Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14624
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorres, Juliana Mariano
dc.date.accessioned2023-12-22T03:03:41Z-
dc.date.available2023-12-22T03:03:41Z-
dc.date.issued2011-07-22
dc.identifier.citationTORRES, Juliana Mariano. Estudo cinético da atividade anticolinesterásica de derivados ß- Carbolínicos do produto natural harmana. 2011. 79 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14624-
dc.description.abstractO aumento da expectativa de vida é um fenômeno mundial que mostra o relativo sucesso de políticas de saúde pública, e o Brasil se inclui entre os países em que as pessoas estão vivendo por mais tempo e em condições melhores de saúde. No entanto, o aumento da expectativa de vida tem como efeito negativo o aparecimento de doenças degenerativas, típicas de idades mais avançadas, incluindo-se as várias formas de demência e entre estas, a mais importante é, sem dúvida, a Doença de Alzheimer (DA), patologia irreversível e progressiva caracterizada pela deterioração neuronal que resulta em perda de funções cognitivas, tais como memória, capacidade de comunicação, julgamento e raciocínio. Para o tratamento da DA são utilizados fármacos como o donepezil, galantamina e rivastigmina, os quais agem inibindo reversívelmente a acetilcolinesterase (AChE). Evidências sugerem que a enzima butirilcolinesterase (BChE), intimamente relacionada com a AChE, tem um papel significante na DA, uma vez que está envolvida em funções neurais tais como a corregulação da neurotransmissão colinérgica e não-colinérgica. Esta pesquisa pretendeu estudar novas substâncias com ação anticolinesterásica utilizando derivados -carbolínicos do produto natural harmana, bem como fazer um estudo cinético a fim de descobrir qual o perfil de inibição das enzimas AChE e BChE, a fim de buscar novos compostos que poderiam ser úteis no tratamento dos sintomas da DA. Desta forma, foi efetuada preliminarmente uma triagem com 7 derivados -carbolínicos e posteriormente foi realizada uma investigação cinética com estes compostos, uma vez que, todos apresentaram alta ação anticolinesterásica tanto para AChE quanto para BChE. A cinética enzimática foi estudada segundo o método de Ellman. Contudo, observou-se que todos os 7 derivados apresentaram uma inibição reversível não competitiva.por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq.por
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectAlzheimer's disease, ß-carboline, cholinesterase, enzyme kineticseng
dc.subjectDoença de Alzheimer, -carbolínicos, colinesterases, cinética enzimáticapor
dc.titleEstudo cinético da atividade anticolinesterásica de derivados ß- Carbolínicos do produto natural harmanapor
dc.typeDissertaçãopor
dc.description.abstractOtherThe increase in life expectancy is a worldwide occurrence that shows the relative success of public health politics, and Brazil is among the countries where people are living longer and in better physical health. But the increase in life expectancy has a negative effect: the appearance of degenerative diseases typical of old age, including several forms of dementia, like Alzheimer’s Disease (AD) that is certainly the most important. It is an irreversible and progressive disease characterized by neuronal deterioration that results in loss of cognitive functions such as memory, communication skills, judgment and reasoning. Donepezil, rivastigmine and galantamine are medicines used for the treatment