Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14615
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Gabriela Alves de
dc.date.accessioned2023-12-22T03:03:31Z-
dc.date.available2023-12-22T03:03:31Z-
dc.date.issued2018-11-21
dc.identifier.citationSOUZA, Gabriela Alves de. Síntese de compostos alquilamino-cumarínicos planejados como inibidores da acetilcolinesterase e agregação de placas βamiloides para o tratamento da doença de Alzheimer. 2018. 150 f. Dissertação (Mestrado em Quìmica) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14615-
dc.description.abstractA Doença de Alzheimer (DA) caracteriza-se por um distúrbio neurodegenerativo que provoca uma deterioração global, progressiva e irreversível de diversas funções cognitivas (memória, atenção, concentração, linguagem, pensamento, entre outras), dificultando a realização das atividades de vida diária. No que se diz respeito ao tratamento da DA, vem sendo apontado como de grande valia o uso de compostos híbridos com potencial inibidor para mais de um alvo, como a enzima acetilcolinesterase (AChE) e a agregação de placas β-Amiloides (Aβ), devido à possibilidade de inibir simultaneamente dois ou mais fatores que contribuem para a instalação e evolução da doença. A AChE atua no controle dos níveis do neurotransmissor acetilcolina (ACh) na fenda sináptica, o qual está envolvido nos processos de aprendizagem e memória. A agregação de placas Aβ é uma das principais responsáveis pela morte neuronal. Desta forma, o objetivo deste trabalho foi sintetizar compostos cumarínicos análogos a protótipos alquilamino-indanonas, descritos como inibidores da enzima AChE e da agregação de placas Aβ. O planejamento das séries foi baseado: 1- na manutenção do grupamento alquilamino cíclico; 2- na troca do núcleo indanona pelo cumarínico, através do isosterismo não-clássico de expansão de anéis. Os compostos foram sintetizados em rendimentos de razoáveis a bons a partir das reações de: O-alquilação da 7-hidroxi-cumarina; bromação da posição 3 das 7-bromoalcoxi-cumarinas; aminação da cadeia alquílica das 3- bromo-7-bromoalcoxi-cumarinas; reação de acoplamento de Suzuki a partir das 3-bromo-7- aminoalcoxi-cumarinas; reação de acoplamento de Buchwald a partir da 3-bromo-7- aminoetoxi-cumarina. Os compostos obtidos foram purificados e, então, caracterizados por técnicas espectroscópicas (RMN 1H e 13C) e espectrometria de massas de alta resolução. Todos os compostos sintetizados foram capazes de inibir a AChE seletivamente frente à BChE, em que o composto mais ativo apresentou CI50 = 0,02 µM e seletividade de 337 (BChE CI50/AChE CI50), perfil muito semelhante ao fármaco referência donepezila (AChE CI50 = 0,007 µM e seletividade de 341). Adicionalmente, os compostos mostraram perfil de inibição mista para ambas as colinesterases, o que foi corroborado por análises de docking molecular que demonstraram a interação dos compostos com os sítios catalítico (CAS) e periférico (PAS).por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectCumarinapor
dc.subjectDoença de Alzheimerpor
dc.subjectInibidores de AChEpor
dc.subjectInibidores de agregação de placas Aβpor
dc.subjectCoumarineng
dc.subjectAlzheimer's Diseaseeng
dc.subjectAChE Inhibitorseng
dc.subjectAβ Plate Aggregation Inhibitorseng
dc.titleSíntese de compostos alquilamino-cumarínicos planejados como inibidores da acetilcolinesterase e agregação de placas βamiloides para o tratamento da doença de Alzheimerpor
