Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14646
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBezerra, Lucas Caruso Araujo
dc.date.accessioned2023-12-22T03:03:57Z-
dc.date.available2023-12-22T03:03:57Z-
dc.date.issued2021-02-26
dc.identifier.citationBEZERRA, Lucas Caruso Araujo. Planejamento, síntese e avaliação biológica de novas chalconas como potenciais agentes anti-prion. 2021. 161 f. Dissertação (Mestrado de Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021 .por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14646-
dc.description.abstractAs doenças relacionadas a eventos de enovelamento incorreto de proteínas são uma família de desordens neurológicas debilitantes, degenerativas, progressivas, fatais e atualmente intratáveis. Na doença priônica, a proteína priônica normal (PrPC) é convertida à isoforma infectante (PrPSc) rica em folhas β, de difícil degradação por proteases e propensas a formar agregados fibrilares responsáveis pela neurotoxicidade da isoforma patogênica. Embora muitos compostos tenham demonstrado inibir o processo de conversão à PrPSc, até o momento não há terapia eficaz para esse tipo de doença visto que a maioria dos compostos estudados in vitro possuem perfil farmacocinético desfavorável. Este trabalho propõe a síntese de cinco séries (Série A, B, C, D e E) de chalconas, baseadas no protótipo J8, desenvolvidas como possíveis compostos anti-príon capazes de atuar como chaperona química na estabilização conformacional da isoforma não infectante PrPC, impedindo a formação de PrPSc. A primeira série (Série A) de compostos foi totalmente sintetizada com rendimentos satisfatórios através da condensação de Claisen-Schmidt seguido da reação de acoplamento cruzado de Buchwald- Hartwig. Das sete chalconas sintetizadas para série A, quatro delas apresentaram um ótimo perfil biológico, conseguindo inibir a interconversão, in vitro, de PrPC em PrPSc em até 80% na concentração de 10 M, cujos valores superaram os obtidos para o protótipo J8. Alguns compostos finais das séries B, C e E já foram sintetizados, demonstrando que a rota sintética empregada é eficiente, enquanto o desenvolvimento sintético da série D encontra-se interrompido no penultimo intermediário-chave. Os compostos de todas as séries foram submetidos a estudos in silico de docking molecular e possibilitaram a melhor compreensão do sítio de ligação da proteína priônica e o perfil de interação entre as chalconas e a PrP121-231. Os estudos de docking molecular realizados para série D sugerem que estes são os derivados mais promissores de todas as séries, cujos valores de energia de ligação se mostraram melhores que os encontrados para as chalconas da série A, que já possuem um ótimo perfil farmacológicopor
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectDoença priônicapor
dc.subjectBuchwald-Hartwigpor
dc.subjectN-arilaçãopor
dc.subjectPrion diseaseeng
dc.subjectBuchwald-Hartwigeng
dc.subjectN-arylationeng
dc.titlePlanejamento, síntese e avaliação biológica de novas chalconas como potenciais agentes anti-prionpor
dc.title.alternativePlanning, synthesis and biological evaluation of new chalcones as potential anti-prion agentseng
dc.typeDissertaçãopor