of AD and act reversibly inhibiting the acetylcholinesterase (AChE). Evidences suggest that the enzyme butyrylcholinesterase (BChE), closely related to AChE, plays a significant role in AD because it is involved in neural functions such as cholinergic co-regulation and non-cholinergic neurotransmission. The aim of this research is to provide new substances with anticholinesterase action by using ß-carboline derivatives from the natural product harmane and carry out a kinetic study to determine the inhibition profile of the enzymes AChE e BChE, which could help in the discovery of new compounds which could be useful in the treatment of AD. Firstly, a screening was carried out with seven ß-carboline derivatives. In a second stage, a kinetic investigation, employing Ellman’s method, was run with these compounds and all of them presented high anticholinesterase action for both AChE and BChE. All seven derivatives presented a non-competitive reversible inhibition.por
dc.contributor.advisor1Rumjanek, Victor Marcos
dc.contributor.advisor1ID345.539.087-00por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6167025404438965por
dc.contributor.advisor-co1Kummerle, Arthur Eugen
dc.contributor.advisor-co1ID5397848778por
dc.creator.ID100.226.447-25por
dc.creator.Latteshttp://lattes.cnpq.br/6528336357609010por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAIRAKSINEN, M. M.; KARI, I. Beta-carbolines, psychoactive compounds in the mammalian body 2 effects. Medical Biology. v. 59, pp. 190-211, 1981. AFSAH, E. M.; HAMMOUDA, M.; HAMAMA W. S. Pictet-Spengler reactions of Tryptamine and tryptophan with cycloalkanones and ketonicMannich bases. Monarshefte für Chemie. V. 116, pp. 851-855, 1985. BARBOSA-FILHO, J.M.; MEDEIROS, K. C. P.; DINIZ, M. F. F. M.; BATISTA, L. M.; ATHAYDE-FILHO, P. F.; SILVA, M. S.; DA CUNHA, E. V. L.; ALMEIDA, J. R. G. S.; QUINTANS-JUNIOR, L. J. Natural Protucts inhibitiors of the enzyme acetylcholinesterase. Revista Brasileira de Farmacognosia. v.16, n. 2, pp. 258-285, 2006. BAYNES, J. W. Bioquímica médica. Tradução da 2° Edição. Rio de Janeiro: Mosby Elesevier, 1991. ISBN: 978-85-352-2298-2. BECHER, P. G.; BEUCHAT, J.; GADEMANN, K.; JÜTTNER, F. Nostocarboline: Isolation and Synthesis of a New Cholinesterase Inhibitor from Nostoc 78-12A. J. Nat. Prod. v. 68, pp. 1793-1795, 2005. BERG, J. M.; TYMOCZKO, J. L.; STRVER, L. Bioquímica. 6° Edição. Guanabara Koogan, 2008. ISBN: 8527713691. BIRKS, J.; HARVEY, R. J. Donepezil for dementia due to Alzheimer's disease. Cochrane Database of Systematic Reviews. (1), CD001190, 2006. BISSWANGER, H. Enzimes Kinetics. Principles and methods. 2°Edição; WILEYVCH; VERLAG GMBH & CO.KGA, 2008. ISBN: 978-3-527-31957-2 BONNET, U.; SCHERBAUM, N.; WIEMANN, M. The endogenous alkaloid harmane: Acidifying and activity-reducing effects on hippocampal neurons in vitro. Progress in neuro-Psychopharmacology & Biological Psychiatry. v. 32, pp. 362-367, 2008. 67 BOURNE, Y.; RADIC , Z.; KOLB, H. C.; SHARPLESS, K. B.; MARCHOT, P. Structural insights into conformational flexibility at the peripheral site and within the active center gorge of AChE. Chemico-Biological Interactions. v. 157, pp. 159-165, 2005. BUCKHOLTZ, N. S. Neurobiology of tetrahydro-beta-carbolines. Life Sciences. v. 27, pp. 893-903, 1980. BUTLER, M. S. The role of natural product chemistry in drug discovery. Journal of Natural Products. v. 67, pp. 2141-2153, 2004. CACABELOS, R.; TAKEDA, M.; WINBLAD, B. The glutamatergic system and neurodegeneration in dementia: preventive strategies in Alzheimers disease. International Journal of Geriatric Psychiatry. v. 14, pp. 3-47, 1999. CALLAWAY, J. C.; GYNTHER, J.; POSO, A.; VEPSALAINEM, J.; AIRALKSINEM, M. M. J. Journal of Heterocyclic Chmistry. v. 31, pp, 431-435, 1994. CAMPOS, L.S. Entender a Bioquímica. 