dc.title.alternativeSynthesis of alkylaminocoumarin compounds designed as inhibitors of acetylcholinesterase and β-amyloid plaque aggregation for the treatment of Alzheimer's diseaseeng
dc.typeDissertaçãopor
dc.description.abstractOtherAlzheimer's disease (AD) is a neurodegenerative disorder that causes a general, progressive and irreversible deterioration of several cognitive functions (memory, attention, concentration, language, thought, among others), making it difficult to perform daily activities . , The use of hybrid compounds for the treatment of AD with inhibitory potential for more than one target, such as the acetylcholinesterase enzyme (AChE) and the aggregation of β-amyloid plaques (Aβ), is very promising, due to the possibility of inhibiting simultaneously two or more factors that contribute to the establishment and evolution of the disease. AChE modules the levels of the neurotransmitter acetylcholine (ACh) in the synaptic cleft, factor that is involved in the learning and memory processes. The aggregation of Aβ plaques is one of the main causes for neuronal death. Thus, this work aims on the synthesis of coumarin compounds analogous to alkylamino-indanone prototypes, described as inhibitors for both AChE enzyme and Aβ plaques aggregation. The design of the series was based on: 1- the maintenance of the cyclic alkylamino group; 2- in the exchange of the indanone nucleus by the coumarin, through nonclassical isosterism of ring expansion. The synthesis of compounds involved: O-alkylation of 7-hydroxycoumarin; bromination at the 3-position of the 7-bromoalkoxycoumarins; amination of the alkyl chain of 3-bromo-7-bromoalkoxycoumarins; Suzuki coupling reaction of the 3- bromo-7-aminoalkoxycoumarins; Buchwald coupling reaction of the 3-bromo-7-aminoethoxycoumarins; all reactions presented regular to good yields. After purification, the characterization of compounds by spectroscopic techniques (1H and 13C NMR) and high resolution mass spectrometry confirmed the products. All synthesized compounds were able to inhibit AChE selectively against BChE, in which the most active compound presented IC50 = 0,02 µM and selectivity of 337 (BChE IC50 / AChE IC50), acting very similarly to reference drug donepezil (AChE IC50 = 0,007 µM and selectivity of 341). Additionally, the compounds showed mixed inhibition profile for both cholinesterases, which was corroborated by molecular docking analyzes that demonstrated the interaction of the compounds with the catalytic (CAS) and peripheral (PAS) sites.por
dc.contributor.advisor1Kümmerle, Arthur Eugen
dc.contributor.advisor1ID053.978.487-78por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee1Kümmerle, Arthur Eugen
dc.contributor.referee1ID053.978.487-78por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee2Alves, Marina Amaral
dc.contributor.referee2IDhttps://orcid.org/0000-0002-8188-5554por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0945374845574106por
dc.contributor.referee3Sant'Anna, Carlos Mauricio Rabello de
dc.contributor.referee3IDhttps://orcid.org/0000-0003-1989-5038por
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2087099684752643por
dc.creator.ID127.252.887-11por
