Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14619
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoares, Iuri Cardoso
dc.date.accessioned2023-12-22T03:03:33Z-
dc.date.available2023-12-22T03:03:33Z-
dc.date.issued2019-07-24
dc.identifier.citationSOARES, Iuri Cardoso. Síntese e caracterização de novos compostos de coordenação contendo um ligante pirazólico funcionalizado. 2019. 118 f.. Dissertação (Mestrado em Química). Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14619-
dc.description.abstractNeste trabalho serão apresentados cinco novos compostos de coordenação envolvendo os metais de transição CoII, NiII e CuII, um ligante pirazólico funcionalizado KL, (5-amino-1-fenil-1H-pirazol-4-carboxilato de potássio) além de uma das aminas como ligante auxiliar: 2,2’-bipiridina (2,2’-bipy), 4,4’-bipiridina (4,4’-bipy) ou 1,10’-fenantrolina (phen). Para a formação do ligante KL foram realizadas três etapas reacionais, onde todos os compostos obtidos nessas etapas foram devidamente caracterizados por espectroscopias na região do infravermelho, ponto de fusão, RMN-1H e RMN-13C. Para o composto EL, além dessas técnicas, foi possível a elucidação de sua estrutura cristalina via difração de raio x por monocristal. Após a formação do pré-ligante KL, foi gerado um mapa de susceptibilidade eletrofílica a partir de cálculos DFT, os quais evidenciaram a tendência desse ligante de se coordenar de modos distintos, dependendo de fatores estequiométricos, energéticos e/ou entrópicos. Com o conhecimento dos possíveis modos de coordenação do pré-ligante KL foi realizada a síntese dos compostos de coordenação, utilizando da modificação de métodos sintéticos para alcançar esses modos. Através da metodologia de difusão lenta foi obtida uma nova família de polímeros de coordenação com formula molecular 1∞[M(L)2(4,4’-bipy)2(H2O)2]n (M= CoII, NiII e CuII,) (1-3), um polímero de 1∞[CuII2(L)2(phen)2]n(ClO4)2 (4) e um dímero [CuII2(L)(2,2’-bipy)4](ClO4)3 (5). Estes compostos foram caracterizados por análise elementar, espectroscopia vibracional na região do infravermelho e difração de raio x por monocristal. Além disso, os compostos 3, 4 e 5 foram estudados por ressonância paramagnética eletrônica (EPR). Medidas de magnetização do composto 1 foram realizadas nos modos dc e ac, onde foi observado o fenômeno de relaxação lenta da magnetização. Os resultados mostraram que o mesmo se comporta magneticamente como um single-ion magnet, com uma das maiores barreiras energéticas apresentadas por polímeros de coordenação contendo cobalto (II).por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectcompostos de coordenaçãopor
dc.subjectpirazolpor
dc.subjectsingle-ion magnetpor
dc.subjectcoordination compoundseng
dc.subjectpyrazoleeng
dc.subjectsingle-ion magneteng
dc.titleSíntese e caracterização de novos compostos de coordenação contendo um ligante pirazólico funcionalizado.por
dc.title.alternativeSynthesis and characterization of novel coordination compounds containing a functionalized pyrazole ligand.eng
dc.typeDissertaçãopor
dc.description.abstractOtherThis work describes five new coordination compounds containing CoII, NiII and CuII, a functionalized pyrazole spacer KL (5-amino-1-phenyl-1H-pyrazole-4-carboxylate) with one of the amines as auxiliary ligand: 2,2'-bipyridine (2,2'-bipy), 4,4'-bipyridine (4,4'-bipy) or 1,10'-phenanthroline (phen). The synthesis of KL was performed in three reactional steps, in which one the precursors were characterized by infrared spectroscopy, melting point, 1H-NMR and 13C-NMR. Furthermore, the compound EL was characterized by single-crystal x-ray diffraction. After the formation of the KL, an electrophilic susceptibility map was generated using DFT calculations, which evidenced the tendency of the ligand to coordinate in different ways depending on stoichiometric, energetic and/or entropic factors. Based on this knowledge the synthesis of the coordination compounds was carried out using synthetic routes