2° Edição. Lisboa: Escolar Editora, 1999. ISBN: 972-592-108-9. CANEPA, F. G; PAULING, P.; SORUM, H. Structure of acetylcholine and other substrates of cholinergic systems. Nature. v. 210, pp. 907- &, 1966. CARAMELLI, P.; CHAVES, M. L. F.; Engelhardt E, et al. Effects of galantamine on attention and memory in Alzheimers disease measured by computerized neuropsychological tests: results of the Brasilian Multi-Center galantamine study (GALBRA- 01). Arquivos de Neuro-Psiquiatria. v. 62, pp. 379-384, 2004. CASS, H. Herbs for the nervous system: Ginkgo, Kava, Valerian, Passionflower. Seminars in Integrative Medicine. v. 2, pp. 82-88, 2004. 68 CASTRO, A. T. Estudo por modelagem molecular da reativação da acetilcolinesterase inibida por agentes químicos neurológicos. 121 f. Dissertação (mestrado em área envolvida) – IME, Rio de Janeiro, 2002. CHATONNET, A.; LOCKRIDGE, O. Comparison of butyrylcholinesterase and acetylcholinesterase. The Biochemical Journal. Londres, v.260, n.3, pp. 625-634, 1989. CHENG, Y. & PRUSOFF, W. H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. v. 22, pp. 3099–3108, 1973. CRI - CENTO DE REFERÊNCIA DO IDOSO DO HC/UFMG. Dados coletados com base nas informações do DATASUS (Sistema de Informações Ambulatoriais do SUS - (SAI/SUS), e pela Gerência de Medicamentos Excepcionais (Superintendência de Assistência Farmacêutica/SES/MG), 2008. DALE, M. C.; LEBRETTO, S. E.; PATTERSON, C.; ANDERSON, J.; CHOUDHURY, T.; MCCAFFERTY, F.; MCWILLIAM, C.; RICHARDSON, M. Clinical experience of galantamine in dementia: A series of case reports. Current Medical Research and Opinion. v. 19, pp. 508-518, 2003. DESCARRIES, L.; LISIGER, V.; STERIADE M. Diffuse transmission by acetylcholine in the CNS. Progress in Neurobiology. v. 53, pp. 603-625, 1997. DEVLIN, M. T. Manual de Bioquímica com Correlações Clínicas. Tradução da 6° Edição. Blücher, 2007. ISBN: 9788521204060. DEWICK, P. M. The biosynthesis of C-5-C-25 terpenoid compounds. Natural Product Reports. v. 19, pp. 181-122, 2002. DOWNEY, D. Pharmacologic management of Alzheimer Diseases. Journal of Neuroscience Nursing. v. 40, n.1, pp. 55-59, 2008. 69 EKHOLM, M. Predicting relative binding free energies of substrate and inhibitors of acetylcholin- and butyrylcholinesterases. Journal of Molucular Structure-Theochem. v. 572, pp. 25-34, 2001. ELHANANY, E.; ORDENTLICH, A.; DGANY, O.; KAPLAN, D.; SEGALL,Y.; BARAK, R.; VELLAN, B.; SHAFFERMAN, A. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOF/MS analysis of various nerve agent phosphyl adducts. Chemical Research in Toxicology. v. 14, pp. 912-918, 2001. ELISABETSKY, E.; COSTA-CAMPOS, L. The alkaloid alstonine: a review of its pharmacological properties. Evidence based complementary and alternative medicine. v. 3, pp. 39-48, 2006. ELLMAN. GL; COURTNEY. KD; ANDRES. V. JR; FEATHERSTONE. RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. v.7, pp. 88-95, 1961. EVANS, F. J. Natural products as probes for new drug target identification. Journal of Ethnopharmacology. v. 32, PP. 91-101, 1991. FAN, P.; HAY, A.; MARSTON, A.; HOSTETTMANN, K., Acetycholinesterase- Inhibitory Acivity of Linarin from Buddleja davidii, Structure-Activity Relationships of Related Flavonoids, and Chemical Investigation of Buddeja nitida. Pharmaceutical Biology, v. 46, pp. 596-601, 2008. FARLOW, M. R. Effective pharmacologic management of Alzheimer’s disease. American Journal of Medicine. v. 120, pp. 388-397, 2007. FARZIN, D.; MANSOURI, N. Antidepressant-like effect of harmane and other - carbolines in the mouse forced swim test. European Neuropsychopharmalogy. v. 16, pp, 324-328, 2006. 