1-16, 2012. 17.DANSHER, G.; JENSEN, K.B.; FREDERICKSON, C.J.; KEMP, K.; ANDREASEN, A.;JUHL, S.; STOLLENBERG, M.; RAVID, R.. Increased amount of zinc in thehippocampus and amygdala of Alzheimer’s disease brains: a proton-induced X-rayemission spectroscopic analysis of cryostat sections from autopsy material. JournalNeuroscience Methods, 76, nº 1, 53-59, 1997. 18.DAVIES, P.; MALONEY, A.J.F.. Selective loss of central cholinergic neurons inAlzheimer’s disease. The Lancet, 308, 1403, 1976. 19.DE FALCO, A.; CUKIERMAN, D.S.; HAUSER-DAVIS, R.A.; REY, N.A.. Doença deAlzheimer: hipóteses etiológicas e perspectivas de tratamento. Química Nova, 39, nº 1,1678-17064, 2016. 20.DEIBEL, M.A.; EHMANN, W.D.; MARKESBERY, W.R.. Copper, iron, and zincimbalances in severely degenerated brain regions in Alzheimer’s disease: possible relationto oxidative stress. Journal of the Neurological Sciences, 143, nº 1-2, 137-142, 1996. 21.DEUTSH, J.A.. The cholinergic synapse and the site of memory. Science, 174, 788-794,1971. 22.DINGLEDINE, R.; BORGES, K.; BOWIE, D.; TRAYNELIS, S.F.. The glutamatereceptor ion channels. Pharmacology Reviews, 51, nº 1, 7-61, 1999. 23.DOMINGUEZ, J.L.; FERNÁNDEZ,-NIETO, F.; BREA,J.M.; CATTO, M.; SOTO-OTERO,R.. 8-Aminomethyl-7-hydroxy-4-methylcoumarins as multitarget leads forAlzheimer’s Disease. Chemistry Select, 1, 2742-2749, 2016. 24.DRACHMAN, D.A.; SAHAKIAN, B.J.. Memory and cognitive function in the elderly: Apreliminary trial of physostigmine. Archives of Neurology, 37, (10), 674-675, 1980. 25.FINCKH, U.; KUSCHEL, C.; ANAGNOSOULI, M.; PATSOURIS, E.; PANTS, G.V.;GATZONIS, S.; KAPAKI, E.; DAVAKI, P.; LAMSZUS, K.; STAVROU, D.; GAL, A..Novel mutations and repeated findings of mutations in familial Alzheimer’s disease.Neurogenetics, 6, nº 2, 85-89, 2005. 26.FOLLMER, C.; BEZERRA-NETO, H.J.C.. Fármacos multifuncionais: monoaminaoxidase e a-sinucleína como alvos terapêuticos na doença de Parkinson. Química Nova,36, nº 2, 1-12, 2013. 27.GANDY, S.. The role of cerebral amyloid beta accumulation in forms of Alzheimer’sdisease. The Journal of Clinical Investigation, 115, (5), 1121-1129, 2005. 28.GIACCONE, G.; TAGLIAVINI, F.; LINOLI, G.; BOURAS, C.; FRIGERIO, L.;FRANGIONE, B.; BUGIANE, O.. Down patients: Extracellular preamyloyd depositsprecede neuritic degeneration and senile plaques. Neuroscience Letters, 97, (1-2), 232-238,1989. 29.GOATE, A.; CHARTIER-HARLIN, M.C.; MULLAN, M.; BROWN, J.; CRAWFORD,F.; FIDANE,L.; GIUFFRA, L.; HAYNES, A.; IRVING, N.; JAMES, L.. Nature, 349,704-706, 1991. 30.GREEN, A.; ELLIS, K.A.; ELLIS, J,; BARTHOLOMEUSZ,C.F.; LLIC,S.; CROFT,R.J.;PHAN,K.L.; NATHAN,P.J.. Muscarinic and nicotinic receptor modulation of object andspatial n-back working memory in humans. Pharmacology Biochemistry and Behaviour,81, nº 3, 575-584, 2005. 31.GREENAMYRE, J.T.; YOUNG, A.B.. Excitatory amino acids and Alzheimer’s disease.Neurobiology of anging, 10, nº 5, 593-602, 1989. 