dc.creator.Latteshttp://lattes.cnpq.br/0913544657118817por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesALZHEIMER’S ASSOCIATION. Dentro Do Cérebro: Uma Viagem Interativa. Disponível em: <https://www.alz.org/brain_portuguese/>. Acesso em: 11 de mai. 2018. AMARAL, M. D. P. H.; PIRESVIEIRA, F.; LEITE, M. N., DO AMARAL, L. H.; PINHEIRO, L. C.; FONSECA, B. G.; VAREJÃO, E. V. Determinação do teor de cumarina no xarope de guaco armazenado em diferentes temperaturas. Brazilian Journal of farmacognosy, 19(2B), p. 607-611, 2009. ARQUIVOBIOQUI. Síntese e reciclagem da acetilcolina na sinapse. Disponível em: <http://arquivobioqui.blogspot.com/2015/11/sintese-e-reciclagem-da-acetilcolina-na.html>. Acesso em: 11 de mai. 2018. ASTORINO, T.; BAKER, J.; BROCK, S.; DALLECK, L.; GOULET, E.; GOTSHALL, R.; LIM, Y. A. Reduction in Butyrylcholinesterase Activity and Cardiovascular Risk Factors in Obese Adolescents after 12-Weeks of High-Intensity Interval Training. Journal of Exercise Physiologyonline, 20(3), p. 110-120, 2017. BENKERT, P.; BIASINI, M.; SCHWEDE, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27, p. 343-350, 2011. BERNIER, F.; SATO, Y.; MATIJEVIC, M.; DESMOND, H.; MCGRATH, S.; BURNS, L.; KAPLOW, J.M.; ALBALA, B. Clinical study of E2609, a novel BACE1 inhibitor, demonstrates target engagement and inhibition of BACE1 activity in CSF. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 9(4), p. P886, 2013. BIASINI, M.; BIENERT, S.; WATERHOUSE, A.; ARNOLD, K.; STUDER, G.; SCHMIDT, T.; KIEFER, F.; CASSARINO, T. G.; BERTONI, M.; BORDOLI, L.; SCHWEDE, T. SWISSMODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), p. W252-W258, 2014. BLENNOW, K.; HAMPEL, H.; WEINER, M.; ZETTERBERG, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nature Reviews Neurology, 6(3), p. 131-144, 2010. BOISDE, P.M.; MEULY, W.C. Coumarin. Encyclopedia of Chemical Technology, 5, 2007. 79 BORGES, F.; ROLEIRA, F.; MILHAZES, N.; SANTANA, L.; URIARTE, E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current medicinal chemistry, 12(8), p. 887-916, 2005. BOURNE, Y.; GRASSI, J.; BOUGIS, P.E.; MARCHOT, P. Conformational Flexibility of the Acetylcholinesterase Tetramer Suggested by X-ray Crystallography. Journal of Biological Chemistry, 274(43), p. 30370-30376, 1999. BRUS, B.; KOSAK, U.; TURK, S.; PISLAR, A.; COQUELLE, N.; KOS, J.; STOJAN, J.; COLLETIER, J.P.; GOBEC, S. Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. Journal of Medicinal Chemistry, 57, p. 8167-8179, 2014. BUERGER, K.; EWERS, M.; PIRTTILÄ, T.; ZINKOWSKI, R.; ALAFUZOFF, I.; TEIPEL, S. J.; HAMPEL, H. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain, 129(11), p. 3035-3041, 2006. BUTTERFIELD, D. A.; BOYD-KIMBALL, D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. Journal of Alzheimer's Disease, 62(3), p. 1345-1367, 2018. CALDERON-MARGALIT, R.; ADLER, B.; ABRAMSON, J. H.; GOFIN, J.; KARK, J. D. Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in middle-aged and elderly men and women in Jerusalem. Clinical chemistry, 52(5), p. 845-852, 2006. CAREY, F. A. SUNDBERG, R. J. Advanced Organic Chemistry, Part A: Structure and Mechanisms, 5ª Ed., New York: Springer, 2008. CARVALHO A.O.; MARTINS, J.L.S. Determinação de cumarina em extrato fluido e tintura de guaco por espectrofotometria derivada de primeira ordem. Revista Brasileira de Ciências Farmacêuticas, 40(4), p. 481-486, 2004. CASADESUS, G.; MOREIRA, P. I.; NUNOMURA, A.; SIEDLAK, S. L.; BLIGH-GLOVER, W.; BALRAJ, E.; PERRY, G. Indices of metabolic dysfunction and oxidative stress. Neurochemical research, 32(4-5), p. 717-722, 2007. 