Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14639
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFerreira, Larissa de Almeida Peixoto
dc.date.accessioned2023-12-22T03:03:52Z-
dc.date.available2023-12-22T03:03:52Z-
dc.date.issued2021-04-16
dc.identifier.citationFERREIRA, Larissa de Almeida Peixoto. Síntese e avaliação farmacológica de novas 3-(imidazo[1,2-α]piridinas)-cumarinas planejadas para o tratamento da Doença de Alzheimer. 2021. 181 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14639-
dc.description.abstractA doença de Alzheimer (DA) é uma doença neurodegenerativa progressiva que possui uma patogênese complexa, induzindo a perda de memória e distúrbios cognitivos, que geralmente se apresenta na terceira idade. As cumarinas e imidazopiridinas (IM) são classes de compostos com ampla atuação farmacológica e existem diversos estudos promissores relacionados ao tratamento da DA, atuando em vários alvos como acetilcolinesterase (AChE), butirilcolinesterase (BuChE), agregação de placas β-amilóides (Aβ) e entre outros. Assim, o objetivo geral deste trabalho é a síntese de novas 3-(imidazo[1,2-α]piridin-2-il)-cumarinas, com base em trocas clássicas de bioisosterismo de grupos 4-(dimetilamino)fenila por imidazopiridinas (IM) como possíveis inibidores de colinesterases para o tratamento da DA. A primeira série originou-se pela síntese das 3-(imidazo[1,2-a]piridinas)-cumarinas (66a-d) envolvendo 5 etapas reacionais: síntese das 3-acetil-cumarinas (67a-c) (rendimento de 70% a 90%) (etapa 1), α-bromação das 3-acetil-cumarinas (rendimento de 51 a 73%) (etapa 2), formação do núcleo da IM (etapa 3) (rendimento de 64 a 69%), alquilação das IMs com conversões de 74% a 88% (etapa 4) e, por fim, a etapa de aminação com a formação dos compostos finais (66a-d). A segunda série veio da síntese de 3-(imidazo[1,2-α]piridinas-9'-etilcarboxilato)-cumarinas, envolvendo etapas de condensação Knoevenagel para formação de compostos com núcleo cumarínico (89) (rendimento de 86%), O-alquilação (93a-d) (rendimentos de 30 a 74%), formação do núcleo das IMs (102a-d) (rendimentos de 42 a 74%) e aminação (103a-d) (rendimentos de 31% a 79%). Screening inicial a uma concentração fixa de 30 μM, para dois compostos finais 66b e 103b, demonstrou uma inibição enzimática de aproximadamente 91,7% (AChE) / 92,4% (BuChE) e 98,1% (AChE) / 88,6%(BuChE), respectivamente. Além da atividade foram realizados estudos in sílico de modelagem molecular e parâmetros ADME. Com base nesses resultados preliminares, novos compostos estão sendo sintetizados, e o CI50 e a cinética enzimática frente as colinesterases serão determinadas.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDoença de Alzheimerpor
dc.subjectCumarinaspor
dc.subjectImidazo-piridinaspor
dc.subjectInibidores de AChE e BuChEpor
dc.subjectAlzheimer's diseaseeng
dc.subjectCoumarinseng
dc.subjectImidazo-pyridineseng
dc.subjectAChE and BuChE inhibitorseng
dc.titleSíntese e avaliação farmacológica de novas 3-(imidazo[1,2-α]piridinas)-cumarinas planejadas para o tratamento da Doença de Alzheimerpor
dc.typeDissertaçãopor