to explore all KL coordination sites. Then, a new family of coordination polymers with molecular formula 1∞[M(L)2(4,4’-bipy)2(H2O)2]n (M= CoII, NiII and CuII,) (1-3), a polymer of 1∞[CuII2(L)2(phen)2]n(ClO4)2 (4) and a [CuII2(L)(2,2’-bipy)4](ClO4)3 (5), were obtained by slow solvent diffusion. These compounds were characterized by elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction. In addition, compounds 3, 4 and 5 were studied by electronic paramagnetic resonance (EPR). Magnetic measurements in DC and AC mode for 1 were performed and shows slow relaxation of magnetization. The energy barrier to reversal of the magnetization of 1 was one of the largest reported for cobalt (II)-based coordination polymers.eng
dc.contributor.advisor1Guedes, Guilherme Pereira
dc.contributor.advisor1ID102.827.717-27por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1072583605352186por
dc.contributor.referee1Guedes, Guilherme Pereira
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1072583605352186por
dc.contributor.referee2Cruz, Antonio Gerson Bernardo da
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9066838797112953por
dc.contributor.referee3Miranda, Fabio da Silva
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3013640058442152por
dc.creator.ID125.369.507-51por
dc.creator.Latteshttp://lattes.cnpq.br/9319191120928706por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.references1. WANG, Shan X.; TARATORIN, Alex M. Magnetic Information Storage Technology: A Volume in the Electromagnetism Series. Elsevier, 1999.p 480-493 2. CORNIA, Andrea; SENEOR, Pierre. Spintronics: The molecular way. Nature materials, v. 16, n. 5, p. 505, 2017. 3. JOSÉ, Nadia Mamede; PRADO, Luis Antônio Sanches de Almeida. Materiais híbridos orgânico- inorgânicos: preparação e algumas aplicações. 2005. 4. GOMEZ‐ROMERO, Pedro. Hybrid organic–inorganic materials—in search of synergic activity. Advanced Materials, v. 13, n. 3, p. 163-174, 2001. 5. ESPALLARGAS, Guillermo Mínguez; CORONADO, Eugenio. Magnetic functionalities in MOFs: from the framework to the pore. Chemical Society Reviews, v. 47, n. 2, p. 533-557, 2018. 6. JOURNAUX, Yves et al. Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story. European Journal of Inorganic Chemistry, v. 2018, n. 3-4, p. 228-247, 2018. 7. ROY, Manasi et al. Multifunctional Properties of a 1D Helical Co (II) Coordination Polymer: Toward Single-Ion Magnetic Behavior and Efficient Dye Degradation. ACS Omega, v. 3, n. 11, p. 15315-15324, 2018. 8. MENG, Yin-Shan et al. Understanding the magnetic anisotropy toward single-ion magnets. Accounts of chemical research, v. 49, n. 11, p. 2381-2389, 2016. 9. SCHMIDT, G. M. J. Photodimerization in the solid state. Pure and Applied Chemistry, v. 27, n. 4, p. 647-678, 1971. 10. DESIRAJU, Gautam R.; PARSHALL, George W. Crystal engineering: the design of organic solids. Materials science monographs, v. 54, 1989. 91 11. KUMAR, Girijesh; GUPTA, Rajeev. Molecularly designed architectures–the metalloligand way. Chemical Society Reviews, v. 42, n. 24, p. 9403-9453, 2013. 12. WHITESIDES, George M.; GRZYBOWSKI, Bartosz. Self-assembly at all scales. Science, v. 295, n. 5564, p. 2418-2421, 2002. 13. DESIRAJU, Gautam R.; PARSHALL, George W. Crystal engineering: the design of organic solids. Materials science monographs, v. 54, 1989. 14. DESIRAJU, Gautam R. Crystal engineering: a holistic view. Angewandte Chemie International Edition, v. 46, n. 44, p. 8342-8356, 2007. 15. BRAGA, Dario et al. Making crystals with a purpose; a journey in crystal engineering at the University of Bologna. IUCrJ, v. 4, n. 4, p. 369-379, 2017. 16. STEED, J. W.; ATWOOD, J. L. Supramolecular Chemistry, ; Jhon Wiley & Sons. Inc.: West Sussex, UK, 2009. 17. LEHN, Jean-Marie. Supramolecular chemistry: Where from? Where to?. Chemical Society Reviews, v. 46, n. 9, p. 2378-2379, 2017. 18. BALZANI, Vincenzo; CREDI, Alberto; VENTURI, Margherita. The Bottom‐Up Approach to Molecular‐Level Devices and Machines. Chemistry–A European Journal, v. 8, n. 24, p. 5524-5532, 2002. 