80 CHEIGNON, C.; TOMAS, M., BONNEFONT-ROUSSELOT, D.; FALLER, P.; HUREAU, C.; COLLIN, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s Disease. Redox Biology, 14, p. 450-464, 2017. CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. 2ª Ed., New York: Oxford University Press, 2001. Dados coletados pelo Centro de Referência do Idoso do HC/UFMG com base nas informações do DATASUS (Sistema de Informações Ambulatoriais do SUS - SIA/SUS), no ano de 2008, e pela Gerência de Medicamentos Excepcionais (Superintendência de Assistência Farmacêutica/SES/MG) DALE, H. H. The action of certain esters and ethers of choline, and their relation to muscarine. Journal of Pharmacology and Experimental Therapeutics, 6(2), p. 147-190, 1914. DALE, H. Transmission of nervous effects by acetylcholine: Harvey lecture. Bulletin of the New York Academy of Medicine, 13(7), p. 379, 1937. DALE, H.H. Otto Loewi, 1873-1961. Biographical Memoirs of Fellows of the Royal Society, 8, p. 67-89, 1962. DANYSZ, W.; PARSONS, C.G. Alzheimer's disease, β‐amyloid, glutamate, NMDA receptors and memantine–searching for the connections. British journal of pharmacology, 167(2), p. 324-352, 2012. EASTON, A.; RIDLEY, R. M.; BAKER, H. F.; GAFFAN, D. Unilateral lesions of the cholinergic basal forebrain and fornix in one hemisphere and inferior temporal cortex in the opposite hemisphere produce severe learning impairments in rhesus monkeys. Cerebral Cortex, 12(7), p. 729-736, 2002. ELLMAN, G. L.; COURTNEY, K. D.; ANDRES, V.; FEATHERSTONE, R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), p. 88-95, 1961. 81 FALCO, A.D.; CUKIERMAN, D.S.; HAUSER-DAVIS, R.A.; REY, N.A. Alzheimer's disease: etiological hypotheses and treatment perspectives. Química Nova, 39(1), p. 63-80, 2016. FERRI, C. P.; PRINCE, M.; BRAYNE, C.; BRODATY, H.; FRATIGLIONI, L.; GANGULI, M.; JORM, A. Global prevalence of dementia: a Delphi consensus study. The lancet, 366(9503), p. 2112-2117, 2006. FORLENZA, O.V. Tratamento farmacológico da doença de Alzheimer. Revista de Psiquiatria Clínica, 32(3), p. 137-148, 2005. FRANCIS, P.T.; PALMER, A.M.; SNAPE, M.; WILCOCK, G.K. The cholinergic hypothesis of Alzheimer's disease: a review of progress. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2), p. 137–147, 1999. FRÈRE, S.; THIÉRY, V.; BESSON, T. Microwave acceleration of the Pechmann reaction on graphite/montmorillonite K10: application to the preparation of 4-substituted 7- aminocoumarins. Tetrahedron Letters, 42(15), p. 2791-2794., 2001. FURUKAWA-HIBI, Y.; ALKAM, T.; NITTA, A.; MATSUYAMA, A.; MIZOGUCHI, H.; SUZUKI, K.; YAMADA, K. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. Behavioural brain research, 225(1), p. 222-229, 2011. GODYŃ, J.; JOŃCZYK, J.; PANEK, D.; MALAWSKA, B. Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacological Reports, 68(1), p. 127-138, 2016. GOLIASCH, G.; HASCHEMI, A.; MARCULESCU, R.; ENDLER, G.; MAURER, G.; WAGNER, O.; NIESSNER, A. Butyrylcholinesterase activity predicts long-term survival in patients with coronary artery disease. Clinical chemistry, 58(6), p. 1055-1058, 2012. GROVER, J.; KUMAR, V.; SOBHIA, M.E.; JACHAK, S.M. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno [4, 3-c] pyrazol-4 (1H)-ones as potential cyclooxygenase-2 (COX-2) inhibitors. Bioorganic & medicinal chemistry letters, 24(19), p. 4638-4642, 2014. 