dc.description.abstractOtherAlzheimer's disease (AD) is a progressive neurodegenerative disease that has complex pathogenesis, inducing memory loss and cognitive disorders, which usually present in old age. The coumarins and imidazopyridines (IM) are classes of compounds with wide pharmacological activity and several promising studies related to the treatment of AD acting on several targets such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), aggregation of β-amyloid plaques (Aβ), and among others. Thus, the general objective of this work is the synthesis of new 3- (imidazo [1,2-α] pyridin-2-yl) -coumarins, based on classic bioisosterism of 4-(dimethylamino) phenyl groups by imidazopyridines (IM) as possible cholinesterase inhibitors for the treatment of AD. The first series is originated from the synthesis of 3-(imidazo [1,2-α] pyridines)-coumarins (66a-d) involving 5 reaction steps: synthesis of 3-acetyl-coumarins (67a-c) (yields 70 % to 90%) (step 1), α-bromination of 3-acetyl-coumarins (yields 51 to 73%) (step 2), formation of the IM nucleus (step 3) (64 to 69% yield), alkylation of the IMs with conversions of 74% to 88% (step 4) and, finally, the amination step with the formation of the final compounds (66a-b). The second series came from the synthesis of 3-(imidazo [1,2-α] pyridines-9'-ethylcarboxylate)-coumarins, involving Knoevenagel condensation steps to form compounds with coumarin nucleus (89) (86% yield), O-alkylation (93a-d) (yields from 30 to 74%), core formation of MIs (102a-d) (yields from 42 to 74%) and amination (103a-d) (yields from 31% to 79%). Initial screening at a fixed concentration of 30 μM, for two final compounds 66b and 103b, showed an enzymatic inhibition of approximately 91.7% (AChE) / 92.4% (BuChE) and 98.1% (AChE) / 88, 6% (BuChE), respectively. In addition to the activity, in sílico studies of molecular modeling and ADME parameters were carried out. Based on these preliminary results, new compounds are being synthesized, the IC50 and the enzymatic kinetics against cholinesterases will be determined.eng
dc.contributor.advisor1Kümmerle, Arthur Eugen
dc.contributor.advisor1ID053.978.487-78por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee1Kummerle, Arthur Eugen
dc.contributor.referee2Lacerda, Renata Barbosa
dc.contributor.referee3Barbosa, Maria Leticia de Castro
dc.contributor.referee4Graebin, Cedric Stephan
dc.contributor.referee5Alves, Mariana Amaral
dc.creator.ID155.369.077-00por
dc.creator.Latteshttp://lattes.cnpq.br/6900569101255090por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesADI. ALZHEIMER’S DISEASE INTERNATIONAL. World Alzheimer Report 2018: The state of the art of dementia research: New frontiers. Disponível em: <https://www.alz.co.uk/research/world-report-2018>. Acesso em: 27 de abril de 2020. ADIYALA, Praveen Reddy et al. Visible Light Driven Coupling of 2‐aminopyridines and α‐Keto Vinyl Azides for the Synthesis of Imidazo [1, 2‐a] pyridines and Their Cytotoxicity. ChemistrySelect, v. 2, n. 26, p. 8158-8161, 2017. AISEN, P. S. et al. The Future of Anti-Amyloid Trials. The Journal of Prevention of Alzheimer's Disease, p. 1-6, 2020. ALMEIDA, Osvaldo P. Tratamento da doença de Alzheimer: avaliação crítica sobre o uso de anticolinesterásicos. Arquivos de Neuro-psiquiatria, v. 56, n. 3B, p. 688-696, 1998. ALZ .ALZ. ALZHEIMER'S ASSOCIATION. 