19. DESIRAJU, G. R., VITTAL, J. J., & RAMANAN, A. Crystal engineering: a textbook. World Scientific, 2011. 20. GIACOVAZZO, C. Fundamentals of crystallography. Oxford University Press, USA, 2002. 21. DUNITZ, Jack D. Phase transitions in molecular crystals from a chemical viewpoint. Pure and applied chemistry, v. 63, n. 2, p. 177-185, 1991. 92 22. MUKHERJEE, Arijit. Building upon supramolecular synthons: some aspects of crystal engineering. Crystal Growth & Design, v. 15, n. 6, p. 3076-3085, 2015. 23. BRODER, Charlotte K. et al. On the Reliability of C− H⊙⊙⊙ O Interactions in Crystal Engineering: Synthesis and Structure of Two Hydrogen Bonded Phosphonium Bis (aryloxide) Salts. Crystal growth & design, v. 2, n. 3, p. 163-169, 2002. 24. SUN, Haitao; ZHANG, Shian; SUN, Zhenrong. Applicability of optimal functional tuning in density functional calculations of ionization potentials and electron affinities of adenine–thymine nucleobase pairs and clusters. Physical Chemistry Chemical Physics, v. 17, n. 6, p. 4337-4345, 2015. 25. DESIRAJU, Gautam R. Crystal engineering and IUCrJ. IUCrJ, v. 3, n. Pt 1, p. 1, 2016. 26. BATTEN, Stuart R. et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure and Applied Chemistry, v. 85, n. 8, p. 1715-1724, 2013. 27. BATTEN, Stuart R. et al. Coordination polymers, metal–organic frameworks and the need for terminology guidelines. CrystEngComm, v. 14, n. 9, p. 3001-3004, 2012. 28. LEE, Eunji et al. Assembling latter d-block heterometal coordination polymers: Synthetic strategies and structural outcomes. Coordination Chemistry Reviews, v. 348, p. 121-170, 2017. 29. FATHIEH, Farhad et al. Practical water production from desert air. Science advances, v. 4, n. 6, p. eaat3198, 2018. 30. LU, Weigang et al. Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, v. 43, n. 16, p. 5561-5593, 2014. 93 31. HOU, Shuang-Shuang et al. Assembly of Cd (II) coordination polymers: structural variation, supramolecular isomers, and temperature/anion-induced solvent-mediated structural transformations. CrystEngComm, v. 17, n. 4, p. 947-959, 2015. 32. GRANCHA, Thais et al. Oxamato-based coordination polymers: recent advances in multifunctional magnetic materials. Chemical Communications, v. 50, n. 57, p. 7569-7585, 2014. 33. ABDUL-HASSAN, Wathiq Sattar et al. Redox‐Triggered Folding of Self‐Assembled Coordination Polymers incorporating Viologen Units. Chemistry–A European Journal, 2018. 34. CASTALDELLI, Evandro. Polímeros de coordenação à base de cobalto (II) e N, N'-bis (4-piridil)-1, 4, 5, 8-naftaleno diimida como ligante e suas propriedade estruturais, espectroscópicas e fotoelétricas. Tese de Doutorado. Universidade de São Paulo. 35. BATTEN, Stuart R.; NEVILLE, Suzanne M.; TURNER, David R. Coordination polymers: design, analysis and application. Royal Society of Chemistry, 2008. 36. ZAWOROTKO, Michael J. Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chemical Communications, n. 1, p. 1-9, 2001. 37. JANIAK, Christoph. Engineering coordination polymers towards applications. Dalton Transactions, n. 14, p. 2781-2804, 2003. 38. STEED, J. W.; ATWOOD, J. L. Supramolecular Chemistry, ; Jhon Wiley & Sons. Inc.: West Sussex, UK, 2009. 39. LI, Dong-Qing; LIU, Xing; ZHOU, Jian. Two novel extended lead (II) coordination polymers generated from bridging Schiff-base ligands. Inorganic Chemistry Communications, v. 11, n. 4, p. 367-371, 2008. 94 40. STEEL, Peter J. Aromatic nitrogen heterocycles as bridging ligands; a survey. Coordination Chemistry Reviews, v. 106, p. 227-265, 1990. 41. YAMADA, Teppei et al. Designer coordination polymers: dimensional crossover architectures and proton conduction. Chemical Society Reviews, v. 42, n. 16, p. 6655-6669, 2013. 42. COLACIO, Enrique et al. Structural and magnetic studies of a syn-anti carboxylate-bridged helix-like chain copper (II) complex. Inorganic Chemistry, v. 31, n. 5, p. 774-778, 1992. 