dc.description.abstractOtherAs doenças relacionadas a eventos de enovelamento incorreto de proteínas são uma família de desordens neurológicas debilitantes, degenerativas, progressivas, fatais e atualmente intratáveis. Na doença priônica, a proteína priônica normal (PrPC) é convertida à isoforma infectante (PrPSc) rica em folhas β, de difícil degradação por proteases e propensas a formar agregados fibrilares responsáveis pela neurotoxicidade da isoforma patogênica. Embora muitos compostos tenham demonstrado inibir o processo de conversão à PrPSc, até o momento não há terapia eficaz para esse tipo de doença visto que a maioria dos compostos estudados in vitro possuem perfil farmacocinético desfavorável. Este trabalho propõe a síntese de cinco séries (Série A, B, C, D e E) de chalconas, baseadas no protótipo J8, desenvolvidas como possíveis compostos anti-príon capazes de atuar como chaperona química na estabilização conformacional da isoforma não infectante PrPC, impedindo a formação de PrPSc. A primeira série (Série A) de compostos foi totalmente sintetizada com rendimentos satisfatórios através da condensação de Claisen-Schmidt seguido da reação de acoplamento cruzado de Buchwald- Hartwig. Das sete chalconas sintetizadas para série A, quatro delas apresentaram um ótimo perfil biológico, conseguindo inibir a interconversão, in vitro, de PrPC em PrPSc em até 80% na concentração de 10 M, cujos valores superaram os obtidos para o protótipo J8. Alguns compostos finais das séries B, C e E já foram sintetizados, demonstrando que a rota sintética empregada é eficiente, enquanto o desenvolvimento sintético da série D encontra-se interrompido no penultimo intermediário-chave. Os compostos de todas as séries foram submetidos a estudos in silico de docking molecular e possibilitaram a melhor compreensão do sítio de ligação da proteína priônica e o perfil de interação entre as chalconas e a PrP121-231. Os estudos de docking molecular realizados para série D sugerem que estes são os derivados mais promissores de todas as séries, cujos valores de energia de ligação se mostraram melhores que os encontrados para as chalconas da série A, que já possuem um ótimo perfil farmacológico.eng
dc.contributor.advisor1Kümmerle, Arthur Eugen
dc.contributor.advisor1ID053.978.487-78por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee1Kümmerle, Arthur Eugen
dc.contributor.referee1ID053.978.487-78por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5598000938584486por
dc.contributor.referee2Castro, Rosane Nora
dc.contributor.referee2IDhttps://orcid.org/0000-0001-8983-3786por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5479814788308057por
dc.contributor.referee3Pinho, Vagner Dantas
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8226081677916407por
dc.contributor.referee4Graebin, Cedric Stephan
dc.contributor.referee4IDhttps://orcid.org/0000-0003-1410-1227por
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4900857097448760por
dc.contributor.referee5Barbosa, Maria Letícia de Castro
dc.contributor.referee5Latteshttp://lattes.cnpq.br/0722721630520953por
dc.creator.ID134.574.847-75por
dc.creator.IDhttps://orcid.org/0000-0003-1300-5284por
dc.creator.Latteshttp://lattes.cnpq.br/1644908326484939por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesADNAN, D. et al. Simple and solvent free practical procedure for chalcones: An expeditious, mild and greener approach. Current Research in Green and Sustainable Chemistry, v. 3, p. 100041, jun. 2020. ÅHMAN, J.; BUCHWALD, S. L. An Improved Method for the Palladium-Catalyzed Amination of Aryl Triflates. Tetrahedron Letters, v. 38, n. 36, p. 6363–6366, 8 set. 1997. ÁLVAREZ, M. et al. Synthesis of Chalcone Using LDH/Graphene Nanocatalysts of Different Compositions. ChemEngineering, v. 3, n. 1, p. 29, 9 mar. 2019. AMBADI THODY, S.; MATHEW, M. K.; UDGAONKAR, J. B. Mechanism of aggregation and membrane interactions of mammalian prion protein. Biochimica et Biophysica Acta (BBA) - Biomembranes, v. 1860, n. 9, p. 1927–1935, set. 2018. ANDERSEN, Ø. M.; MARKHAM, K. R. (EDS.). Flavonoids: chemistry, biochemistry, and applications. Boca Raton, FL: CRC, Taylor & Francis, 2006. ANDERSON, K. W.; BUCHWALD, S. L. General Catalysts