Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14620
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva Junior, Henrique de Castro
dc.date.accessioned2023-12-22T03:03:34Z-
dc.date.available2023-12-22T03:03:34Z-
dc.date.issued2016-07-25
dc.identifier.citationSILVA JUNIOR, Henrique de Castro. Cálculos teóricos envolvendo sistemas magnéticos de baixa dimensionalidade. 2016. 147 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2016.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14620-
dc.description.abstractNeste trabalho estudaram-se as propriedades magnéticas de sete novos compostos de coordenação através da Teoria do Funcional de Densidade. A fim de se obter descrições mais acuradas das topologias de spin e das constantes de acoplamento, realizou-se uma extensiva revisão dos níveis de teoria propostos em literatura, o que permitiu estabelecer que a combinação PBE/Def2-TZVP//Def2-SVP e TPSS/Def2-TZVP//Def2-SVP levava a resultados de nível qualitativo para as constantes de acoplamento (JAB) obtidas pela técnica de Broken-symmetry. Todas as estruturas moleculares foram resolvidas por difração de raios X por monocristal e os parâmetros estruturais foram utilizados para a realização de cálculos. Nos sistemas monoméricos [CuCl2(L1)2] e [Fe(L2)2(OH2)4], o processo FPBU foi utilizado para se avaliar as principais distâncias entre os centros metálicos que seriam importantes para o acoplamento magnético. Com estes resultados foi possível mostrar que o complexo de cobre comporta-se como um cadeia magnética supramolecular, enquanto que um comportamento paramagnético foi observado para o compostos de ferro(II). Os estudos das propriedades magnéticas por DFT de polímeros isoestruturais de fórmula 1∞[M(L3)2(bipy)(H2O)2] (M = CuII ou CoII) permitiu comparar como os acoplamentos magnéticos de uma molécula são influenciados pela troca dos centros metálicos revelando a importância da componente anisotrópica do cobalto(II). Os sistemas poliméricos contendo pontes carboxilato levaram a estruturas cujos cálculos previram identidades magnéticas completamente diferentes: o 1∞[Cu2(L3)4(phen)2] formando um sistema dimérico ferromagnético, com J acima de 200 cm-1 e o 2∞[Cu(L3)4] que forma a popular estrutura do tipo paddle-wheel antiferromagnética. Uma cautelosa análise da correlação magnetoestrutural para os polímeros contendo pontes carboxilato permitiu compreender a magnitude dos acoplamentos magnéticos esperados bem como a confirmação, por valores disponíveis em literatura, de que os valores calculados são consistentes. A complicada rede de acoplamentos magnéticos no sistema hexamérico do [Cu(OMe)(fta)]6 foi racionalizada com base em parâmetros geométricos, mostrando que todo o sistema poderia ser representado como a combinação de três sistemas diméricos individuais e uma posterior comparação com valores da literatura e dados experimentais corroboram que acoplamentos magnéticos da mesma ordem dos acoplamentos calculados são esperados.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectMagnetismo molecularpor
dc.subjectTeoria do Funcional de Densidadepor
dc.subjectCorrelação magnetoestruturalpor
dc.subjectMolecular magnetismeng
dc.subjectDensity Functional Theoryeng
dc.subjectMagnetostructural correlationeng
dc.titleCálculos teóricos envolvendo sistemas magnéticos de baixa dimensionalidadepor
dc.title.alternativeTheoretical calculations involving magnetic systems low-dimensionaleng
dc.typeDissertaçãopor