32.GREENAMYRE, J.T.;MARAGOS,W.F.; ALBIN, R.L.; PENNEY, J.B.; YOUNG, A.B..Glutamate transmission and toxicity in Alzheimer’s disease. Proq.Neuropsychopharmacology Biology Psychiatry, 12, nº 4, 421-430, 1988. 33.GU, L.; LIU, C.; GUO, Z.. Structural insights into Abeta42 oligomers using site-directedspin labelling. Journal Biological Chemistry, 288, nº 26, 18673-18683, 2013. 34.HAASS, C.; HUNG, A.Y.; SELKOE, D.J.; TEPLOW, D.B.. Mutations associated with alocus for familial Alzheimer’s disease result in alternative processing of amyloid beta-protein precursor. Journal Biologic Chemistry, 269, 17741-17748, 1994. 35.HANE, F.; LEONENKO, Z.. Effect of metal on kinetic pathways of amyloid-betaaggregation. Biomolecules, 4, nº 1, 101-116, 2014. 36.HANE, F.; TRAN, G.; ATTWOOD, S.J.; LEONENKO, Z.. Cu(+2) affects amyloid –Beta(1-42) aggregation by increasing peptide-peptide binding forces. Plos One, 8, nº 3, 1-8,2013. 37.HARDMAN, J.G.; LIMBIRD, L.E.; GILMAN, A.G.; GOODMAN, L.S.; GILMAN, A.;Goodman & Gilman's the pharmacological basis of therapeutics, McGraw-Hill: NewYork, 1996. 38.HARDY, J.A.; HIGGINS, G.A.. Alzheimer’s disease: the amyloid cascade hypothesis.Science, 256, nº 5054, 184-185, 1992. 39.HASS, C.; SCHLOSSMACHER, M.G.; HUNG, A.Y.; VIGO-PELFREY, C.; MELLON,A.; OSTSZEWSKI, B.L.; LIEBERBURG, I.; KOO, E.H.; SCHENK, D.; TEPLOW, D.B..Nature, 359, 322-325, 1992. 40.HASSELMO, M.E.. The role of acethylcholine in learning and memory. Current Opinionin Neurobiology, 16, nº 6, 710-715, 2006. 41.HE, W.; BARROW, C.J.; The A beta 3-pyroglutamyl and 11-pyroglutamyl peptides foundin senile plaque have greater beta-sheet forming and aggregation propensities in vitro thanfull-length A beta. Biochemistry, 38, nº 33, 10871- 1877, 1999. 42.HENDRIKS, L.; van DUIJN, C.M.; CRAS, P.; CRUTS, M.; Van Hul, W.; vanHARSKAMP, F.; WARREN, A.; McINNIS, M.G.; ANTONARAKIS, S.E.; MARTIN,J.J.. Nature Genetics, 1, 218-221, 1992. 43.HUANG, M.;XIE, S.S.; JIANG, N.; LAN, J.S.; KONG, L.Y.; WNAG, X.B..Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s. Bioorganic& Medicinal Chemistry Letters, 25, 508-513, 2015. 44.IWATSUBO, T.; MANN, D.M.; ODAKA, A.; SUZUKI, N.; IHARA, Y.. Amyloid betaprotein (A beta) deposition: A beta 42(43) precedes a beta 40 in Down syndrome. Annalsof Neurology, 37, nº 3, 294-299, 1995. 45.KÁSA, P.;RANKONCZAY, Z.; GULYA,K.. The cholinergic system in Alzheimer’sdisease. Progress in Neurobiology, 52, nº 6, 511-535, 1997. 46.KAYED, R.; SOKOLOV, Y.; EDMONDNS, B.; McINTIRE, T.M.; MILTON, S.C.;HALL, J.E.; GLABE, C.G.. permeabilization of lipid bilayers is a common conformation-dependent activity of volume amyloid oligomers in protein misfolding diseases. JournalBiological Chemistry, 279, 46363-46366, 2004. 47.KLEIN, W,L.; KRAFFT, G.A.; FINCH, C.E.. Targeting small A-beta oligomers: thesolution to an Alzheimer’s disease conundrum? Trends in Neurosciences, 24, nº4, 219-224, 2001. 