43. MCCLEVERTY, Jon A.; WARD, Michael D. The role of bridging ligands in controlling electronic and magnetic properties in polynuclear complexes. Accounts of chemical research, v. 31, n. 12, p. 842-851, 1998. 44. Joule, J. A.; Mills, K.; Smith, G. F.; Heterocyclic Chemistry, 3rd ed., Chapman & Hall: London, 1995, cap. 22. 45. SAUERESSIG, Silvia et al. Synergistic effect of pyrazoles derivatives and doxorubicin in claudin-low breast cancer subtype. Biomedicine & Pharmacotherapy, v. 98, p. 390-398, 2018. 46. MERT, Samet et al. Synthesis, structure–activity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. European journal of medicinal chemistry, v. 78, p. 86-96, 2014. 47. HALCROW, M. A. Pyrazoles and pyrazolides—flexible synthons in selfassembly. Dalton Transactions, n. 12, p. 2059-2073, 2009. 48. GODOY NETTO, Adelino Vieira de; FREM, Regina Célia Galvão; MAURO, Antonio Eduardo. A química supramolecular de complexos pirazólicos. Química Nova, p. 1208-1217, 2008. 95 49. OLGUÍN, Juan; BROOKER, Sally. Spin crossover active iron (II) complexes of selected pyrazole-pyridine/pyrazine ligands. Coordination Chemistry Reviews, v. 255, n. 1-2, p. 203-240, 2011. 50. TROFIMENKO, S. The coordination chemistry of pyrazole‐derived ligands. Progress in inorganic chemistry, p. 115-210, 1986. 51. SANTOS, Igor F. et al. Synthesis, crystal structure and magnetism of three novel copper (II) complexes with pyrazole-based ligands. Journal of Molecular Structure, v. 1011, p. 99-104, 2012. 52. JIAN, Fang Fang et al. In situ synthesis of (5-phenyl-1H-pyrazole-3-carboxylic acid) metal complexes and their stable supramolecular microporous frameworks. Inorganica Chimica Acta, v. 362, n. 11, p. 4219-4225, 2009. 53. LIU, Jian-Qiang et al. Different interpenetrated coordination polymers based on flexible dicarboxylate ligands: topological diversity and magnetism. CrystEngComm, v. 16, n. 15, p. 3103-3112, 2014. 54. GERKEN, M. Introduction to magnetochemistry, lecture notes, Poglavlje 7, str. 67-70, 2004. 55. BUSCHOW, K. H. J. New developments in hard magnetic materials. Reports on Progress in Physics, v. 54, n. 9, p. 1123, 1991. 56. KAHN, Olivier. Molecular magnetism. VCH Publishers, Inc.(USA), 1993,, p. 393, 1993. 57. HERNANDO, Antonio et al. Giant magnetic anisotropy at the nanoscale: overcoming the superparamagnetic limit. Physical Review B, v. 74, n. 5, p. 052403, 2006. 58. BENELLI, Cristiano; GATTESCHI, Dante. Introduction to molecular magnetism: From transition metals to lanthanides. John Wiley & Sons, p.6-9, 2015. 96 59. KINOSHITA, Minoru. π-Electron ferromagnetism of a purely organic radical crystal. Proceedings of the Japan Academy, Series B, v. 80, n. 2, p. 41-53, 2004. 60. DEUMAL, Mercè et al. Structure–Magnetism Relationships in α‐Nitronyl Nitroxide Radicals. Chemistry–A European Journal, v. 5, n. 5, p. 1631-1642, 1999. 61. CORONADO, Eugenio et al. (Ed.). Molecular magnetism: from molecular assemblies to the devices. Springer Science & Business Media, 2013. 62. MORIN, B. G. et al. Complex ac susceptibility studies of the disordered molecular based magnets V (TCNE) x: Role of spinless solvent. Journal of applied physics, v. 73, n. 10, p. 5648-5650, 1993. 63. STUMPF, Humberto O. et al. A molecular-based magnet with a fully interlocked three-dimensional structure. Science, v. 261, n. 5120, p. 447-449, 1993. 64. AKO, Ayuk M. et al. A ferromagnetically coupled Mn19 aggregate with a record S= 83/2 ground spin state. Angewandte Chemie International Edition, v. 45, n. 30, p. 4926-4929, 2006. 65. WU, Yuewei et al. Modulation of the magnetic anisotropy of octahedral cobalt (ii) single-ion magnets by fine-tuning the axial coordination microenvironment. Inorganic Chemistry Frontiers, 2019. 66. GÓMEZ-COCA, Silvia et al. Large magnetic anisotropy in mononuclear metal complexes. Coordination Chemistry Reviews, v. 289, p. 379-392, 2015. 67. ZHU, F. Q. et al. Magnetic bistability and controllable reversal of asymmetric ferromagnetic nanorings. Physical review letters, v. 96, n. 2, p. 027205, 2006. 