dc.description.abstractOtherThis study has evaluated the magnetic properties of seven novel coordination compounds by using Density Functional Theory as a tool. In order to obtain a more accurate description of spin topologies and coupling constants (JAB), an extensive review of theory levels proposed by available literature was held and allowed to establish that the combination PBE/TZVP/Def2 Def2-SVP and TPSS/Def2-TZVP//Def2-SVP led to better, qualitative, results by the Broken-symmetry technique. All molecular structures were solved by X-ray diffraction by single-crystal and structural parameters used for the calculations. In the monomeric systems [CuCl2(L1)2] and [Fe(L2)2(OH2)4], the FPBU approach was used to evaluate the main distances between metal centers that could be important for the magnetic coupling. With these results it was possible to show that the copper(II)-based compound behave like a supramolecular magnetic chain, while a paramagnetic behavior was observed for the iron(II) containing complex. DFT Studies of the magnetic properties of two isostructural polymers with the formula 1∞[M(L3)2(bipy)(H2O)2] (M = CuII or CoII) made it possible to compare how magnetic couplings of a molecule are influenced by a change in metal centers, revealing the importance of the anisotropic component in cobalt(II) ions. Also, polymeric systems containing carboxylate bridges led to structures whose calculations predicted entirely different magnetic identities: 1∞[Cu2(L3)4(phen)2] is predicted to form a dimeric ferromagnetic system, with J(AB) above 200 cm-1 and 2∞[Cu(L3)4] with the antiferromagnetic paddle-wheel structure. A careful analysis of the magnetostructural correlation for the polymers containing carboxylate bridges allowed to understand the magnitude of the magnetic couplings expected as well as the confirmation by results found in literature, that the calculated values are consistent. The complicated network of magnetic couplings in the hexamer [Cu(OMe)(fta)]6 was streamlined based on geometric parameters, showing that the entire system could be represented as a combination of three individual dimeric systems. A subsequent comparison with the literature and experimental data confirmed that the assumptions made to decompose the hexameric system in three smaller dimeric systems where correct.eng
dc.contributor.advisor1Guedes, Guilherme Pereira
dc.contributor.advisor1ID102.827.717-27por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1072583605352186por
dc.contributor.referee1Guedes, Guilherme Pereira
dc.contributor.referee1ID102.827.717-27por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1072583605352186por
dc.contributor.referee2Florencio, Antonio da Silva
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7666518111375362por
dc.contributor.referee3Silva, Clarissa Oliveira da
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3211933004567550por
dc.contributor.referee4Neves, Amanda Porto
dc.contributor.referee4Latteshttp://lattes.cnpq.br/7460226353493536por
dc.contributor.referee5Cassaro, Rafael Alves Allão
dc.contributor.referee5Latteshttp://lattes.cnpq.br/3308934129008329por
dc.creator.ID089.683.157-44por
dc.creator.Latteshttp://lattes.cnpq.br/7722268222023892por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.references1. ADDISON, A. W. et al. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6- dithiaheptane]copper(II) perchlorate. Journal of the Chemical Society, Dalton Transactions, n. 7, p. 1349-1356, 1984. 2. AHAB MAURER, J. I. Structure-Function Analysis of the Mechanosensitive Channel of Large Conductance. II. Design of Novel Magnetic Materials using Crystal Engineering. Pasadena, California. 2003. 3. ALBRIGHT, T. A.; BURDETT, J. K.; WHANGBO, M.-H. Orbital Interactions in Chemistry. [S.l.]: John Wiley & Sons, 2013. 4. ARISTÓTELES. Da Alma. [S.l.]: [s.n.], c. 350 A. C. 405 a20-22 p. 5. BARONE, V. et al. DFT description of the magnetic properties and electron localization in dinuclear di-mu-oxo-bridged manganese complexes. Chem. Eur. J., v. 8, n. 21, p. 5019-5027, 2002. 