48.KRAJL, M.. A rapid microfluorimetric determination of monoamine oxidase. BiochemicalPharmacology, 14, 1683-1685, 1965. 49.LEE, J.; CULYBA, E.K.; POWERS, E.T.; KELLY, J.W.. amyloid-beta forms fibrils bynucleated conformational conversation of oligomers. Nature Chemical Biology, 7, 602-609, 2011. 50.LEVY, E.; CARMAN, M.D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.;LIEBERBURG, I.; van DUINEN, S.G.; BOTS, G.T.; LUYENDIJK, W.; FRANGIONE,B.. Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage,Dutch type. Science, 248, nº 4959, 1125-1126, 1990. 51.LOVELL, M.A.; ROBERTSON, J.D.; TEESDALE, W.J.; CAMPBELL, J.L.;MARKESBERY, W.R.. Copper, iron, and zinc in Alzheimer’s disease senile plaques.Journal of the Neurological Sciences, 158, nº 1, 47-52, 1998. 52.MATOS, M.J.. Potent and selective MAO-B inhibitory activity: Amino-versus nitro-3-arylcoumarin derivatives. Bioorganic & Medicinal Chemistry Letters, 25, 642-648, 2015. 53.MATTSON, M.P.. Cellular actions of beta-amyloid precursor protein and its soluble andfibrillogenic derivates. American Physiological Society Reviews, 77, nº 4, 1081- 1090,1997. 54.MAYA, A. ([s.d.]). Masters Neurosciences – Université de Strasbourg: Disponível em˂http://neuromaster.ustrasburg.fr/forms%20and%20PDF/Biography_of_Alois_Alzheimer%20by%20.pdf˃. Acesso em maio de 2013. 55.MIURA, T.; SUZUKI, K.; KOHATA, N.; TAKEUCHI, H.. Metal binding modes ofAlzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes.Biochemistry, 39, nº 23, 7024-7031, 2000. 56.MOORES, B.; DROLLE, E.; ATTWOOD, S.J.; SIMONS, J.; LEOLENKO, Z.. Effect ofsurfaces on amyloid fibril formation. Plos One, 6, nº 10, 1-10, 2011. 57.MUDHER, A.; LOVESTONE, S.. Alzheimer’s disease-do tauists and Baptists finallyshake hands? Trends Neuroscience, 25, nº1, 22-26, 2002. 58.MURRELL, J.; FARLOW, M.; GHETTI, B.; BENSON, M.D.. A mutation in the amyloidprecursor protein associated whish hereditary Alzheimer’s disease. Science, 254, nº 5028,97-99, 1991. 59.MUTURAJU,S.; MAITI, P.; SOLANKI, P.; SHARMA, A.K.; AMITABH; SINGH, S.B.,PRASAD, D.; LLAVAZHAGAN, G.. Acethycholinesterase inhibitors enhance cognitivefunctions in rats following hypobaric hypoxia. Behavioural brain research, 203, nº 1, 1-14, 2009. 60.National Institutes of Health. (julho 2011). National Institute on Aging – NationalInstitutes of Health: Disponível em:˂http://www.nia.nih.gov/sites/defout/files/alzheimers_disease_fact_sheet_0.pdf ˃.Acessoem maio de 2013. 61.NIE, Q.; DU, X.G.; GENG, M.Y.. Small molecule inhibitors of amilóideamiloide betapeptide aggregation as a potential therapeutic strategy for Alzheimer’s disease. ActaPharmacological Sinica, 32, 545-551, 2011. 62.NIELSBERTH, C.; DANIELSSON, A.W.; ECKMAN, C.B.; CONDRON, M.M.;AXELMAN, K.; FORSELL, C.; STENH, C.; LUTHMAN, J.; TEPLOW, D.B.;YOUNKIN, S.G.; NÄSLUND, J.; LANNFELT, L.. The ‘Artic’ APP mutation (E693G)causes Alzheimer’s disease by enhanced A-beta protofibril formation. NatureNeuroscience, 4, 887-893, 2001. 