70 FRAGA, A. S. Acetilcolinesterase, butirilcolinesterase, carboxilesterase e a resistência de peixes neotropicais aos pesticiadas organofosforados. Rio de Janeiro, 2010. Tese (Doutorado em biociências). Universidade do Estado do Rio de Janeiro. Rio de Janeiro, 2010. FRANCIS, P. T.; PALMER, A. M.; SNAPE, M.; WILCOCK, G. K. J. The cholinergic hypothesis of Alzheimer's disease: a review of progress. Journal of Neurology Neurosurgery and Psychiatry. v. 66, pp. 137-147, 1999. FREITAS, E. V.; et al. Tratado de Geriatria e Gerontologia. Guanabara Koogan, 2002. GEISSLER, T.; BRANDT, W.; PORZEL, A.; SCHLESNZIG, D.; KEHLEN, A.; WESSJOHANN, L.; ARNOLD, N. Acetylcholinesterase inhibitors from the toadstool Cortinarius infractus. Bioorganic & Medicinal Chemistry. v. 18, pp. 2173-2177, 2010. GHOSAL, S.; BHATTACH, S. K.; MEHTA, R. Naturally occurring and synthetic betacarbolines as cholinesterase inhibitors. Journal of Pharmaceutical Sciences. v. 61, (5), pp. 808, 1972. GIACOBINE, E. In: Giacobin, E. (ed.), Cholinesterases and cholinesterase inhibitors. pp. 181-226, 2000. GLENNON, R. A.; DUKAT, M.; GRELLA, B. Binding of -carbolines and related agents at serotonin (5-HT2 and 5-HT1A), dopamine (D2) and benzodiazepine receptors. Drug and alcohol dependence. v. 60, pp. 121-132, 2000. GOTTI, C.; CLEMENT, F. Neuronal nicotinic recptors: from estructure to pathology. Progress in Neurobiology. v. 74, pp. 363-396, 2004. GREIG, N. H.; UTSUKI, T.; INGRAM, D. K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid 71 peptide in rodent. Proceedings of the national academy of sciences of the united states of America. v. 102, pp. 17413-17418, 2005. GRELLA, B.; DUKAT, M.; YOUNG, R.; TEITLER, M.; DEIVIS, K. H.; GAUTHIER, C. B.; GLENNON, R. A. Investigation of hallucinogenic and related -carbolines. Drug and Alcohol Dependence. v. 50, pp. 99-107, 1998. HAASS, C.; SCHLOSSMACHER, M. G.; HUNG, A. Y.; VIGO, C. P.; MELLON, A.; OSTASZEWSKI, B. L.; LIEBERBURG, I.; KOO, E. H.; SCHENK, D.; TEPLOW, D. B.; SELKOE, D. J. Amyloid -peptide is produced by cultured cells during normal metabolism. Nature. V. 359, pp. 322-325, 1992. HAMANN, J.; WERNICKE, C.; LEHMANN, J. 9-Methyl- -carboline up-regulates the appearance of differentiated dopaminergic neurones in primary mesencephalic culture. Neurochemistry International. v. 52, pp. 688-700, 2008. HARDIMAN, J.; CARREL, H. L.; ZACHARIAS, D. E.; GLUSKER, J. P. The structure of harman, a comutagen. Bioorganic Chemistry. v.15, pp. 127-132, 1987. HARDY, J.; ALLSOP, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends in Pharmacological Sciences, v.12, pp. 383-388, 1991. HARTMANN, J.; KIEWERT, C.; DUYSEN, E. G. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. Journal of Neurochemistry. v. 100, pp. 1421-1429, 2007. HEMMATEENEJAD, B.; ABBASPOUR, A.; MAGHAMI, H. Partial least squaresbased multivariate spectral calibration method for simultaneous determination of betacarboline derivatives in Peganum harmala seed extracts. Analytica Chimica Acta. v. 575, pp. 290-299, 2006. HENRIQUES, A. T.; KERBER, V. A.; MORENO, P. R. H. Alcalóides: Generalidades e aspectos básicos. In: Simões, C. M. O. et al., Farmacognosia. Da planta ao 72 medicamento. 