6. BATTEN, S. R. et al. Designing dinuclear iron(ii) spin crossover complexes. Structure and magnetism of dinitrile-, dicyanamido-, tricyanomethanide-, bipyrimidine- and tetrazine-bridged compounds. Dalton Transactions, n. 20, p. 3370-3375, 2004. Disponivel em: <http://dx.doi.org/10.1039/B410425K>. 7. BECKE, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev., n. 38, p. 3098, Setembro 1988. Disponivel em: <http://journals.aps.org/pra/abstract/10.1103/PhysRevA.38.3098>. 8. BECKE, A. D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys., v. 18A301, n. 140, 2014. 9. BENCINI, A.; GATTESCHI, D. X.alpha.-SW calculations of the electronic structure and magnetic properties of weakly coupled transition-metal clusters. The 125 [Cu2Cl6]2- dimers. J. Am. Chem. Soc., September 1986. 5763–5771. Disponivel em: <http://pubs.acs.org/doi/abs/10.1021/ja00279a017>. 10. BENCINI, A.; TOTTI, F. A Few Comments on the Application of Density Functional Theory to the Calculation of the Magnetic Structure of Oligo-Nuclear Transition Metal Clusters. J. Chem. Theory Comput., v. 5, n. 1, p. 144-154, 2009. 11. BENELLI, C.; GATTESCHI, D. Introduction to Molecular Magnetism: From TTransiition Metals to Lanthanides. 1. ed. [S.l.]: John Wiley & Sons, 2015. 12. BERTOTTI, G. Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers. 1. ed. [S.l.]: Gulf Professional Publishing, v. 1, 1998. 13. BIRADHA, K.; SARKAR, M.; RAJPUT, L. Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chem. Commun., n. 40, p. 4169-4179, Agosto 2006. 14. BLAUDEAU, J.-P. et al. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys., 107, n. 13, 24 Junho 1997. 5016. Disponivel em: <http://dx.doi.org/10.1063/1.474865>. 15. BOčA, R. Zero-field splitting in metal complexes. Coordination Chemistry Reviews, v. 248, n. 9-10, p. 757-815, Maio 2004. 16. BOUSSEKSOU, A. et al. Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev., v. 40, n. 6, p. 3313-3335, 2011. Disponivel em: <http://dx.doi.org/10.1039/C1CS15042A>. 17. BURROWS, A. D. et al. The stepwise formation of mixed-metal coordination networks using complexes of 3-cyanoacetylacetonate. Dalton Transactions, n. 24, p. 2499-2509, 2007. 18. BUTCHER, R. T. et al. Strong through-space two-halide magnetic exchange of −234 K in (2,5-dimethylpyrazine)copper(II) bromide. Chem. Commun., v. 11, p. 1359-1361, Fevereiro 2009. 126 19. CABALLOL, R. et al. Remarks on the Proper Use of the Broken Symmetry Approach to Magnetic Coupling. J. Phys. Chem. A, v. 101, p. 7860-7866, 1997. 20. CARLIN, R. L. Magnetochemistry. [S.l.]: Springer, 1986. 21. CASTILLO, O. et al. Syntheses, Crystal Structures, and Magnetic Properties of One-Dimensional Oxalato-Bridged Co(II), Ni(II), and Cu(II) Complexes with nAminopyridine (n = 2−4) as Terminal Ligand. Inorg. Chem., v. 40, n. 22, p. 5526- 5535, Outubro 2001. 22. CHANG, R. General Chemistry: The Essential Concepts. 3. ed. New York: Mcgraw Hill, 2003. 23. CHOU, K.-T.; GONG-DU, Z. Fundamentals of Structural Chemistry. [S.l.]: World Scientific, 1993. 276 p. 24. COSTA, R. et al. Toward the Design of Ferromagnetic Molecular Complexes: Magnetostructural Correlations in Ferromagnetic Triply Bridged Dinuclear Cu(II) Compounds Containing Carboxylato and Hydroxo Bridges. Inorg. Chem., v. 49, n. 1, p. 285-294, Abril 2010. 25. CRAMER, C. J. Essentials of Computational Chemistry. 2. ed. [S.l.]: Chichester: John Wiley & Sons, Ltd., 2002. ISBN 978-0-470-09182-1. 26. CRAMER, C. J.; TRUHLAR, D. G. Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, n. 11, p. 10757-10816, 2009. Disponivel em: <http://pubs.rsc.org/en/content/articlelanding/2009/cp/b907148b>. 27. DAS, A. New Innovative Methods for Determination of Spin Multiplicity, Spin State and Magnetic Properties of Diatomic Hetero Nuclear Molecules or Ions in a Very Short Interval of Time. Indian Journal of Applied Research X, v. 67, n. 8, p. 2249- 555, 2013. 