63.ORHAN, I. E.. Potential of natural products of herbal origin as monoamine oxidaseinhibitors. Current Pharmaceutical Design, 22, nº 3, 268-276, 2016. 64.PARSONS, C.G.; STÖFFLER, A.; DANYSZ, W.. Memantine: a NMDA receptorantagonist that improves memory by restoration of homeostasis that glutamatergic system–too little activation is bad, too much is even worse. Neuropharmacology, 53, nº 6, 699-723, 2007. 65.PETERSON, G.L.. A simplification of the protein assay method of Lowry et al. Which ismore generally applicable. Analytical Biochemistry, 83, 346-356, 1977. 66.PUZZO, D.; VITOLO, O.; TRINCHESE, F.; JACOB, J.P.; PALMIERI, A.; ARANCIO,O.. Amyloid-beta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsiveelement-binding protein pathway during hippocampal synaptic plasticity. JournalNeuroscience, 25, nº 29, 6887-6897, 2005. 67.SAIDO, T.C.; IWATSUBO, T.; MANN, D,M.; SHIMADA, H.; IHARA, Y.;KAWASHIMA, S.. Dominant and differential deposition of distinct beta-amyloid peptidespecies, A beta N3(pE), in senile plaques. Neuron, 14, nº 2, 457-466, 1995. 68.SAYRE, L.M.; PERRY, G.; HARRIS, P.L.; LIU, Y.; SCHOUBERT, K.A.; SMITH, M.A..In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’sdisease: a central role for bound transition metals. Journal of the Neurochemistry, 74, nº1, 270-279, 2000. 69.SECCI, D.; CARRADONI, S.; BOLASCO, A.; CHIMENTI, P.; YÁÑES, M.; ORTUSO,F.; ALCARO, S.. Synthesis and selective human monoamine oxidase inhibition of 3-carbonyl, 3-acyl, and 3-carboxyhydrazido coumarin derivatives. European JournalMedicine Chemistry, 46, 4846-4852, 2011. 70.SELKOE, D.; MANDELKOW, E.; HOLTZMAN, D.. Deciphering Alzheimer’s disease.Cold Spring Harbour Perspectives in Medicine, 2, 1-8, 2012. 71.SELKOE, D.J.. Amyloid beta-protein and the genetics of Alzheimer’s disease. JournalBiological Chemistry, 27, nº 31, 18295-8, 1996. 72. SERRANO-POZO, A.; FROSCH, M.P.; MASLIAH, E.; HYMAN, B.T.. Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1-24, 2011. 73.SMITH, M.A.; WEHR, K.; HARRIS, P.L.; SIEDLAK, S,L.; CONNOR, J.R.; PERRY, G..abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Research,788, nº 1-2, 232-236, 1998. 74.SMITH, M.A.C.; Revista brasileira de psiquiatria, 21, 03, 1999. 75.SOREGHAN, B.; KOSMOSKI, J.; GLABE, C.. Surfactant properties of Alzheimer’s Abeta peptides and the mechanism of amyloid aggregation. Journal Biological Chemistry,269, nº 46, 28551-28554, 1994. 76.SPIRES, T.L.; HYMAN, B.T.. Transgenic models of Alzheimer’s disease: learning fromanimals. Neuro Rx, 2, nº 3, 423-437, 2005. 77.SUCHER, N.J.; AWOBULUYI, M.; CHOI, Y.B.; LIPTON,S.A.. NMDA receptors: fromgenes to channels. Trends in Pharmacological Sciences, 17,nº 10, 349-355, 1996. 78.TABATON, M.; NUNZI, M.G.; XUE, R.; USIAK, M.; AUTILIO-GAMBETTI, L.;GAMBETTI, P.. Soluble amyloid beta-protein is a marker of Alzheimer amyloid in brainbut nor in cerebrospinal fluid. Biochemical and Biophysical Research Communications,200, nº 3, 1598-1603, 1994. 