2019 Alzheimer's disease facts and figures. Alzheimer's & Dementia, v. 15, n. 3, p. 321-387, 2019. ANILA, V. et al. Mitochondrial Calcium Uniporter as a potential therapeutic strategy for Alzheimer's disease (AD). Acta neuropsychiatrica, p. 1-19, 2019.. AZIMI, Sara et al. Discovery of imidazopyridines containing isoindoline-1, 3-dione framework as a new class of BACE1 inhibitors: design, synthesis and SAR analysis. European Journal of Medicinal Chemistry, v. 138, p. 729-737, 2017. BABU, Srinivasarao Arulananda et al. Ring-closing metathesis reaction-based synthesis of new classes of polyether macrocyclic systems. Tetrahedron, v. 71, n. 40, p. 7758-7781, 2015. BARAGE, S. H. & SONAWANE, K. D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 52, 1–18 (2015). BORGES, F. et al. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Current medicinal chemistry, v. 12, n. 8, p. 887-916, 2005. BRASIL. Ministério da Saúde. Envelhecimento e saúde da pessoa idosa. Brasília: Cad Atenção Básica 2007. Disponível em: <http://bvsms.saude.gov.br/bvs/publicacoes/abcad19.pdf>. Acesso em: 27 de abril de 2020. BUERGER, Katharina et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain, v. 129, n. 11, p. 3035-3041, 2006. BUSH, Ashley I. The metal theory of Alzheimer's disease. Journal of Alzheimer's Disease, v. 33, n. s1, p. S277-S281, 2013 BUSH, Ashley I.; TANZI, Rudolph E. Therapeutics for Alzheimer's disease based on the metal hypothesis. Neurotherapeutics, v. 5, n. 3, p. 421-432, 2008. CHANGUNDA, Charles RK et al. Efficient one-pot synthesis of functionalised imidazo [1, 2-a] pyridines and unexpected synthesis of novel tetracyclic derivatives by nucleophilic aromatic substitution. RSC Advances, v. 10, n. 14, p. 8104-8114, 2020. CHEN, Zhengwang et al. Iron (III)-catalyzed synthesis of 3-aroylimidazo [1, 2-a] pyridines from 2-aminopyridines and ynals. Tetrahedron Letters, v. 59, n. 7, p. 667-670, 2018. CHÉTELAT, Gaël. Multimodal neuroimaging in Alzheimer’s disease: early diagnosis, physiopathological mechanisms, and impact of lifestyle. Journal of Alzheimer's Disease. v. 64, n. s1, p. S199-S211, 2018. COIMBRA, Judite RM et al. Highlights in BACE1 inhibitors for Alzheimer's disease treatment. Frontiers in chemistry, v. 6, p. 178, 2018. DALESSANDRO, Ellen V. et al. Mechanism of the piperidine-catalyzed Knoevenagel condensation reaction in methanol: the role of iminium and Enolate ions. The Journal of Physical Chemistry B, v. 121, n. 20, p. 5300-5307, 2017. DE FALCO, Anna et al. Doença de Alzheimer: hipóteses etiológicas e perspectivas de tratamento. Quim. Nova, v. 39, n. 1, p. 63-80, 2016. DE SÁ CAVALCANTI, José Luiz; ENGELHARDT, Eliasz. Aspectos da fisiopatologia da doença de Alzheimer esporádica. Rev Bras Neurol, v. 48, n. 4, p. 21-29, 2012. DE SOUZA, Gabriela Alves et al. Discovery of novel dual-active 3-(4-(dimethylamino) phenyl)-7-aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. Journal of enzyme inhibition and medicinal chemistry, v. 34, n. 1, p. 631-637, 2019. DELANOGARE, Eslen et al. Hipótese amiloide e o tratamento da doença de Alzheimer: revisão dos estudos clínicos realizados. 2019. DO VALE, Francisco de Assis Carvalho et al. Tratamento da doença de Alzheimer. Dementia & Neuropsychologia, v. 5, n. 1, p. 34-48, 2011. DONG, Yuan et al. Drug development for Alzheimer’s disease: microglia induced neuroinflammation as a target?. International journal of molecular sciences, v. 20, n. 3, p. 558, 2019. DOS SANTOS, Picanco et al. Alzheimer's disease: a review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Current medicinal chemistry, v. 25, n. 26, p. 3141-3159, 2018. DUCE, James A.; BUSH, Ashley I. Biological metals and Alzheimer's disease: implications for therapeutics and diagnostics. Progress in neurobiology, v. 92, n. 1, p. 1-18, 2010. ELDER, Gregory A.; GAMA SOSA, Miguel A.; DE GASPERI, Rita. Transgenic mouse models of Alzheimer's disease. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine: A Journal of Translational and Personalized Medicine, v. 77, n. 1, p. 69-81, 2010. ENGELHARDT, Eliasz et al. Tratamento da Doença de Alzheimer: recomendações e sugestões do Departamento Científico de Neurologia Cognitiva e do Envelhecimento da Academia Brasileira de Neurologia. Arquivos de Neuro-psiquiatria, v. 63, n. 4, p. 1104-1112, 2005. EUROPEAN COMMISSION (europa.eu). The breakdown of clumped tau proteins to cure Alzheimer’s disease | REVERSING TAUOPATHY Project. CORDIS. Acessado em 08/01/2022. FERRI, Cleusa P. et al. Global prevalence of dementia: a Delphi consensus study. The lancet, v. 366, n. 9503, p. 2112-2117, 2005. FERRI, Cleusa P. et al. Global prevalence of dementia: a Delphi consensus study. The lancet, v. 366, n. 9503, p. 2112-2117, 2005. FORLENZA, Orestes V. Tratamento farmacológico da doença de Alzheimer. Archives of Clinical Psychiatry (São Paulo), v. 32, n. 3, p. 137-148, 2005. GADHAVE, Kundlik et al. The dark side of Alzheimer’s disease: unstructured biology of proteins from the amyloid cascade signaling pathway. Cellular and Molecular Life Sciences, p. 1-46, 2020. GALASKO, Douglas R. et al. Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Archives of neurology, v. 69, n. 7, p. 836-841, 2012. GEMELLI, Tanise et al. Estresse oxidativo como fator importante na fisiopatologia da Doença de Alzheimer. Revista Brasileira Multidisciplinar, v. 16, n. 1, p. 67-78, 2013. GODYŃ, Justyna et al. Therapeutic strategies for Alzheimer's disease in clinical trials. Pharmacological Reports, v. 68, n. 1, p. 127-138, 2016. GOULART, P. N. et al. Butirilcolinesterase-BuChE: um Potencial Alvo para o Desenvolvimento de Fármacos para o Tratamento da Doença de Alzheimer. GREIG, Nigel H. et al. A new therapeutic target in Alzheimer's disease treatment: attention to butyrylcholinesterase. Current medical research and opinion, v. 17, n. 3, p. 159-165, 2001. GUAN, Xiao-Yu; AL-MISBA’A, Zahra; HUANG, Kuo-Wei. Efficient and selective a-bromination of carbonyl compounds with N-bromosuccinimide under microwave. Arabian Journal of Chemistry. 2014 H FERREIRA-VIEIRA, Talita et al. Alzheimer's disease: targeting the cholinergic system. Current neuropharmacology, v. 14, n. 1, p. 101-115, 2016. HAJRA, A.; BAGDI, A. K.; SANTRA, S.; MONIR, K. Synthesis of imidazo[1,2- a]pyridines: a decade update. Chemical communications (Cambridge, England), v. 51, n. 9, p. 1555–75, 2015 HALLE A, Hornung V, Petzold GC et al. The NALP3 inflammosome is envolved in innate immune response to amyloid-beta. Nature Immunol. 9 (8):857-865. 2008 HANE, Francis; LEONENKO, Zoya. Effect of metals on kinetic pathways of amyloid-β aggregation. Biomolecules, v. 4, n. 1, p. 101-116, 2014. HARDY J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J. Neurochem. 110: 1129–1134. 2009 HUANG, Li-Kai; CHAO, Shu-Ping; HU, Chaur-Jong. Clinical trials of new drugs for Alzheimer disease. Journal of Biomedical Science, v. 27, n. 1, p. 1-13, 2020. HUSSAIN, M. I.; QAMAR ABBAS, S.; REIGOSA, M. J. Activities and Novel Applications of Secondary Metabolite Coumarins. Planta Daninha, v. 36, 2018. JADHAV, Santosh A. et al. Rapid and efficient one-pot microwave-assisted synthesis of 2-phenylimidazo [1, 2-a] pyridines and 2-phenylimidazo [1, 2-a] quinoline in water–PEG-400. Synthetic Communications, v. 47, n. 4, p. 285-290, 2017. JOE, Elizabeth; RINGMAN, John M. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ, v. 367, 2019. KIMURA, T., ISHIGURO, K. & HISANAGA, S.-I. Physiological and pathological phosphorylation of tau by Cdk5. Front. Mol. Neurosci. 7, 65 (2014). KRSTIC, Dimitrije; KNUESEL, Irene. Deciphering the mechanism underlying late-onset Alzheimer disease. Nature Reviews Neurology, v. 9, n. 1, p. 25, 2013. KUMAR, Anil et al. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacological reports, v. 67, n. 2, p. 195-203, 2015. KÜMMERLE, Arthur Eugen. Uma quimioteca de n-acilidrazonas (NAH): a influência da metila na modulação das propriedades analgésicas e anti-inflamatórias de novos candidatos a fármacos. 448f. Tese de doutorado – Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2009. KUSY, Damian; MANIUKIEWICZ, Waldemar; BŁAŻEWSKA, Katarzyna M. Microwave-assisted synthesis of 3-formyl substituted imidazo [1, 2-a] pyridines. Tetrahedron Letters, v. 60, n. 45, p. 151244, 2019. KWONG, Huey Chong et al. Crystal correlation of heterocyclic imidazo [1, 2-a] pyridine analogues and their anticholinesterase potential evaluation. Scientific reports, v. 9, n. 1, p. 1-15, 2019. LACY, A.; O’KENNEDY, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Current Pharmaceutical Design, v. 10, p. 3797-3811. 2004. LANNFELT, Lars et al. Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial. The Lancet Neurology, v. 7, n. 9, p. 779-786, 2008. LEFIN, Roslyn et al. Imidazo [1, 2-α] pyridines possess adenosine A1 receptor affinity for the potential treatment of cognition in neurological disorders. Bioorganic & Medicinal Chemistry Letters, v. 27, n. 17, p. 3963-3967, 2017. LUQUE-CONTRERAS, Diana et al. Oxidative stress and metabolic syndrome: cause or consequence of Alzheimer's disease?. Oxidative medicine and cellular longevity, v. 2014, 2014. MANHAS, Maghar S. et al. Microwave initiated reactions: Pechmann coumarin synthesis, Biginelli reaction, and acylation. Tetrahedron letters, v. 47, n. 14, p. 2423-2425, 2006. MARCINKOWSKA, Monika et al. 3-Aminomethyl Derivatives of 2-Phenylimidazo [1, 2-a]-pyridine as Positive Allosteric Modulators of GABAA Receptor with Potential Antipsychotic Activity. ACS Chemical Neuroscience, v. 8, n. 6, p. 1291-1298, 2017. MÖLLER, H.-J.; GRAEBER, M. B. The case described by Alois Alzheimer in 1911. European archives of psychiatry and clinical neuroscience, v. 248, n. 3, p. 111-122, 1998. MORALES, Inelia et al. Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approAChes. Santiago, Chile: Frontiers in Cellular Neuroscience, 2014HENEKA, Michael T. et al. Neuroinflammation in Alzheimer's disease. The Lancet Neurology, v. 14, n. 4, p. 388-405, 2015. MORRIS, M., MAEDA, S., VOSSEL, K. & MUCKE, L. The many faces of tau. Neuron 70, 410–26 (2011). MURRAY, R. D. H. Naturally Occurring Plant Coumarins. New York: SpringerVerlag, v. 1, p. 200-209, 1978. MUZALEVSKIY, Vasiliy M. et al. Metal‐Free ApproACh to Zolpidem, Alpidem and their Analogues via Amination of Dibromoalkenes Derived from Imidazopyridine and Imidazothiazole. European Journal of Organic Chemistry, v. 2019, n. 25, p. 4034-4042, 2019. NADUR, Nathalia Fonseca. Síntese e avaliação farmacológica de novas 3-(1,2,3-triazol)- cumarinas planejadas para o tratamento da Doença de Alzheimer. 2020. 