68. HU, Zhao-Bo et al. Important Role of Intermolecular Interaction in Cobalt (II) Single-Ion Magnet from Single Slow Relaxation to Double Slow Relaxation. Inorganic chemistry, v. 57, n. 17, p. 10761-10767, 2018. 97 69. LIS, T. Preparation, structure, and magnetic properties of a dodecanuclear mixed-valence manganese carboxylate. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, v. 36, n. 9, p. 2042-2046, 1980. 70. SESSOLI, Roberta et al. Magnetic bistability in a metal-ion cluster. Nature, v. 365, n. 6442, p. 141, 1993. 71. ESCALERA-MORENO, Luis et al. Spin states, vibrations and spin relaxation in molecular nanomagnets and spin qubits: a critical perspective. Chemical science, v. 9, n. 13, p. 3265-3275, 2018. 72. MILIOS, Constantinos J. et al. A record anisotropy barrier for a single-molecule magnet. Journal of the American Chemical Society, v. 129, n. 10, p. 2754-2755, 2007. 73. PRESCIMONE, Alessandro et al. [Mn6] under pressure: a combined crystallographic and magnetic study. Angewandte Chemie International Edition, v. 47, n. 15, p. 2828-2831, 2008. 74. WALDMANN, Oliver. A criterion for the anisotropy barrier in single-molecule magnets. Inorganic chemistry, v. 46, n. 24, p. 10035-10037, 2007. 75. NEESE, Frank; PANTAZIS, Dimitrios A. What is not required to make a single molecule magnet. Faraday discussions, v. 148, p. 229-238, 2011. 76. GOODWIN, Conrad AP et al. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature, v. 548, n. 7668, p. 439, 2017. 77. YAO, Xiao-Nan et al. Two-coordinate Co (II) imido complexes as outstanding single-molecule magnets. Journal of the American Chemical Society, v. 139, n. 1, p. 373-380, 2016. 78. RECHKEMMER, Yvonne et al. A four-coordinate cobalt (II) single-ion magnet with coercivity and a very high energy barrier. Nature communications, v. 7, p. 10467, 2016. 98 79. ISHIKAWA, Ryuta et al. Slow relaxation of the magnetization of an MnIII single ion. Inorganic chemistry, v. 52, n. 15, p. 8300-8302, 2013. 80. ZADROZNY, Joseph M. et al. Magnetic blocking in a linear iron (I) complex. Nature chemistry, v. 5, n. 7, p. 577, 2013. 81. ZADROZNY, Joseph M. et al. Slow magnetization dynamics in a series of two-coordinate iron (II) complexes. Chemical Science, v. 4, n. 1, p. 125-138, 2013. 82. ZHU, Yuan-Yuan et al. A family of CoIICoIII3 single-ion magnets with zero-field slow magnetic relaxation: fine tuning of energy barrier by remote substituent and counter cation. Inorganic chemistry, v. 54, n. 11, p. 5475-5486, 2015. 83. SHAO, Feng et al. Structural dependence of the ising-type magnetic anisotropy and of the relaxation time in mononuclear trigonal bipyramidal Co (II) single molecule magnets. Inorganic chemistry, v. 56, n. 3, p. 1104-1111, 2017. 84. DING, Mei et al. A low spin manganese (IV) nitride single molecule magnet. Chemical science, v. 7, n. 9, p. 6132-6140, 2016. 85. PASCUAL‐ÁLVAREZ, Alejandro et al. Field‐Induced Slow Magnetic Relaxation in a Mononuclear Manganese (III)–Porphyrin Complex. Chemistry–A European Journal, v. 21, n. 48, p. 17299-17307, 2015. 86. LIN, Weiquan et al. Field-induced slow magnetic relaxation in the Ni (I) complexes [NiCl (PPh3) 2]· C4H8O and [Ni (N (SiMe3) 2)(PPh3) 2]. Inorganic chemistry, v. 55, n. 5, p. 2091-2100, 2016. 87. MIKLOVIČ, Jozef et al. A mononuclear Ni (II) complex: a field induced single-molecule magnet showing two slow relaxation processes. Dalton Transactions, v. 44, n. 28, p. 12484-12487, 2015. 99 88. STETSIUK, Oleh et al. Mononuclear and One‐Dimensional Cobalt (II) Complexes with the 3, 6‐Bis (picolylamino)‐1, 2, 4, 5‐tetrazine Ligand. European Journal of Inorganic Chemistry, v. 2018, n. 3-4, p. 449-457, 2018. 89. SHEAR, Gavin; HACHEY, Michel. Preparing 2D NMR Data for Mixture Analyses Using Multivariate Curve Resolution in UV-IR Manager SIMPLISMA. 90. CLARIDGE, Tim. Software review of MNova: NMR data processing, analysis, and prediction software. 2009. 