1° Edição. Ed. Universidade/UFRGS. Ed. UFSC. Porto Alegre/ Florianópolis, 1999. HERRAIZ, T.; GALISTEO, O. J.; CHAPARRO, R. C. Preparation of beta-carboline compounds, useful as inhibitors of monoamino-oxidase for treating e.g. depression, comprises enzymatic oxidation of natural tetrahydro precursors. Consejo Superior Investigaciones Cientif. Patent: ES2278534-A1; WO2007085679-A1; ES2278534-B1, 2008. HERRAIZ, T.; CHAPARRO, R. C. Human monoamine oxidase enzyme inhibition by coffee and -carbolines norharman and harman isolated from coffee. Life Sciences. v. 78, pp. 795-802, 2006. HUSBANDS, S. M.; GLENNON, R. A.; GORGERAT, S.; GOUGH, R.; TYACKE, R.; CROSBY, J.; NUTT, D. J.; LEWIS, J. W.; HUDSON, A. L. Beta-carboline binding to imidazoline receptors. Drug Alcohol Dependence. v. 64, pp. 203-208, 2001. ISHIDA, J.; WANG, H. K.; OYAMA, M.; COSENTINO, M. L.; HU, C. Q.; LEE, K. H. Anti-AIDS agents. 46. Anti-HIV activity of harman, an anti-HIV principle from Symplocos setchuensis, and its derivatives. Journal of Natural Products. v. 64, pp. 958-960, 2001. KATALINIC, M.; KUSAK, G.; DOMACINOVIC, J.; SINKO, G.; JELIC, D.; ANTOLOVIC, R.; DOVARIK, Z. Strutuctural aspects of flavonoids as inhibitors of human butyrylcholinesterase. European Journal of Medicinal Chemistry, v. 45, pp. 186-192, 2010. KAWASHIMA, K.; FUJII, T. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sciences. v. 74, pp. 675- 696, 2003. KUSURKAR, R. S.; GOSWAMI, S. K.; VYAS, S.M. Corrigendum to: Efficient one-pot synthesis of anti HIV and antitumor compounds: harman and substituted harmans. Tetrahedron Letters. v. 44, pp. 4761-4763, 2003. 73 KUSURKAR, R. S.; GOSWAMI, S. K. Efficient one-pot synthesis of anti-HIV and antitumour -carbolines. Tetrahedron. v. 60, pp. 5315-5318, 2004. LANCTÔT, K. L., HERRMANN, N., YAU, K. K., KHAN, L. R.; LIU, B. A.; LOULOU, M. M.; EINARSON, T. R. Efficasy and safety of cholinesterase inhibitors in alzheimer’s diseases: a meta analysis. Canadian Medical Association or its Licensors. v. 169, pp. 557-564, 2003. LEVIN, E. D., SIMON, B. B. Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology. v. 138, pp. 217-230, 1998. LIEBERMAN, S. L. Morphine with pentothal anesthesia. Jama-Journal of the American Medical Association. v. 127, pp. 1147-1147, 1945. LINEWEAVER, H. BURK, D. The determination of enzyme dissociation constants. J. Amer. Chem. Soc. v. 56, pp. 658-666; 1934. LUTOMSK, J. Qualitative and quantitative chromatografhyc investigation of alkaloids of Passiflora incarnata. Biul. Inst. Roslin Leczniczych. v. 5, pp. 181-198, 1959. MARUM, R. J.V. Current and future theraphy in alzheimer’s disease. Fundamental & Clinical Pharmacology. v. 22, pp. 265-274, 2008. MASSOULIÉ, J.; PEZZEMENTE, L.; BON, S.; KREJCI, S.; VALLETTE, F. M. Molecular and cellular biology of cholinesterases. Progress in Neurobiology. v. 41, pp. 31-91, 1993. MESULAM, M.M.; GUILLOZET, A. ; SHAW, P. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. v. 110, pp. 627-639, 2002. MICHAELIS. L.; MENTEN. M. L. Die Kinetik der Invertinwirkung. Biochemische Zeitschrift. v. 49, pp. 333-369, 1913. 