82 HALPERN, B. Obituary notice: Henry Hallet Dale. Revue francaise d'allergologie, 9(2), p.117–119, 1969. HARDY, J. Testing times for the “amyloid cascade hypothesis”. Neurobiology of aging, 23 (6), p. 1073-1074, 2002. HARDY, J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. Journal of neurochemistry, 110(4), p. 1129-1134, 2009. HARDY, J.A.; HIGGINS, G.A. Alzheimer's disease: the amyloid cascade hypothesis. Science, 256(5054), p. 184, 1992. HIMMELHEBER, A.M.; SARTER, M.; BRUNO, J.P. Increases in cortical acetylcholine release during sustained attention performance in rats. Cognitive Brain Research, 9(3), p. 313–325, 2000. HIREMATHAD, A.; CHAND, K.; KERI, R.S. Development of Coumarin and Benzofuran Conjugated Hybrids as the Versatile Multi‐targeted Compounds for the Treatment of Alzheimer's Disease. Chemical biology & drug design, 2018. HOSPITAL DO CORAÇÃO. Quem Foi ALOIS ALZHEIMER. Disponível em: <http://hospitaldocoracao.com.br/artigos/quem-foi-alois-alzheimer/>. Acesso em: 11 de mai. 2018. HUANG, L.; MIAO, H.; SUN, Y.; MENG, F.; LI, X. Discovery of indanone derivatives as multi-target-directed ligands against Alzheimer's disease. European journal of medicinal chemistry, 87, p. 429-439, 2014. IMBIMBO, B.P.; FRIGERIO, E.; BREDA, M.; FIORENTINI, F.; FERNANDEZ, M.; SIVILIA, S.; GIARDINO, L.; CALZÀ, L.; NORRIS, D.; CASULA, D.; SHENOUDA, M. Pharmacokinetics and pharmacodynamics of CHF5074 after short-term administration in healthy subjects. Alzheimer Disease & Associated Disorders, 27(3), p. 278-286, 2013. JALILI-BALEH, L.; NADRI, H.; FOROOTANFAR, H.; SAMZADEH-KERMANI, A.; KÜÇÜKKILINÇ, T. T.; AYAZGOK, B.; BUKHARI, S. N. A. Novel 3-phenylcoumarin– 83 lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer's disease. Bioorganic chemistry, 79, p. 223-234, 2018. JIANG, N.; HUANG, Q.; LIU, J.; LIANG, N.; LI, Q.; LI, Q.; XIE, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer's disease. European journal of medicinal chemistry, 146, p. 287-298, 2018. JONES, B.E. From waking to sleeping: neuronal and chemical substrates. Trends in Pharmacological Sciences, 26(11), p. 578–86, 2005. JONES, G.; WILLETT, P.; GLEN, R. C.; LEACH, A. R.; TAYLOR, R. Development and validation of a genetic algorithm for flexible docking. Journal of molecular biology, 267(3), p. 727-748, 1997 JONES, G.; WILLETT, P.; GLEN, R.C.; LEACH, A.R.; TAYLOR, R. Development and Validation of a Genetic Algorithm for Flexible Docking. Journal of Molecular Biology, 267, p. 727-748, 1997. JOULE, J. A.; MILLS, K. Heterocyclic Chemistry. 5ª Ed., New Jersey: Wiley-Blackwell, 2010. KAPAKI, E. N.; PARASKEVAS, G. P.; TZERAKIS, N. G.; SFAGOS, C.; SERETIS, A.; KARARIZOU, E.; VASSILOPOULOS, D. Cerebrospinal fluid tau, phospho‐tau181 and β‐ amyloid1−42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer's disease. European journal of neurology, 14(2), p. 168-173, 2007. KÁSA, P.; RAKONCZAY, Z.; GULYA, K. The cholinergic system in Alzheimer’s disease. Prog Neurobiol, 52(6), p. 511–535, 1997. KHAN, K.M.; RAHIM, F.; WADOOD, A.; KOSAR, N.; TAHA, M.; LALANI, S.; KHAN, A.; FAKHRI, M.I.; JUNAID, M.; REHMAN, W.; KHAN, M. Synthesis and molecular docking studies of potent α-glucosidase inhibitors based on biscoumarin skeleton. European journal of medicinal chemistry, 81, p. 245-252, 2014. KHOMENKO, T.M.; ZARUBAEV, V.V.; ORSHANSKAYA, I.R.; KADYROVA, R.A.; SANNIKOVA, V.A.; KORCHAGINA, D.V.; VOLCHO, K.P.; SALAKHUTDINOV, N.F. 84 Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorganic & medicinal chemistry letters, 27(13), p. 2920-2925, 2017. KOVAC, B.; NOVAK, I. Electronic structure of coumarins. Spectrochimica Acta Part A, 58(7), p. 1483-1488, 2002. KRAEPELIN, E. (1910). Psychiatrie: Ein Lehrbuch für Studierende und Ärzte, Klinische Psychiatrie [Psychiatry: a study book for students and doctors, clinical psychiatry]. 