127 28. DE CAMPOS, N. R. et al. Magneto-structural versatility of copper(ii)-3- phenylpropionate coordination polymers with N-donor coligands. Dalton Transactions, v. 45, n. 1, p. 172-189, 2016. 29. EPSTEIN, A. J. et al. A room-temperature molecular/organic-based magnet. Science, v. 252, n. 5011, p. 1415-1417, Junho 1991. 30. F. SANTOS, I. et al. Synthesis, crystal structure and magnetism of three novel copper(II) complexes with pyrazole-based ligands. Journal of Molecular Structure, n. 1011, p. 99-104, Dezembro 2012. 31. GATTESCHI, D. et al. Organizing and Addressing Magnetic Molecules, v. 48, n. 8, p. 3408-3419, 2009. 32. GINSBERG, A. P. Magnetic exchange in transition metal complexes. 12. Calculation of cluster exchange coupling constants with the X.alpha.-scattered wave method. J. Am. Chem. Soc., v. 1, n. 102, p. 111–117, 1980. 33. GOODENOUGH, J. B. Magnetism and the Chemical Bond. 1. ed. [S.l.]: John Wiley & Sons, Inc., v. 1, 1963. 34. GUEDES, G. P. Compostos de coordenação contendo ligantes do tipo bdicetonato: Síntese e estudo de propriedades magnéticas. [S.l.]: PPGQ - Universidade Federal Fluminense, 2013. Tese de Doutorado. 35. GUEDES, G. P. et al. Synthesis, crystal structure, magnetism and specific heat of a new copper(II) compound with p-aminobenzoic acid. Inorganica Chimica Acta, v. 378, n. 1, p. 134-139, Novembro 2011. 36. GUTLICH, P.; GARCIA, Y.; GOODWIN, H. A. Spin crossover phenomena in Fe(II) complexes. Chemical Society Reviews, v. 29, n. 6, p. 419-527, 2000. 37. GÜTLICH, P.; GARCIA, Y.; WOIKE, T. Photoswitchable coordination compounds. Coordination Chemistry Reviews, v. 219, p. 839-879, 2001. 38. HABIB, H. A.; SANCHIZ, J.; JANIAK, C. 2∞[Cu2(μ5-btb)(μ-OH)(μ-H2O)]: a twodimensional coordination polymer built from ferromagnetically coupled Cu2 units 128 (btb = benzene-1,2,3-tricarboxylate). Dalton Transactions, n. 36, p. 4877-4884, 2008. 39. HALCROW, M. A. Pyrazoles and pyrazolides—flexible synthons in self-assembly. Dalton Transactions, p. 2059-2073, 29 Janeiro 2009. 40. HANDA, M.; KOGA, N.; KIDA, S. Study of the Effect of Structural Factors on Magnetism of Di-μ-alkoxodicopper(II) Complexes by Ab Initio MO Calculations. Bulletin of the Chemical Society of Japan, v. 61, n. 11, p. 3853-3857, 1988. Disponivel em: <http://doi.org/10.1246/bcsj.61.3853>. 41. HAY, P. J.; THIBEAULT, J. C.; HOFFMANN, R. Orbital interactions in metal dimer complexes. J. Am. Chem. Soc., v. 97, n. 17, p. 4884-4899, Janeiro 1975. 42. HAY, P. J.; THIBEAULT, J. C.; HOFFMANN, R. Orbital interactions in metal dimer complexes. Journal of the American Chemical Society, v. 97, n. 17, p. 4884- 4899, January 1975. 43. HERMANN, A.; SCHWERDTFEGER, P. Magnetic Properties of α-CrCl2: Benchmarking first principles methods. Lecture Series on Computer and Computational Sciences, Auckland, New Zealand, v. 7, n. 1, 2006. 44. HOLMES, S. M.; GIROLAMI, G. S. SolȂ A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100 °C. Journal of the American Chemical Society, v. 121, n. 23, p. 5593- 5594, Junho 1999. 45. HOUGHTON, B. J.; DEETH, R. J. Spin-State Energetics of FeII Complexes – The Continuing Voyage Through the Density Functional Minefield. European Journal of Inorganic Chemistry, v. 2014, n. 27, p. 4573-4580, Setembro 2014. 46. JEFFREY, G. A. An Introduction to Hydrogen Bonding. New York: Oxford University Press, 1997. 303 p. 47. JENSEN, F. Introduction to Computational Chemistry. 2. ed. Chichester, England: John Wiley and Sons, 2007. 129 48. JIANG, F. et al. New 1D Metal–Organic Coordination Polymers: Syntheses, Crystal Structures and Properties of Cu(bipy)(DBrS) 1, Co(bipy)(H2O)2(DBrS) 2, with H2DBrS=HOOC–(CHBr)2–COOH. Journal of Chemical Crystallography, v. 45, n. 3, p. 134-141, 10 Março 2015. 