74 MIKAMI, L. R. Variabiliadade dos Exons 2 e 4 do gene BChE e sua relação com a atividade da butirilcolinesterase. Curitiva, 2005. Tese (Doutorado em ciências biológicas) – Área de genética. Universidade Federal do Paraná. Curitiba, 2005. MILLARD, C.B.; BROOMFIELD. C.A. A computer model of glycosylated human butyrylcholinesterase. Biochemical and Biophysical Research Communications. San Diego, v. 189, p. 1280-1286, 1992. MÖLLER. E. E. A FAMILY WITH ALZHEIMER'S DISEASE. Acta Psychiatrica Scandinavica. v. 21, pp. 233-244, 1946. MOURA, D. J.; RORIG, C.; VIEIRA, D. L. Effects of beta-carboline alkaloids on the object recognition task in mice. Life Sciences. v. 79, pp. 2099-2014, 2006. MÖUSÄ, P.K.; MARTTILA, R. J.; RINNE, U. K. Survival and cause of death in Alzheimer's disease and multi-infarct dementia. Acta Neurologica Scandinavica. v. 74, n. 2, pp. 103-107, 1986. MUDHER, A.; LOVESTONE, S. Alzheimer’s disease – do tauists and baptists finally shake hands? Trends in Neurosciences. v. 25, n. 1, pp. 22-25, 2002. NACHMANSOHN, D.; ROTHENBERG, M. A. Studies on cholinesterase .1. On the specificity of the enzyme in nerve tissue. Journal of Biological Chemistry. v. 158, pp. 653-666, 1945. NACHMANSOHN, D.; WILSON, I. B. The enzymic hydrolysis and synthesis of acetylcholine. Advances in Enzymology and Related Subjects of Biochemistry. v. 12, pp. 259-339, 1951. NELSON, N.L.; COX, M. M. Lehninger Princípios da Bioquímica. 3° Edição. Sarvier, 2002. ISBN: 85-7378-125-4. 75 NIKOLAEV, A.; MCLAUGHLIN, T.; O'LEARY, D.; TESSIER-LAVIGNE, M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature. v. 457, pp. 981-990, 2009. NODARI, R. O.; GUERRA, M. P. Biodiversidade: aspectos biológicos, geográficos, legais e éticos. Em Farmacognosia: da planta ao medicamento, ed. por C. M. O. Simões, E. P. Schenkel, G. Gosmann, J. C. P. Mello, L. A. Mentz, e P. R. Petrovick, pp. 11-24, Editora UFSC/Editora UFRGS, Florianópolis/Porto Alegre, 2003. NOWACKI, E.; JURZYSTA M; GORSKI P. Study on origin and protective function of alkaloids in plants. 2. Efect of availability of nitrogen on alkaloid synthesis in Solanaceae. Bulletin del Academie Polonaise des Sciences-Serie des Sciences Biologiques. v. 23, pp. 219-225, 1975. ORHAN, I.; KARTAL, M.; TOSUN, F.; SENER, B. Screening of Various Phenolic Acids and Flavonoid Derivatives for Their Anticholinesterase Potential. Zeitschrift für Naturforschung, v. 62, pp. 829-832, 2007. PANG, Y. P.; KOLLMEYER, T. M. ; HONG, F. ; LEE, J-C.; MAMMOND, P. I.; HAUGALO, K. S.; BRIMJOIN, S. Rational design of alkylene-linked bispyridiniumalidoximes as improved acetylcholinesterase reactivators. Chemistry & Biology. v.10, pp. 491-502, 2003. PATOCKA, J.; KUCA, K.; JUN, D. Acetylcholinesterase and butyrylcholinesterase - important enzymes of human body. Acta Medica, Hradec Králové, v. 47, n.4, p.215- 228, 2004. PELLETIER, S. W.; The nature and definition of an alkaloid. In: Alkaloids and Biological Perspectives. John Wiley, New York, pp. 1-31, 1983. PENG, L. F. Acetylcholinesterase inhibition by territrem B derivatives. Journal Natural Products. v. 58, pp. 857-862, 1995. 76 PIAZZI, L.; CAVALLI, A.; BELLUTI, F.; BISI, A.; GOBBI, S.; BARTOLINI, M.; ANDRISANO, V.; RACANATINI, M.; RAMPA, A. Extensive SAR and Computational Studies of 3-{4-[(Benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2H-2-chromenone (AP2238) Derivatives. Journal of Medicinal Chemistry. v. 50, pp. 4250-4254, 2007. PRATT, C. W.; CORNELY, K. Bioquímica Essencial. 1° Edição. Guanabara Koogan, 2006. ISBN: 85-277-1128-1. RANG, H.P.; DALE, M.M.; RITTER, J.M. Farmacologia, 5ª edição. Elsevier. pp. 920, 2004. ISBN: 8535213686. RATES, S. M. K. Plants as source of drugs. Toxicon: Official Journal of the International Society on Toxinology. v. 39, pp. 603-613, 2001. RIVAS, P.; BRUCE, K.; CASSELS.; MORELLO, A.; REPETTO, Y. Effects of some - carboline alkaloids on intact Trypanosoma cruzi epimastigotes. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology. v. 122, pp. 27-31, 1999. RIZZO, S.; CAVALLI, A.; CECCARINI, L.; BARTOLINI, M.; BELLUTI, F.; BISI, A.; ANDRISANO, V.; RECANATINI, M.; RAMPA, A. Structure-Activity Relationships and Binding Mode in the Human Acetylcholinesterase Active Site of Pseudo-Irreversible Inhibitors Related to Xanthostigmine. Chemmedchem. v. 4, pp. 670-679, 2009. RIZZO, S.; BARTOLINI, M.; CECCARINI, L.; PIAZZI, L.; GOBBI, S.; CAVALLI, A.; RECANATINI, M.; RAMPA, A. Targeting Alzheimer’s disease: Novel indanone hybrids bearing a pharmacophoric fragment of AP2238. Bioorganic & Medicinal Chemistry. v. 18, pp. 1749-1760, 2010. ROBBERS, J. E.; SPEEDIE, M.; TYLER, V. E. Farmacognosia e Farmacobiotecnologia. São Paulo. Premier, 1997. ROBINSON, T. Metabolism and Function of Alkaloids in Plants. Science. v. 184, pp. 430-435, 1974. 77 ROGERS, S. L.; DOODY, R. S.; MOHS, R. C. Friedhoff LT and the Donepezil Study Group. Donepezil improves cognition and global function in Alzheimer disease: a 15- week, doubleblind doubleblind, placebo-controlled study. Archives of Internal Medicine. v. 158, pp. 1021-1031, 1998. ROGERS, S.L.; FARLOW M. R.; MOHS, R. A 24-week, double-blind, placebocontrolled trial of donepezil in patients with Alzheimer’s disease. Neurology. v. 50, pp.136-145, 1998. SCHUMACHER, M.; CAMP, S.; MAULET, Y.; NEWTON, M.; MACPHEEQUIGLEY, K.; TAYLOR, S.S.; FRIEDMAN, T.; TAYLOR, P. Primary structures of Torpedo-californica acetylcholinesterase deduced from its cDNA sequence. Nature. v. 319, pp. 407-409, 1986. SHI, C. C.; CHEN, S. Y.; WANG, G. J. Vasorelaxant effect of Harman. European Journal of Pharmacology. v. 390, pp. 319-325, 2000. SILMAN, I.; HAREL, M.; AXELSEN, P.; RAVES, M.; SUSSMAN, J. L. Threedimensional structure of acetycholinesterase and of its complexes with anticholinesterase agents. Biochemical Society transactions. v. 22, pp.745-749, 1994. SILVA FILHO, M. V.; OLIVEIRA, M. M.; SALLES, J. B.; CUNHA BASTOS, V. L. F.; CASSANO, V. P. F.; CUNHA BASTOS, J. Methyl-paraoxon inhibition kinectics for acetylcholinesterase from brain of neotropical fishes. Toxicology Letters. v. 153 pp. 247-254, 2004. SIMÕES, C. M. O.; SCHENKEL, E. P.; GOSMAN, G., MELLO, J. C. P.; MENTZ, L. A.; PETROVICK, P. R. Farmacognosia. Da planta ao medicamento. 1° Edição. Universidade/UFRGS. Ed. UFSC. Porto Alegre/ Florianópolis, 1999. SMITH, T. W. Should Digoxin be the drug of 1st choice after diuretics in chronic congestive heart-failure - protagonists viewpoint. Journal of the American College of Cardiology. v. 12, pp. 267-271, 1988. 78 SOARES, E.; S. Ácidos fenólicos como antioxidantes. Rev. Nutr., v. 15, pp. 71-81, 2002. SOARES, L. F. Intoxicações Agudas por Carbamatos em Pediatria. Aspectos Epidemiológicos, Clínicos e Terapêuticos. Rio de Janeiro, 1998. (Monografia do Curso de Especialização em Pediatria) Universidade Federal Fluminense – UFF. Rio de Janeiro, 1998. SOREQ, H.; BEN-AZIZ, R.; PRODY, C.A.; SEIDMAN, S.; GNATT, A.; NEVILLE, L.; LIEMAN-HURWITZ, J.; LEV-LEHMAN, E.; GINZBERG, D.; LIPIDOT-LIFSON, Y. Molecular cloning and construction of the coding region for human acetylcholineterase reveals a G + C-rich attenuating structure. Proceedings of the Nacional Academy of Science. v. 87, pp. 9688-9692, 