3ª Ed., Leipzig: Barth, 1915. KUDO, E.; TAURA, M.; MATSUDA, K.; SHIMAMOTO, M.; KARIYA, R.; GOTO, H.; HATTORI, S.; KIMURA, S.; OKADA, S. Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorganic & medicinal chemistry letters, 23(3), p. 606-609, 2013. LAN, J.S.; DING, Y.; LIU, Y.; KANG, P.; HOU, J.W.; ZHANG, X.Y.; XIE, S.S.; ZHANG, T. Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer's disease. European journal of medicinal chemistry, 139, p. 48-59, 2017. LANMAN, B.A. 8.5 Pechmann Coumarin Synthesis. Name Reactions in Heterocyclic Chemistry II, 6, p. 454, 2011. LAUFER, M.C.; HAUSMANN, H.; HÖLDERICH, W.F.J. Synthesis of 7-hydroxycoumarins by Pechmann reaction using Nafion resin/silica nanocomposites as catalysts. Journal of Catalysis, 218(2), p. 315-320, 2003. LAWLOR, B.; KENNELLY, S.; O'DWYER, S.; CREGG, F.; WALSH, C.; COEN, R.; DALY, L. NILVAD protocol: a European multicentre double-blind placebo-controlled trial of nilvadipine in mild-to-moderate Alzheimer's disease. BMJ = open, 4(10), p. e006364, 2014. LEI, L.; XUE, Y.B.; LIU, Z.; PENG, S.S.; HE, Y.; ZHANG, Y.; FANG, R.; WANG, J.P.; LUO, Z.W.; YAO, G.M.; ZHANG, J.W. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Scientific reports, 5, p. 13544, 2015. 85 LEVY, E.; CARMAN, M. D.; FERNANDEZ-MADRID, I.J.; POWER, M.D.; LIEBERBURG, I.; VAN DUINEN, S.G.; FRANGIONE, B. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science, 248(4959), p. 1124-1126, 1990. LIM, G.P.; CHU, T.; YANG, F.; BEECH, W.; FRAUTSCHY, S.A.; COLE, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21(21), p. 8370-8377, 2001. LIU, Z.; ZHANG, A.; SUN, H.; HAN, Y.; KONG, L.; WANG, X. Two decades of new drug discovery and development for Alzheimer's disease. RSC Advances, 7(10), p. 6046-6058, 2017. LOEWI, O. Quantitative und qualitative Untersuchungen über den Sympathicusstoff. Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere, 237(1), p. 504-514, 1936. LUO, W.; RODINA, A.; CHIOSIS, G. Heat shock protein 90: translation from cancer to Alzheimer's disease treatment? BMC Neuroscience, 9(2), p. S7, 2008. LYNCH, S. Y.; KAPLOW, J.; ZHAO, J.; DHADDA, S.; LUTHMAN, J.; ALBALA, B. Elenbecestat, E2609, a Bace inhibitor: Results from a phase-2 study in subjects with mild cognitive impairment and mild-to-moderate dementia due to Alzheimer's disease. Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 14(7), p. P1623, 2018. MALHOTRA, S.; TAVAKKOLI, M.; EDRAKI, N.; MIRI, R.; SHARMA, S. K.; PRASAD, A. K.; FIRUZI, O. Neuroprotective and Antioxidant Activities of 4-Methylcoumarins: Development of Structure–Activity Relationships. Biological and Pharmaceutical Bulletin, 39(9), p. 1544-1548, 2016. MAURICE, T.; STREHAIANO, M.; SIMÉON, N.; BERTRAND, C.; CHATONNET, A. Learning performances and vulnerability to amyloid toxicity in the butyrylcholinesterase knockout mouse. Behavioural brain research, 296, p. 351-360, 2016. MESULAM, M. M.; GUILLOZET, A.; SHAW, P.; LEVEY, A.; DUYSEN, E. G.; LOCKRIDGE, O. Acetylcholinesterase