for the Suzuki–Miyaura and Sonogashira Coupling Reactions of Aryl Chlorides and for the Coupling of Challenging Substrate Combinations in Water. Angewandte Chemie International Edition, v. 44, n. 38, p. 6173–6177, 2005. ANFINSEN, C. B. et al. The Kinetics of Formation of Native Ribonuclease During Oxidation of the Reduced Polypeptide Chain. Proceedings of the National Academy of Sciences, v. 47, n. 9, p. 1309–1314, 1 set. 1961. ANFINSEN, C. B. Principles that Govern the Folding of Protein Chains. Science, v. 181, n. 4096, p. 223–230, 20 jul. 1973. ANTONIOLLI, G. et al. Chalcones acting as inhibitors of cholinesterases, β-secretase and βamyloid aggregation and other targets for Alzheimer’s disease: a critical review. Current Medicinal Chemistry, v. 27, 20 out. 2020. APONTE, J. C. et al. In vitro and in vivo anti-Leishmania activity of polysubstituted synthetic chalcones. Bioorganic & Medicinal Chemistry Letters, v. 20, n. 1, p. 100–103, 1 jan. 2010. ASHWORTH, I. W.; COX, B. G.; MEYRICK, B. Kinetics and Mechanism of N -Boc Cleavage: Evidence of a Second-Order Dependence upon Acid Concentration. The Journal of Organic Chemistry, v. 75, n. 23, p. 8117–8125, 3 dez. 2010. BARLUENGA, J. et al. Palladium-Catalyzed Cross-Coupling between Vinyl Halides and tert- Butyl Carbazate: First General Synthesis of the Unusual N-Boc-N-alkenylhydrazines. Organic Letters, v. 9, n. 2, p. 275–278, 1 jan. 2007. BARRECA, M. L. et al. Pharmacological Agents Targeting the Cellular Prion Protein. Pathogens, v. 7, n. 1, 7 mar. 2018. BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: As Bases Moleculares da Ação dos Fármacos. 3a Edição ed. [s.l.] Artmed, 2014. BELLO, M. L. et al. Trimethoxy-chalcone derivatives inhibit growth of Leishmania braziliensis: Synthesis, biological evaluation, molecular modeling and structure–activity relationship (SAR). Bioorg. Med. Chem., p. 7, 2011. BIANCO, A. et al. A new synthesis of flavonoids via Heck reaction. Tetrahedron Letters, v. 44, n. 51, p. 9107–9109, 15 dez. 2003. BIRKHOLZ (NÉE GENSOW), M.-N.; FREIXA, Z.; VAN LEEUWEN, P. W. N. M. Bite angle effects of diphosphines in C–C and C–X bond forming cross coupling reactions. Chemical Society Reviews, v. 38, n. 4, p. 1099, 2009. BOLTON, D. C.; MCKINLEY, M. P.; PRUSINER, S. B. Identification of a protein that purifies with the scrapie prion. Science, v. 218, n. 4579, p. 1309–1311, 24 dez. 1982. BUITRAGO SANTANILLA, A. et al. P 2 Et Phosphazene: A Mild, Functional Group Tolerant Base for Soluble, Room Temperature Pd-Catalyzed C–N, C–O, and C–C Cross-Coupling Reactions. Organic Letters, v. 17, n. 13, p. 3370–3373, 2 jul. 2015. BURCHELL, J. T.; PANEGYRES, P. K. Prion diseases: immunotargets and therapy. ImmunoTargets and Therapy, v. 5, p. 57–68, 16 jun. 2016. BUSKES, M. J.; BLANCO, M.-J. Impact of Cross-Coupling Reactions in Drug Discovery and Development. Molecules, v. 25, n. 15, p. 3493, 31 jul. 2020. CHANG, K.-L. The Complete Mechanism of Chalcone Formation. [s.l.] UC San Diego, 2015. CHEN, M. et al. The Novel Oxygenated Chalcone, 2,4-Dimethoxy-4’-Butoxychalcone, Exhibits Potent Activity against Human Malaria Parasite Plasmodium falciparum In Vitro and Rodent Parasites Plasmodium berghei and Plasmodium yoelii In Vivo. The Journal of Infectious Diseases, v. 176, n. 5, p. 1327–1333, 1 nov. 1997. CLAYDEN, J.; GREEVES, N.; WARREN, S. G. Organic chemistry. 2nd ed ed. Oxford ; New YorK: Oxford University Press, 2012. COHEN, F. E.; PRUSINER, S. B. Pathologic Conformations of Prion Proteins. Annual Review of Biochemistry, v. 67, n. 1, p. 793–819, 1998. CONCEIÇÃO, R. A. D. Planejamento estrutural, síntese e avaliação in silico e in vitro de derivados 2,4,5-trimetoxibenzamídicos candidatos a fármacos antiprion. p. 156, 2019. COSTA, A. et al. Apoptotic effect of synthetic 2′,4′,5′-trimethoxychalcones in human K562 and Jurkat leukemia cells. Medicinal Chemistry Research, v. 23, n. 10, p. 4301–4319, out. 2014. CUI, J.