91. BRUKER (2007). APEX2 v2014.5-0. Bruker AXS Inc., Madison, Wisconsin, USA 92. BRUKER (2013). SAINT v8.34A. Bruker AXS Inc., Madison, Wisconsin, USA 93. SHELDRICK, G. M., SADABS, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996. 94. SHELDRICK, G. M., Crystal structure refinement with SHELXL, Acta Crystallogr., Sect. C: Struct. Chem. 71, 3–8, 2015. 95. MACRAE, C. F., BRUNO, I. J., CHISHOLM, J. A., EDGINGTON, P. R, P. PIDCOCK M., RODRIGUEZ-MONGE, E., L., STREEK, R. T., J. WOOD, V. P. A., WOOD, Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures, J. Appl. Cryst., 2008, 41, 466–470. 96. NEESE, Frank et al. ORCA-an ab initio. Density Functional and Semiempirical Program Package, Version, v. 2, n. 1, 2008. 97. PETTERSEN, Eric F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. Journal of computational chemistry, v. 25, n. 13, p. 1605-1612, 2004. 100 98. STOLL, Stefan; SCHWEIGER, Arthur. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. Journal of magnetic resonance, v. 178, n. 1, p. 42-55, 2006. 99. AGGARWALR, R.; KUMAR, V.; BANSAL, A.; SANZ, D.; CLARAMUT, R. M.; [et al.].Multi-component solvent-free versus stepwise solvent mediated reactions: Regiospecific formation of 6-trifluoromethyl and4-trifluoromethyl-1H-pyrazolo[3,4-b]pyridines, Journal of Fluorine Chemistry.V,140, p. 31-37, 2012. 100. ZIA-UR-REHMAN, Muhammad et al. 5-Amino-1-phenyl-1H-pyrazole-4-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, v. 64, n. 7, p. o1312-o1313, 2008. 101. HERGOLD-BRUNDIĆ, A. et al. Metal complexes with pyrazole-derived ligands Part I. Synthesis and crystal structures of 3-amino-4-acetyl-5-methylpyrazole (L) and of the tetrahedral complexes ZnL2 (NO3) 2 and ML2Cl2 (M= Cu (II), Hg (II)). Inorganica chimica acta, v. 188, n. 2, p. 151-158, 1991. 102. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Spectrometric identification of organic compound. 7ª. ed. [S.l.]: John wiley & Sons, v., 2005. 103. KRISHNAKUMAR, V.; JAYAMANI, N.; MATHAMMAL, R. Molecular structure, vibrational spectral studies of pyrazole and 3, 5-dimethyl pyrazole based on density functional calculations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 79, n. 5, p. 1959-1968, 2011. 104. ZORDOK, Wael Abd‐allah et al. Synthesis, Spectral, X‐Ray Diffraction, DFT, and Nematicidal Activity of Mixed Ligand Complexes of Ethyl 2‐(2‐Hydroxybenzylidine)‐Hydrazine Carboxylate and 1, 10‐Phenanthroline with Some Transition Metals. Journal of the Chinese Chemical Society, v. 64, n. 12, p. 1478-1495, 2017. 101 105. GÜMÜŞ, Mehmet et al. Spectroscopic (FT-IR, Laser-Raman and NMR) and conformational analysis on novel pyrazole β-keto ester compound. Journal of Molecular Structure, v. 1167, p. 280-293, 2018. 106. SILVA, Thais B. et al. Design, synthesis and anti-P. falciparum activity of pyrazolopyridine–sulfonamide derivatives. Bioorganic & medicinal chemistry, v. 24, n. 18, p. 4492-4498, 2016. 107. HE, Kunlun et al. Synthesis and characterization of a novel heterocycle: 1‐Substituted‐4‐arylazamethylene‐6‐arylpyrazolo [5, 4‐d]‐1, 3‐oxazine. Journal of Heterocyclic Chemistry, v. 45, n. 2, p. 365-369, 2008. 108. PAVIA, D. L.; LAMPMAN, G. L; KRIZ, G. S.; VYVYAN, J. R.; Introdução à espectroscopia. 4a. ed: CENGAGE Learning, 2010. 109. ABDEL‐LATIF, S. A.; MOUSTAFA, H. Synthesis, spectroscopic properties, density functional theory calculations and nonlinear optical properties of novel complexes of 5‐hydroxy‐4,7‐dimethyl‐6‐(phenylazo) coumarin with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions. Applied Organometallic Chemistry, v. 32, n. 4, 2018. 110. ABDEL‐LATIF, S. A.; MOUSTAFA, H. Synthesis, spectroscopic properties, density functional theory calculations and nonlinear optical properties of novel complexes of 5‐hydroxy‐4,7‐dimethyl‐6‐(phenylazo) coumarin with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions. Applied Organometallic Chemistry, v. 32, n. 4, 2018. 111. SRIDHAR, Radhakrishnan et al. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorganic & medicinal chemistry letters, v. 14, n. 24, p. 6035-6040, 2004. 