knockouts establish central cholinergic pathways 86 and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience, 110(4), p. 627- 639, 2002. MIYAURA, N.; SUZUKI, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chemical reviews, 95(7), p. 2457-2483, 1995 MONTANARI, S.; BARTOLINI, M.; NEVIANI, P.; BELLUTI, F.; GOBBI, S.; PRUCCOLI, L.; TAROZZI, A.; FALCHI, F.; ANDRISANO, V.; MISZTA, P.; CAVALLI, A. Multitarget Strategy to Address Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and Computational Studies of Coumarin‐Based Derivatives. ChemMedChem, 11(12), p. 1296- 1308, 2016. MUCI, A.R.; BUCHWALD, S.L. Practical Palladium Catalysts for C-N and C-O Bond Formation. Topics in Curr. Chem., 219, p. 131–209, 2002. MURI, E.M.F.; DE MELLO, M.M.S.; METSAVAHT, L. Farmacologia de drogas vasoativas. Acta fisiátrica,17(1), p. 22-27, 2016. MURRAY, R.D.H. Coumarins. Natural Product Reports, 12, p. 477-505, 1995. NALIVAEVA, N.N.; TURNER, A.J. The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS Letters, 587(13), p. 2046-2054, 2013. PATEL, D.; KUMARI, P.; PATEL, N.B. In vitro antimicrobial and antimycobacterial activity of some chalcones and their derivatives. Medicinal Chemistry Research, 22(2), p.726-744, 2013. PATEL, R.V.; KUMARI, P.; RAJANI, D.P; CHIKHALIA, K.H. Synthesis of coumarinbased 1, 3, 4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Medicinal Chemistry Research, 22(1), p.195-210, 2013. PEREIRA, T. M.; VITÓRIO, F.; AMARAL, R. C.; ZANONI, K. P. S.; IHA, N. Y. M.; KUMMERLE, A. E. Microwave-assisted synthesis and photophysical studies of novel fluorescent N-acylhydrazone and semicarbazone-7-OH-coumarin dyes. New Journal of Chemistry, 40(10), p. 8846-8854, 2016. 87 PEREIRA, T.M.; FRANCO, D. P.; VITÓRIO, F.; AMARAL, R.C.; PONZONI, A.C.; KUMMERLE, A.E. Microwave-assisted synthesis and pka determination of umbelliferone: an experiment for the undergraduate organic chemistry laboratory. Química Nova, 41(10), p. 1205-1208, 2018. PEREIRA, T.M.; FRANCO, D.P.; VITORIO, F.; KUMMERLE, A.E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Year. Current topics in medicinal chemistry, 18(2), p. 124-148, 2018. PISANI, L.; CATTO, M.; DE PALMA, A.; FARINA, R.; CELLAMARE, S.; ALTOMARE, C. D. Discovery of Potent Dual Binding Site Acetylcholinesterase Inhibitors via Homo‐ and Heterodimerization of Coumarin‐based Moieties. ChemMedChem, 12(16), p. 1349- 1358, 2017. PRINCE, M.; COMAS-HERRERA, A.; KNAPP, M.; GUERCHET, M.; KARAGIANNIDOU, M. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future, 2016. RIDLEY, R.M.; BOWES, P.M.; BAKER, H.F.; CROW, T.J. An involvement of acetylcholine in object discrimination learning and memory in the marmoset. Neuropsychologia, 22(3), p. 253–263, 1984. RODRIGUES, R.F. Extração da cumarina a partir das sementes da emburana (Torresea cearensis) utilizando dióxido de carbono supercritico. Campinas/SP: Unicamp, 2005. RYDBERG, E.H.; BRUMSHTEIN, B.; GREENBLATT, H.M.; WONG, D.M.; SHAYA, D.; WILLIAMS, L.D.; CARLIER, P.R.; PANG, Y.P.; SILMAN, I.; SUSSMAN, J.L. Complexes of Alkylene-Linked Tacrine Dimers with Torpedo californica Acetylcholinesterase: Binding of Bis5-Tacrine Produces a Dramatic Rearrangement in the Active-Site Gorge. Journal of Medicinal Chemistry, 49, p. 5491-5500, 2006. SAIDO, T.; LEISSRING, M. A. Proteolytic degradation of amyloid β-protein. Cold Spring Harbor Perspectives in Medicine, 2(6), p. a006379, 2012. 