49. JORNET, J. et al. Direct versus Mediated Through-Space Magnetic Interactions: A First Principles, Bottom-Up Reinvestigation of the Magnetism of the PyridylVerdazyl:Hydroquinone Molecular Co-Crystal. Chemistry - A European Journal, v. 12, n. 15, Março 2006. 50. JORNET-SOMOZA, J. et al. First-Principles Bottom-Up Study of 1D to 3D Magnetic Transformation in the Copper Pyrazine Dinitrate S = 1/2 Antiferromagnetic Crystal. Inorg. Chem., v. 4, n. 49, p. 1750-1760, 2010. 51. KAES, C.; KATZ, A.; HOSSEINI, M. W. Bipyridine: The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2,2‘-Bipyridine Units. Chem. Rev., v. 100, n. 10, p. 3553-3590, Setembro 2000. 52. KAHN, O. Molecular Magnetism. 1. ed. Paris: VCH Publishers, Inc. Universite Paris-Sud, v. 1, 1993. 53. KAHN, O. et al. Synthesis, crystal structure and molecular conformations, and magnetic properties of a copper-vanadyl (CuII-VOII) heterobinuclear complex: interaction between orthogonal magnetic orbitals. Journal of the American Chemical Society, v. 104, n. 8, p. 2165-2176, Janeiro 1982. 54. KAHN, O. et al. Magnetic ordering of manganese(II) copper(II) bimetallic chains; design of a molecular based ferromagnet. Journal of the American Chemical Society, v. 110, n. 3, p. 782-789, Março 1988. 55. KAHN, O.; BRIAT, B. Exchange interaction in polynuclear complexes. Part 1.- Principles, model and application to the binuclear complexes of chromium(III). Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, v. 72, n. 0, p. 268-281, 1976. 130 56. KANAMORI, J. Superexchange interaction and symmetry properties of electron orbitals. Journal of Physics and Chemistry of Solids, v. 10, n. 2-3, p. 87-98, Julho 1959. 57. KOHN, W.; SHAM, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev., v. 140, n. 4A, p. A1133-A1138, Novembro 1965. 58. KONAR, S. et al. Syntheses of Two New 1D and 3D Networks of Cu(II) and Co(II) Using Malonate and Urotropine as Bridging Ligands: Crystal Structures and Magnetic Studies. Inorg. Chem., v. 42, n. 8, p. 2545-2552, Abril 2003. 59. LAPIDUS, S. H. et al. Quantifying magnetic exchange in doubly-bridged Cu-X2-Cu (X = F, Cl, Br) chains enabled by solid state synthesis of CuF2(pyrazine). Chemical Communications, v. 49, n. 34, p. 3558-3560, Março 2013. Disponivel em: <http://dx.doi.org/10.1039/C3CC41394B>. 60. LAWSON DAKU, L. M. et al. Assessment of Density Functionals for the HighSpin/Low-Spin Energy Difference in the Low-Spin Iron(II) Tris(2,2′-bipyridine) Complex. ChemPhysChem, v. 6, n. 7, p. 1393-1410, 2005. 61. LEVINE, I. N. Quantum Chemistry. 7. ed. [S.l.]: Pearson Education Inc., v. 1, 2014. ISBN 978-0321803450. 62. LEVY, M. Mathematical thoughts in DFT. Wiley Periodicals, Inc., v. 116, n. 11, Março 2016. 63. LI, H. et al. Crystal structures and magnetism of infinite alternating chains arranged by paddle-wheel dinuclear copper and mononuclear copper units. Dalton Trans., v. 40, n. 37, p. 9388-9393, 2011. Disponivel em: <http://dx.doi.org/10.1039/C1DT10822K>. 64. LIS, T. Preparation, structure, and magnetic properties of a dodecanuclear mixedvalence manganese carboxylate. Acta Crystallographica Section B, v. 36, n. 9, p. 2042-2046, Setembro 1980. 131 65. MARQUES, M. A. L.; OLIVEIRA, M. J. T.; BURNUS, T. Libxc: A library of exchange and correlation functionals for density functional theory. Computer Physics Communications, v. 183, n. 10, p. 2272-2281, Outubro 2012. 66. MARTINS, R. A. The rise of magnetochemistry from Ritter to Hurmuzescu. Foundations of Chemistry, v. 14, n. 2, Junho 2011. 67. MERZ, L.; HAASE, W. Exchange interaction in tetrameric oxygen-bridged copper(II) clusters of the cubane type. J. Chem. Soc., Dalton Trans., n. 6, p. 875- 879, 1980. 