79.TÕUGU, V.; KARAFIN, A.; PALUMAA, P.. Binding of zinc(II) and copper (II) to thefull-length Alzheimer’s amyloid-beta peptide. Journal Neurochemistry, 104, nº 5, 1249-1259, 2008. 80.WALSH, D.M.; KLYUBIN, I.; FADEEVA, J.; CULLEN, W.K.; ANWYL, R.; WOLFE,M.S.; ROWAN, M.J.; SELKOE, D.J..Naturally secreted oligomers of amyloid beta-proteinpotently inhibit hippocampal long-term potentiation in vivo. Nature, 416, 535-539, 2002. 81.WEINER, M.W.; VEITCH,D.P.; AISEN, P.S.; BECKETT, L.A.; CAIRNS,N.J.; GREEN,R.C.; HARVET, D.; JACK, C.R.; JAGUST, W.; LIU, E.; MORRIS, J.C.; PETERSEN,R.C.; SAYKIN, A.J.; SCHMIDT, M.E.; SHAW, L.; SIUCIAK, J.A.; SOARES, H.;TOGA, A.W.; TROJANOWSKI, J.Q.. The Alzheimer’s disease neuroimaging initiative: areview of papers published since its inception. Alzheimer’s & Dementia, 8, nº 1, S1-S68,2012. 82.WILCOCK, G.K.; ESIRI, M.M.; BOWEN, D.M.; SMITH, C.C.T.. Alzheimer’s disease:correlation of cortical choline acethyltransferase activity with the severity of dementia andhistological abnormalities. Journal of the Neurological Sciences, 57, nº 2-3, 407-417,1982. 83.WISHIK, C.M.; NOVAK, M.; EDWARDS, P.C.; KLUG, A.; TICHELAAR, W.;CROWTHER, R.A.. Proc. Natl.Acad. Sci. U.S.A., 85, 4884, 1988. 84.YANG, D.S.; McLAURIN, J.; QIN,K.; WESTAWAY, D.; FRASER, P.E.. Examining thezinc binding site of the amyloid-beta peptide. European Journal Biochemistry, 267, nº22, 6692-6698, 2000. 85.YOUDIM, M.B.; BAKHLE, Y.S.. Monoamine oxidase: isoforms and inhibitors inParkinson’s disease and depressive illness. British Journal Pharmacology, 147, 287-296,2006. 86.YOUDIM, M.B.; WEINSTOCK, M.. Therapeutic applications of selective and non-selective inhibitors of monoamine oxidase A and B that do not cause significant tyraminepotentiation. Neurotoxicology, 25, nº 1-2, 243-250, 2004. 87.ZHENG, W.H.; BASTIANETTO, S.; MENNICKEN, F.; MA, W.; KAR, S.. Amyloid betapeptide induces tau phosphorylation and loss of cholinergic neurons in rat primary septalcultures. Neuroscience, 115, nº 1, 201-211, 2002. 88.ZHU, X.; SU, B.; WANG, X.; SMITH, M.A.; PERRY, G.. Causes of oxidative stress inAlzheimer’s disease. Cellular and Molecular Life Sciences, 64, nº 17, 2202-2210, 2007.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67901/2019%20-%20Lin%20Machado%20de%20Lima.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5322
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-01-19T18:51:44Z No. of bitstreams: 1 2019 - Lin Machado de Lima.pdf: 931751 bytes, checksum: b85decb15478a60703cdbcccab374702 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-01-19T18:51:45Z (GMT). No. of bitstreams: 1 2019 - Lin Machado de Lima.pdf: 931751 bytes, checksum: b85decb15478a60703cdbcccab374702 (MD5) Previous issue date: 2019-07-01eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Lin Machado de Lima.pdf909.91 kBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.