88 SALGUEIRO, F. B.; CASTRO, R. N. Comparação entre a composição química e capacidade antioxidante de diferentes extratos de própolis verde. Química Nova, 39(10), p. 1192-1199, 2016 SALOMONE, S.; CARACI, F.; LEGGIO, G. M.; FEDOTOVA, J.; DRAGO, F. New pharmacological strategies for treatment of Alzheimer's disease: focus on disease modifying drugs. British journal of clinical pharmacology, 73(4), p. 504-517, 2012. SMYTHIES, J.; DE LANTREMANGE, M.O. The nature and function of digital information compression mechanisms in the brain and in digital television technology. Frontiers in systems neuroscience,10, p. 40, 2016. SOREGHAN, B.; KOSMOSKI, J.; GLABE, C. Surfactant properties of Alzheimer's A beta peptides and the mechanism of amyloid aggregation. Journal of Biological Chemistry, 269(46), p. 28551-28554, 1994. STEWART, J.J.P. Optimization of Parameters for Semiempirical Methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 13, p. 1173-1213, 2007. SUN, Q.; PENG, D. Y.; YANG, S. G.; ZHU, X. L.; YANG, W. C.; YANG, G. F. Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase. Bioorganic & medicinal chemistry, 22(17), p. 4784-4791, 2014. SYMEONIDIS, T.; CHAMILOS, M.; LITINA, D. J. H.; KALLITSAKIS, M.; LITINAS, K. E. Synthesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid peroxidation inhibitors. Bioorganic & medicinal chemistry letters, 19(4), p. 1139–1142, 2009. TERRY, A.V.; BUCCAFUSCO, J.J. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. Journal of Pharmacology and Experimental Therapeutics, 306(3), p. 821-827, 2003. 89 TIWARI, P.; DWIVEDI, S.; SINGH, M. P.; MISHRA, R.; CHANDY, A. Basic and modern concepts on cholinergic receptor: A review. Asian Pacific journal of tropical disease, 3(5), p. 413-420, 2013. TRKOVNIK, M.; IVEZIC, Z. J. Syntheses of some new coumarin‐quinolone carboxylic acids. Journal of Heterocyclic Chemistry, 37(1), p. 137-141, 2000. WANG, X., TIAN, J., YONG, K. T., ZHU, X., LIN, M. C. M., JIANG, W., LI, J., HUANG, Q. LIN, G. Immunotoxicity assessment of CdSe/ZnS quantum dots in macrophages, lymphocytes and BALB/c mice. Journal of nanobiotechnology, 14(1), p. 10, 2016. XICOTA, L.; RODRÍGUEZ-MORATÓ, J.; DIERSSEN, M.; DE LA TORRE, R. Potential role of (-)-epigallocatechin-3-gallate (EGCG) in the secondary prevention of Alzheimer disease. Current drug targets, 18(2), p.174-195, 2017. YAMADA, M.; CHIBA, T.; SASABE, J., NAWA, M., TAJIMA, H., NIIKURA, T.; NISHIMOTO, I. Implanted cannula-mediated repetitive administration of Aβ25–35 into the mouse cerebral ventricle effectively impairs spatial working memory. Behavioural brain research, 164(2), p. 139-146, 2005.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/68438/2018%20-%20Gabriela%20Alves%20de%20Souza.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5444
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2022-03-14T14:32:06Z No. of bitstreams: 1 2018 - Gabriela Alves de Souza.pdf: 5369237 bytes, checksum: dd6247c16d4334401805a70eb717f153 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2022-03-14T14:32:06Z (GMT). No. of bitstreams: 1 2018 - Gabriela Alves de Souza.pdf: 5369237 bytes, checksum: dd6247c16d4334401805a70eb717f153 (MD5) Previous issue date: 2018-11-21eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2018 - Gabriela Alves de Souza.pdf2018 - Gabriela Alves de Souza5.24 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.