68. MIESSLER, G. L.; FISCHER, P. J.; TARR, D. A. Inorganic Chemistry. 5th. ed. [S.l.]: Pearson Education, Inc., 2014. 69. MILIOS, C. J. et al. A Record Anisotropy Barrier for a Single-Molecule Magnet. Journal of the American Chemical Society, v. 129, n. 10, p. 2754-2755, Março 2007. 70. MILLER, J. S. et al. Ferromagnetic Behavior of [ Fe( C5Me5)2].+[ TCNE]' -. Structural and Magnetic Characterization of Decamethylferrocenium Tetracyanoethenide, [ Fe( CSMe5)2]'+[ TCNE]'+*MeCN, and Decamethylferrocenium Pentacyanopropenide, [ Fe( C,Me,),]'+[ C3( CN),]. Journal of the American Chemical Society, v. 109, n. 3, p. 769-781, Janeiro 1987. 71. MILLER, J. S.; EPSTEIN, A. J. Organic and Organometallic Molecular Magnetic Materials—Designer Magnets. Angewandte Chemie International Edition in English, v. 33, n. 4, p. 385-415, 1994. ISSN 10.1002/anie.199403851. 72. MINNESOTA, U. O. Classes of Magnetic Materials. Institute for Rock Magnetism, 2016. Disponivel em: <http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html>. Acesso em: 4 Setembro 2016. 73. NEESE, F. The ORCA program system. Wiley interdisciplinary Reviews - Computational Molecular Science, 2, n. 1, 2012. 73-78. 132 74. NOODLEMAN, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys., n. 74, p. 5737, 1981. 75. NOODLEMAN, L.; DAVIDSON, E. R. Ligand spin polarization and antiferromagnetic coupling in transition metal dimers. Chemical Physics, v. 109, n. 1, p. 131-143, Janeiro 1986. Disponivel em: <http://www.sciencedirect.com/science/article/pii/0301010486801926>. 76. OCHTERSKI, J. W. Thermochemistry in Gaussian. Gaussian.com, 2000. Disponivel em: <http://www.gaussian.com/g_whitepap/thermo.htm>. Acesso em: 21 Maio 2016. 77. OLEJNIK, Z.; JEZOWSKA-TRZEBIATOWSKA, B.; LIS, T. Crystal and molecular structure and magnetic properties of tris(di-[small micro]-methoxo-bis[4,4,4- trifluoro-1-(2-thienyl)butane-1,3-dionato]dicopper(II)}. Journal of the Chemical Society, Dalton Transactions, n. 1, p. 97-101, 1986. 78. OLIVER, J. D. et al. Iron-nitrogen bond lengths in low-spin and high-spin iron(II) complexes with poly(pyrazolyl)borate ligands. Inorganic Chemistry, v. 19, n. 1, p. 165-169, Janeiro 1980. Disponivel em: <http://dx.doi.org/10.1021/ic50203a034>. 79. ORPEN, A. G. et al. Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals. J. Chem. Soc., Dalton Trans., n. 12, p. S1-S83, 1989. Disponivel em: <http://dx.doi.org/10.1039/DT98900000S1>. 80. PALACIO, F. et al. Spontaneous Magnetization in a Sulfur–Nitrogen Radical at 36 K. Angewandte Chemie International Edition, v. 35, n. 21, p. 2533-2535, Novembro 1996. 81. PEARSON, R. G. Hard and Soft Acids and Bases. Journal of the American Chemical Society, v. 85, n. 22, p. 3533–3539, Novembro 1963. ISSN DOI:10.1021/ja00905a001. 133 82. PEARSON, R. G. Hard and soft acids and bases, HSAB, part 1: Fundamental principles. J. Chem. Educ., v. 45, n. 9, p. 581, Setembro 1968. ISSN DOI: 10.1021/ed045p581. 83. PEARSON, R. G. Hard and soft acids and bases, HSAB, part II: Underlying theories. J. Chem. Educ., v. 45, n. 10, p. 643, Outubro 1968. ISSN DOI: 10.1021/ed045p643. 84. PERDEW, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev., n. B 33, p. 8822(R), 1986. Erratum Phys. Rev. B 34, 7406 (1986). 85. PERDEW, J. P.; BURKE, K.; ERNZERHOF, M. Generalized Gradient Approximation Made Simple. Physical Review Letters, v. 77, n. 18, p. 3865-3868, Outubro 1996. 86. PERDEW, J. P.; SCHMIDT, K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf. Proc., v. 1, n. 577, 2001. 87. PERPÈTE, E. A. et al. DFT and TD-DFT investigation of IR and UV spectra of solvated molecules: Comparison of two SCRF continuum models. Int. J. Quantum Chem., v. 107, n. 3, p. 574-585, 2007. 88. PETTERSEN, E. et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, n. 13, p. 1605-1612, Outubro 2004. 