181f. Dissertação (Mestrado em química) – Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, 2020. NORDBERG, Agneta. Biological markers and the cholinergic hypothesis in Alzheimer's disease. Acta Neurologica Scandinavica, 1992. OKUMURA, Yuki et al. Design, Synthesis, and Preliminary Evaluation of SPECT Probes for Imaging β-Amyloid in Alzheimer’s Disease Affected Brain. ACS chemical neuroscience, v. 9, n. 6, p. 1503-1514, 2018. PARNETTI, Lucilla. Clinical pharmacokinetics of drugs for Alzheimer’s disease. Clinical pharmacokinetics, v. 29, n. 2, p. 110-129, 1995. PERICHERLA, Kasiviswanadharaju et al. Recent developments in the synthesis of imidazo [1, 2-a] pyridines. Synthesis, v. 47, n. 07, p. 887-912, 2015. RABBANI, G. A Concise Introduction of Perkin Reaction. Org. Chem.: Curr. Res, v. 7, n. 2.10, p. 4172, 2018. RAMEZANPOUR, Sorour; BIGDELI, Zahra; ROMINGER, Frank. Saccharin as a new organocatalyzed: a fast, highly efficient and environmentally friendly protocol for synthesis of imidazo [1, 2-α] pyridine derivatives via a one-three component reaction. Chemical Methodologies, v. 4, n. 1, p. 87-97, 2019. RIBEIRO, Felipe Vitório. Planejamento, síntese e avaliação antitumoral de derivados di-idropirimidinonas e imidazopiridinas derivadas de 3-ceto-cumarinas substituídas. 2020. 252f. Tese (Doutorado em química) – Universidade Federal do Rural do Rio de Janeiro, Rio de Janeiro, 2020. RITA, BÁRBARA; COZZOLINO, FRANCISCATO. Estresse oxidativo na Doença de Alzheimer: o papel das vitaminas C e E Oxidative stress in Alzheimer’s disease: the role of vitamins C and E. CEP, v. 5508, p. 900, 2009. ROJAS, Hugo; RITTER, Cristiane; PIZZOL, F. D. Mechanisms of dysfunction of the blood-brain barrier in critically ill patients: emphasis on the role of matrix metalloproteinases. Rev Bras Ter Intensiva, v. 23, n. 2, p. 222-7, 2011. SBGG. Sociedade brasileira de geriatria e gerontologia. Disponível em: <https://sbgg.org.br/em-dia-mundial-do-alzheimer-dados-ainda-sao-subestimados-apesar-de-avancos-no-diagnostico-e-tratamento-da-doenca/>. Acesso em: 27 de abril de 2020. SBGG. Sociedade brasileira de geriatria e gerontologia. Disponível em: <https://sbgg.org.br/em-dia-mundial-do-alzheimer-dados-ainda-sao-subestimados-apesar-de-avancos-no-diagnostico-e-tratamento-da-doenca/>. Acesso em: 27 de abril de 2020. SEKIOKA, Ryuichi et al. Discovery of novel scaffolds for γ-secretase modulators without an arylimidazole moiety. Bioorganic & medicinal chemistry, v. 26, n. 2, p. 435-442, 2018. SEKIOKA, Ryuichi et al. Optimization and biological evaluation of imidazopyridine derivatives as a novel scaffold for γ-secretase modulators with oral efficacy against cognitive deficits in Alzheimer’s disease model mice. Bioorganic & Medicinal Chemistry, p. 115455, 2020. SELKOE, Dennis J. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews, v. 81, n. 2, p. 741-766, 2001 SERENIKI, Adriana; VITAL, Maria Aparecida Barbato Frazão. A doença de Alzheimer: aspectos fisiopatológicos e farmacológicos. Revista de psiquiatria do Rio Grande do Sul, v. 30, n. 1, p. 0-0, 2008. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Silverstein-Spectrometric Identification of Organic Compounds 7th ed. pdf. 2005. STASYUK, Anton J. et al. Imidazo [1, 2-a] pyridines susceptible to excited state intramolecular proton transfer: one-pot synthesis via an Ortoleva–King reaction. The Journal of organic chemistry, v. 77, n. 13, p. 5552-5558, 2012. SWERDLOW, Russell H.; KHAN, Shaharyar M. A “mitochondrial cascade hypothesis” for sporadic Alzheimer's disease. Medical hypotheses, v. 63, n. 1, p. 8-20, 2004. THAPA, Arjun; CARROLL, Nick J. Dietary modulation of oxidative stress in Alzheimer’s disease. International journal of molecular sciences, v. 18, n. 7, p. 1583, 2017. TIKHONOVA, Tatyana A. et al. Development of 1, 3-thiazole analogues of imidazopyridines as potent positive allosteric modulators of GABAA receptors. Bioorganic Chemistry, v. 94, p. 103334, 2020. TIMUR, Mahir; PA􅎸A, Ahmet. Synthesis, characterization, swelling, and metal uptake studies of aryl cross-linked chitosan hydrogels. ACS omega, v. 3, n. 12, p. 17416-17424, 2018. TODMAN, Don. Henry Dale and the discovery of chemical synaptic transmission. European neurology, v. 60, n. 3, p. 162-164, 2008. TROST, Barry M. (Ed.). Additions to CX?-Bonds. Elsevier, 1992. VANDA, David; ZAJDEL, Paweł; SOURAL, Miroslav. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. European Journal of Medicinal Chemistry, v. 181, p. 111569, 2019.. VATANABE, I. P.; MANZINE, P. R.; COMINETTI, M. R. Historic concepts of dementia and Alzheimer's disease: From ancient times to the present. Revue neurologique, v. 176, n. 3, p. 140-147, 2020. VENTURA, Ana LM et al. Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Archives of Clinical Psychiatry (São Paulo), v. 37, n. 2, p. 66-72, 2010. VERNUGOPALA, K. N.; RASHMI, V.; ODHAV, B. Review on natural coumarin lead compounds for their pharmacological activity. Hindawi Publishing Corporation, p.14, 2013. VOLOBOUEVA, Ludmila A.; GIFFARD, Rona G. Inflammation, mitochondria, and the inhibition of adult neurogenesis. Journal of neuroscience research, v. 89, n. 12, p. 1989-1996, 2011. WANG, Yali et al. Dual functional cholinesterase and MAO inhibitors for the treatment of Alzheimer’s disease: synthesis, pharmacological analysis and molecular modeling of homoisoflavonoid derivatives. Journal of enzyme inhibition and medicinal chemistry, v. 31, n. 3, p. 389-397, 2016. YAKOUB, Kirsten et al. Structure–Function Evaluation of Imidazopyridine Derivatives Selective for δ-Subunit-Containing γ-Aminobutyric Acid Type A (GABAA) Receptors. Journal of medicinal chemistry, v. 61, n. 5, p. 1951-1968, 2018. YIANNOPOULOU, Konstantina G.; PAPAGEORGIOU, Sokratis G. Current and future treatments for Alzheimer’s disease. Therapeutic advances in neurological disorders, v. 6, n. 1, p. 19-33, 2013. ZHAO, Jie; O'CONNOR, Tracy; VASSAR, Robert. The contribution of activated astrocytes to Aβ production: implications for Alzheimer's disease pathogenesis. Journal of neuroinflammation, v. 8, n. 1, p. 150, 2011.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73072/2021%20-%20Larissa%20de%20Almeida%20Peixoto%20Ferreira.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6552
dc.originais.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-05-02T20:28:22Z No. of bitstreams: 1 2021 - Larissa de Almeida Peixoto Ferreira.pdf: 4843012 bytes, checksum: 6fb92c6e4ea6804eccad02e5c99fde21 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-05-02T20:28:22Z (GMT). No. of bitstreams: 1 2021 - Larissa de Almeida Peixoto Ferreira.pdf: 4843012 bytes, checksum: 6fb92c6e4ea6804eccad02e5c99fde21 (MD5) Previous issue date: 2021-04-16eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Larissa de Almeida Peixoto Ferreira.pdf4.73 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.