112. HUNTER, Christopher A. et al. Aromatic interactions. Journal of the Chemical Society, Perkin Transactions 2, n. 5, p. 651-669, 2001. 102 113. LARKIN, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. 1. ed. [S.l.]: Elsevier, 2011. 114. SUTTON, Catherine CR; DA SILVA, Gabriel; FRANKS, George V. Modeling the IR spectra of aqueous metal carboxylate complexes: Correlation between bonding geometry and stretching mode wavenumber shifts. Chemistry–A European Journal, v. 21, n. 18, p. 6801-6805, 2015. 115. HACKETT, John C. Chemical Reactivity Theory: A Density Functional View. 2010. 116. PARR, Robert G.; YANG, Weitao. Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, v. 106, n. 14, p. 4049-4050, 1984. 117. JONES, Chris J. d-and f-Block Chemistry. 2001. 118. DHERS, Sebastien; FELTHAM, Humphrey LC; BROOKER, Sally. A toolbox of building blocks, linkers and crystallisation methods used to generate single-chain magnets. Coordination Chemistry Reviews, v. 296, p. 24-44, 2015. 119. PAPAGEORGIOU, Sergios K. et al. Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydrate research, v. 345, n. 4, p. 469-473, 2010. 120. PALACIOS, E. G.; JUÁREZ-LÓPEZ, G.; MONHEMIUS, A. J. Infrared spectroscopy of metal carboxylates: II. Analysis of Fe (III), Ni and Zn carboxylate solutions. Hydrometallurgy, v. 72, n. 1-2, p. 139-148, 2004. 121. NAKAMOTO, Kazuo. Infrared and R aman Spectra of Inorganic and Coordination Compounds. Handbook of Vibrational Spectroscopy, 2006, p 65. 103 122. CHAWLA, S. K. et al. Syntheses and crystal structures of three novel Cu (II) coordination polymers of different dimensionality constructed from Cu (II) carboxylates (carboxylate= malonate (mal), 2 acetate (ac), fumarate (fum)) and conformationally flexible 1, 4-bis (imidazole-1-yl-methylene) benzene (IX). Polyhedron, v. 23, n. 18, p. 3007-3019, 2004. 123. DAS, Kuheli et al. Structural elucidation, EPR and magnetic property of a Co (III) complex salt incorporating 4, 4′-bipyridine and 5-sulfoisophthalate. Journal of Molecular Structure, v. 1151, p. 198-203, 2018. 124. XIAO, Hong‐Ping et al. Hydrothermal Synthesis, Structure, and Magnetic Properties of a Three‐dimensional Polymeric NiII Complex,[Ni (bpp)(NIP)(H2O)] n (bpp= 1, 3‐di (4‐pyridyl) propane, NIP= 5‐nitroisophthalate). Zeitschrift für anorganische und allgemeine Chemie, v. 631, n. 15, p. 2976-2978, 2005. 125. DOJER, Brina et al. Three new cobalt (II) carboxylates with 2-, 3-and 4-aminopyridine: syntheses, structures and magnetic properties. Inorganica Chimica Acta, v. 383, p. 98-104, 2012. 126. BERSUKER, Isaac. The Jahn-Teller effect and vibronic interactions in modern chemistry. Springer Science & Business Media, 2013. 127. MURRIE, Mark. Cobalt (II) single-molecule magnets. Chemical Society Reviews, v. 39, n. 6, p. 1986-1995, 2010. 128. TITIŠ, Ján; BOČA, Roman. Magnetostructural d correlations in hexacoordinated cobalt (II) complexes. Inorganic chemistry, v. 50, n. 22, p. 11838-11845, 2011. 129. WU, Dayu et al. Tuning transverse anisotropy in CoIII–CoII–CoIII mixed-valence complex toward slow magnetic relaxation. Inorganic chemistry, v. 52, n. 19, p. 10976-10982, 2013. 104 130. AZUAH, Richard Tumanjong et al. DAVE: a comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. Journal of Research of the National Institute of Standards and Technology, v. 114, n. 6, p. 341, 2009. 131. JIANG, Shang-Da et al. Series of lanthanide organometallic single-ion magnets. Inorganic chemistry, v. 51, n. 5, p. 3079-3087, 2012. 132. SHI, Le et al. Syntheses, structures, and magnetic properties of three two-dimensional cobalt (ii) single-ion magnets with a Co II N 4 X 2 octahedral geometry. CrystEngComm, 2019. 133. ZHU, Yuan-Yuan et al. Zero-field slow magnetic relaxation from single Co (II) ion: a transition metal single-molecule magnet with high anisotropy barrier. Chemical Science, v. 4, n. 4, p. 1802-1806, 2013. 