89. PFENNIG, B. W. Principles of Inorganic Chemistry. 1. ed. [S.l.]: John Wiley & Sons., v. 1, 2015. 90. POLO, V. et al. Towards understanding of magnetic interactions within a series of tetrathiafulvalene–pi conjugated-verdazyl diradical cation system: a density functional theory study. Phys. Chem. Chem. Phys., n. 10, p. 857-864, 2008. 91. RABU, P. et al. Copper(II) and cobalt(II) dicarboxylate-based layered magnets: influence of π electron ligands on the long range magnetic ordering. Polyhedron, v. 20, n. 11-14, p. 1677-1685, Maio 2001. 134 92. RASSAT, A. et al. A ferromagnetic transition at 1.48 K in an organic nitroxide. Nature, v. 363, n. 6425, p. 147 - 149, Maio 1993. 93. RASSOLOV, V. A. et al. 6-31G* basis set for atoms K through Zn. The Journal of Chemical Physics, 109, n. 4, 15 Abril 1998. 1223. Disponivel em: <http://dx.doi.org/10.1063/1.476673>. 94. REIS, M. Fundamentals of Magnetism. Oxford: Elsevier Inc, v. 1, 2013. ISBN ISBN: 978-0-12-405545-2. 95. REIS, M. Fundamentals of Magnetism. 1. ed. Oxford: Academic Press, v. 1, 2013. 96. RUIZ, E. et al. About the calculation of exchange coupling constants using densityfunctional theory: The role of the self-interaction error. J. Chem. Phys., n. 123, p. 164110, 2005. 97. RUIZ, E.; CIRERA, J.; ALVAREZ, S. Spin density distribution in transition metal complexes. Coordination Chemistry Reviews, n. 249, p. 2649-2660, 2005. 98. SANTOS, I. F. et al. Synthesis, crystal structure and magnetism of three novel copper(II) complexes with pyrazole-based ligands. Journal of Molecular Structure, v. 1011, p. 99-104, Março 2012. 99. SAU, S.; BYABARTTA, P. Copper (ii) phenanthroline complexes: synthesis, spectroscopic study and electrochemistry of copper (ii)-bis naphthylazo imidazole/benzimidazole/pyridine phenanthroline complexes. Int. J. Curr. Res. Chem. Pharma. Sci., v. 2, n. 9, p. 1-15, 2015. 100. SCHÄFER, A.; HORN, H.; AHLRICHS, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys., n. 97, p. 2571 , 1992. 101. SCHÄFER, A.; HORN, H.; AHLRICHS, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys., n. 97, p. 2571 , 1992. 135 102. SESSOLI, R. et al. Magnetic bistability in a metal-ion cluster. Nature, n. 365, p. 141-143, 1993. Disponivel em: <http://www.nature.com/nature/journal/v365/n6442/abs/365141a0.html>. 103. SESSOLI, R. et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature, v. 468, n. 7322, p. 417-421, 2010. 104. SINNOKROT, M. O.; VALEEV, E. F.; SHERRILL, C. D. Estimates of the Ab Initio Limit for π−π Interactions: The Benzene Dimer. J. Am. Chem. Soc., v. 124, n. 36, p. 10887-10893, 2002. 105. SODA, T. et al. Ab initio computations of effective exchange integrals for HH, H-He-H and Mn2O2 complex: Comparison of broken-symmetry approaches. Chemical Physics Letters, v. 319, n. 3, p. 223-230, 2000. 106. STEINER, T. Hydrogen-Bond Distances to Halide Ions in Organic and Organometallic Crystal Structures: Up-to-date Database Study. Acta Crystallographica, n. B54, p. 456-463, 1998. 107. STEPHENS, P. J. et al. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 1994, 98 (45), v. 98, n. 45, p. 11623-11627, 1994. Disponivel em: <http://pubs.acs.org/doi/abs/10.1021/j100096a001>. 108. TAMURA, M. et al. Bulk ferromagnetism in the β-phase crystal of the pnitrophenyl nitronyl nitroxide radical. Chemical Physics Letters, v. 186, n. 4-5, p. 401-404, Novembro 1991. 109. TAO, J. et al. Climbing the Density Functional Ladder: Nonempirical Meta– Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett., v. 91, n. 14, p. 146401-1, Setembro 2003. 110. THE electronic structure of CuCl2 and CuBr2 from anion photoelectron spectroscopy and ab initio calculations. J. Chem. Phys., n. 114, p. 7388, 2001. 