1990. SRIVASTAVA, V.; NEGI, A. S.; KUMAR, J. K., GUPTA, M. M.; KHANUJA, S. P. S. Plant-based anticancer molecules: A chemical and biological profile of some important leads. Bioorganic & Medicinal Chemistry. v. 13 (21), pp. 5892-5908, 2005. SUSSMAN, J.L.; HAREL, M.; PROLOW. F.; OEFNER, C.; GOLDMAN, A.; TOKER, L.; SILMAN, I. Atomic structure of acetylcholinesterase from Torpedo-californica: a prototypic acetylcholine-binding protein. Science. v. 253, pp. 872-879, 1991. TAYLOR, P. Anticholinesterase Agents. In: Hardman, J. G.; Gilman, A. G.; Limbird, L. E. (Ed). The Pharmacology Basis of Therapeutics. McGraw-Hill, New York, USA, pp. 161-176, 1996. TAYLOR, P.; BROWN, J, H. Acetylcholine. In: Siegel, G. J., Agranoff, B. W., Albers, R. W., Molinoff, P. B. (Ed). Basic Neurochemistry: Molecular, Celullar, Medical Aspects. Lippnicott-Raven Publishers Philadelphia, USA, pp. 214-242, 1999. TURK, T.; MACEK, P.; SUPUT, D. Inhibition of acetylcholinesterase by a pseudozoanthoxanthin-like compounds isolated from the zoanthid parazoanthus-axinellae (o-schmidt). Toxicon. v. 33, pp. 133-142, 1995. 79 VAN DER ZEE, E. A.; LUITEN, P. G. M. Muscarine acetylcholine repectors in the hippocampus, neocortex and amygdala : a review of immunocytochemical localization in relation to learning and memory. Progress and Neurobiology. v. 58, pp. 409-471, 1999. VIEGAS, C. J.; DA SILVA, V. B.; FURLAN, M.; ALBERTO, C. M. F.; BARREIRO, E. J. Produtos Naturais como canditados a fármacos úteis no tratamento do Mal de Alzheimer. Química Nova, v. 27, n. 4, pp. 655-660, 2004. WAGNER, H. Pesquisa Fitomédica do novo milênio: Tendências e mudanças. In: CECHINEL-FILHO, V., YUNES, R. A. Química de Produtos Naturais, novos fármacos e a moderna farmacognosia. 2° Edição. Itajaí: UNIVALI, pp. 31-47, 2009. WALDEMAR, G.; DUBOIS, B.; EMER, M. The Category Cued Recall test in very mild Alzheimer's disease: discriminative validity and correlation with semantic memory functions. European Journal of Neurology. v. 14, n. 1, pp. 102-108, 2007. WANI, M. C.; WALL, P. C.; HAROLD, L. T.; MONROE, E.; ANDREW, T. M. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. V. 93, pp. 2325–2327, 1971. ZIMMERMAN, G.; SOREQ, H. Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell and Tissue Research. v. 326, pp. 655–669, 2006por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/4396/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19040/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/25374/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/31783/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38148/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/44530/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/50914/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/57386/2011%20-%20Juliana%20Mariano%20Torres.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/1144
dc.originais.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-08-01T17:07:57Z No. of bitstreams: 1 2011 - Juliana Mariano Torres.pdf: 1156662 bytes, checksum: 6ae713d0002e13c804fc2eba73bd8f5b (MD5)eng
dc.originais.provenanceMade available in DSpace on 2016-08-01T17:07:57Z (GMT). No. of bitstreams: 1 2011 - Juliana Mariano Torres.pdf: 1156662 bytes, checksum: 6ae713d0002e13c804fc2eba73bd8f5b (MD5) Previous issue date: 2011-07-22eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2011 - Juliana Mariano Torres.pdf2011 - Juliana Mariano Torres1.13 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.