134. ŚWITLICKA-OLSZEWSKA, Anna et al. Single-ion magnet behaviour in mononuclear and two-dimensional dicyanamide-containing cobalt (II) complexes. Dalton Transactions, v. 45, n. 25, p. 10181-10193, 2016. 135. KONG, Jiao-Jiao et al. From mononuclear to two-dimensional cobalt (ii) complexes based on a mixed benzimidazole–dicarboxylate strategy: syntheses, structures, and magnetic properties. CrystEngComm, v. 21, n. 4, p. 749-757, 2019. 136. LIU, Xiangyu et al. Single-Ion-Magnet Behavior in a Two-dimensional coordination polymer constructed from CoII nodes and a pyridylhydrazone derivative. Inorganic chemistry, v. 54, n. 18, p. 8884-8886, 2015. 137. ZHU, Yuan-Yuan et al. Cobalt (II) coordination polymer exhibiting single-ion-magnet-type field-induced slow relaxation behavior. Inorganic chemistry, v. 54, n. 8, p. 3716-3718, 2015. 138. LIU, Xiangyu et al. One-dimensional cobalt (II) coordination polymer featuring single-ion-magnet-type field-induced slow magnetic relaxation. New Journal of Chemistry, v. 42, n. 12, p. 9612-9619, 2018. 105 139. GARRIBBA, Eugenio; MICERA, Giovanni. The determination of the geometry of Cu (II) complexes: an EPR spectroscopy experiment. Journal of chemical education, v. 83, n. 8, p. 1229, 2006. 140. GASNIER, Aurélien et al. Soluble heterometallic coordination polymers based on a bis-terpyridine-functionalized dioxocyclam ligand. Inorganic chemistry, v. 49, n. 6, p. 2592-2599, 2009. 141. DATTA, Amitabha et al. A new Cu (II) three-dimensional network with 4, 4′-oxybis benzoic acid: structural diversity, EPR, and magnetism. Structural Chemistry, v. 29, n. 2, p. 553-561, 2018. 142. DAS, Kuheli et al. EPR interpretation, magnetism and biological study of a Cu (II) dinuclear complex assisted by a schiff base precursor. JBIC Journal of Biological Inorganic Chemistry, v. 22, n. 4, p. 481-495, 2017. 143. LI, Liangbin et al. Reexamining the egg-box model in calcium− alginate gels with X-ray diffraction. Biomacromolecules, v. 8, n. 2, p. 464-468, 2007. 144. PAPAGEORGIOU, Sergios K. et al. Metal–carboxylate interactions in metal–alginate complexes studied with FTIR spectroscopy. Carbohydrate research, v. 345, n. 4, p. 469-473, 2010. 145. CARLUCCI, Lucia et al. Crystal engineering of coordination polymers and architectures using the [Cu (2, 2′-bipy)] 2+ molecular corner as building block (bipy= 2, 2′-bipyridyl). CrystEngComm, v. 2, n. 29, p. 154-163, 2000. 146. ZHENG, Fa-Kun et al. Copper (II), nickel (II) and cobalt (II) complexes of 4-cyanobenzonic acid: syntheses, crystal structures and spectral properties. Journal of molecular structure, v. 740, n. 1, p. 147-151, 2005. 106 147. LIU, Jian-Qiang et al. Different interpenetrated coordination polymers based on flexible dicarboxylate ligands: topological diversity and magnetism. CrystEngComm, v. 16, n. 15, p. 3103-3112, 2014. 148. SHIMPI, Manishkumar R.; GIRI, Lopamudra; PEDIREDDI, Venkateswara Rao. Preparation and Structure Analysis of Three New Copper Complexes of Mellitic Acid With 4, 4′‐Bipyridine and 1, 3‐bis (4‐pyridyl) Propane. ChemistrySelect, v. 3, n. 3, p. 855-858, 2018 149. O'BRIEN, Eimear C. et al. Metal complexes of salicylhydroxamic acid (H 2 Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu (phen) 2 (Cl)] Cl· H 2 Sha, a model for a peroxidase-inhibitor complex. Journal of inorganic biochemistry, v. 79, n. 1, p. 47-51, 2000.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67462/2019%20-%20Iuri%20Cardoso%20Soares.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5216
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-11-03T13:07:43Z No. of bitstreams: 1 2019 - Iuri Cardoso Soares.pdf: 5169967 bytes, checksum: c6518857950ac63e3190cdf68bac6c64 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-11-03T13:07:43Z (GMT). No. of bitstreams: 1 2019 - Iuri Cardoso Soares.pdf: 5169967 bytes, checksum: c6518857950ac63e3190cdf68bac6c64 (MD5) Previous issue date: 2019-07-24eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2019 - Iuri Cardoso Soares.pdf2019 - Iuri Cardoso Soares5.05 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.