136 111. THOMPSON, L. K. et al. Magnetostructural Correlations in Bis(μ2- phenoxide)-Bridged Macrocyclic Dinuclear Copper(II) Complexes. Influence of Electron-Withdrawing Substituents on Exchange Coupling. Inorg. Chem., v. 35, n. 11, p. 3117-3125, Janeiro 1996. Disponivel em: <http://dx.doi.org/10.1021/ic9514197>. 112. TURNBULL, M. M. et al. Transition metal complexes of 2-amino-3,5- dihalopyridines: Synthesis, structures and magnetic properties of Cu(3,5- diCAP)2X2 and Cu(3,5-diBAP)2X2. Inorganica Chimica Acta, v. 362, n. 6, p. 1859-1866. 113. TURNBULL, M. M.; SUGIMOTO, T.; THOMPSON, L. K. Molecule-Based Magnetic Materials: Theory, Techniques, and Applications. [S.l.]: American Chemical Society, 1996. ISBN 0841234523. 114. VELA, S. et al. A theoretical analysis of the magnetic properties of the low dimensional bis(2-chloropyrazine)dichlorocopper(II) molecule-based magnet. Polyhedron, n. 64, p. 163–171, 2013. 115. VELA, S. et al. Assigning the dimensionality in low-dimensional materials: A rigorous study of the dimensionality of (2,5-dimethylpyrazine)CuCl2. Polyhedron, n. 52, p. 699–705, 2013. 116. VERDAGUER, M. et al. A room-temperature organometallic magnet based on Prussian blue. Nature, v. 378, n. 6558, p. 701-703, Dezembro 1995. 117. VON BARTH, U.; HEDIN, L. A local exchange-correlation potential for the spin polarized case: I. Journal of Physics C: Solid State Physics, v. 5, p. 1629– 1642, 1972. 118. WALSH, J. et al. Evidence of Slow Magnetic Relaxation in Co(AcO)2(py)2(H2O)2. Magnetochemistry, v. 2, n. 2, p. 23, Abril 2016. 119. WANNARIT, N. et al. New Series of Triply Bridged Dinuclear Cu(II) Compounds: Synthesis, Crystal Structure, Magnetic Properties, and Theoretical Study. Inorg. Chem., v. 50, n. 21, p. 10648-10659, Julho 2011. 137 120. WEIGEND, F.; AHLRICHS, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys, n. 7, p. 3297-3305, 2005. 121. WILLET, R. D.; GATTESCHI, D.; KAHN, O. Magneto-Structural Correlations in Exchange Coupled Systems. Dordrecht: Reidel Publishing, 1983. 611 p. ISBN 90-277-1876-8. 122. WU, P. et al. Noncovalent Interaction Analysis in Fluctuating Environments. Journal of Chemical Theory and Computation, v. 9, n. 5, p. 2226-2234, Maio 2013. Disponivel em: <http://dx.doi.org/10.1021/ct4001087>. 123. WUDL, F. et al. Organic molecular soft ferromagnetism in a fullerene c60. Science, New York, v. 253, n. 5017, p. 301-302, Julho 1991. 124. YAMAGUCHI, K.; TAKAHARA, Y.; FUENO, T. Applied Quantum Chemistry. [S.l.]: [s.n.], 1986. 155 p. 125. YANG, L.; POWELL, D. R.; HOUSER, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new fourcoordinate geometry index, t4. Dalton Transactions, p. 955-964, 26 Janeiro 2007. 126. ZIA-UR-REHMAN, M. et al. 5-Amino-1-phenyl-1H-pyrazole-4-carboxylic acid. Acta Crystallographica Section E, v. 64, n. 7, p. o1312-o1313, 2008. 127. ZVEREVA, E. E.; SHAGIDULLIN, A. R.; KATSYUBA, S. A. Ab Initio and DFT Predictions of Infrared Intensities and Raman Activities. The Journal of Physical Chemistry A, v. 115, n. 1, p. 63-69, Janeiro 2011.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/67468/2016%20-%20Henrique%20de%20Castro%20Silva%20Junior.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/5219
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2021-11-04T15:42:11Z No. of bitstreams: 1 2016 - Henrique de Castro Silva Junior.pdf: 10051524 bytes, checksum: 0ba6947a8323a7c340b693418e4e21a9 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2021-11-04T15:42:12Z (GMT). No. of bitstreams: 1 2016 - Henrique de Castro Silva Junior.pdf: 10051524 bytes, checksum: 0ba6947a8323a7c340b693418e4e21a9 (MD5) Previous issue date: 2016-07-25eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2016 - Henrique de Castro Silva Junior.pdf2016 - Henrique de Castro Silva Junior9.82 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.