-F. et al. Silver-Catalyzed Transformation of Propargylic Amine N-Oxides to Enones and Acyloxy Ketones via Isoxazolinium Intermediates. Advanced Synthesis & Catalysis, v. 356, n. 14–15, p. 2965–2973, 2014. DAMON, D. B. et al. Asymmetric Synthesis of the Cholesteryl Ester Transfer Protein Inhibitor Torcetrapib. Organic Process Research & Development, v. 10, n. 3, p. 472–480, 1 maio 2006. 111 DAS, S. et al. Brönsted Acidic Ionic Liquids Catalysed Sequential Michael‐Like Addition of Indole with Chalcones via Claisen‐Schmidt Condensation. ChemistrySelect, v. 5, n. 10, p. 3041–3047, 13 mar. 2020. DE AZEVEDO, L. L. PLANEJAMENTO, ESTUDOS DE DERIVATIZAÇÃO E AVALIAÇÃO FARMACOLÓGICA DE N-METIL-N-ACILIDRAZONAS PLANEJADAS COMO INIBIDORAS DA ENZIMA PDE4. p. 264, 2018. DE SOUZA, G. A. et al. Discovery of novel dual-active 3-(4-(dimethylamino)phenyl)-7- aminoalcoxy-coumarin as potent and selective acetylcholinesterase inhibitor and antioxidant. Journal of Enzyme Inhibition and Medicinal Chemistry, v. 34, n. 1, p. 631–637, 1 jan. 2019. DENNIS, J. M. et al. Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C–N Coupling. Journal of the American Chemical Society, v. 140, n. 13, p. 4721–4725, 4 abr. 2018. EDDARIR, S. et al. An efficient synthesis of chalcones based on the Suzuki reaction. Tetrahedron Letters, v. 44, n. 28, p. 5359–5363, 7 jul. 2003. ERTMER, A. et al. The Tyrosine Kinase Inhibitor STI571 Induces Cellular Clearance of PrPSc in Prion-infected Cells. Journal of Biological Chemistry, v. 279, n. 40, p. 41918–41927, 1 out. 2004. ESPARGARÓ, A. et al. Predicting the aggregation propensity of prion sequences. Virus Research, v. 207, p. 127–135, set. 2015. FAROOQ, S.; NGAINI, Z. Recent Synthetic Methodologies for Chalcone Synthesis (2013- 2018). Current Organocatalysis, v. 6, n. 3, p. 184–192, 5 set. 2019. FERREIRA, N. C. et al. Anti-Prion Activity of a Panel of Aromatic Chemical Compounds: In Vitro and In Silico Approaches. PLoS ONE, v. 9, n. 1, p. e84531, 6 jan. 2014. FERREIRA, N. C. et al. A Promising Antiprion Trimethoxychalcone Binds to the Globular Domain of the Cellular Prion Protein and Changes Its Cellular Location. Antimicrobial Agents and Chemotherapy, v. 62, n. 2, p. e01441-17, /aac/62/2/e01441- 17.atom, 13 nov. 2017. FEY, N.; ORPEN, A. G.; HARVEY, J. N. Building ligand knowledge bases for organometallic chemistry: Computational description of phosphorus(III)-donor ligands and the metal– phosphorus bond. Coordination Chemistry Reviews, v. 253, n. 5–6, p. 704–722, mar. 2009. FLECKENSTEIN, C. A.; PLENIO, H. Sterically demanding trialkylphosphines for palladium- catalyzed cross coupling reactions—alternatives to PtBu3. Chem. Soc. Rev., v. 39, n. 2, p. 694– 711, 2010. FONSÊCA, P. DA S. Síntese e caracterização de chalconas e dichalconas contendo unidades 1,2,3-triazólicas. 13 jul. 2012. FORS, B. P. et al. A Highly Active Catalyst for Pd-Catalyzed Amination Reactions: Cross- Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides. Journal of the American Chemical Society, v. 130, n. 41, p. 13552–13554, 15 out. 2008. 112 FORS, B. P.; DAVIS, N. R.; BUCHWALD, S. L. An Efficient Process for Pd-Catalyzed C−N Cross-Coupling Reactions of Aryl Iodides: Insight Into Controlling Factors. Journal of the American Chemical Society, v. 131, n. 16, p. 5766–5768, 29 abr. 2009. FOSSO, M. Y. et al. Effects of structural modifications on the metal binding, anti-amyloid activity, and cholinesterase inhibitory activity of chalcones. Organic & Biomolecular Chemistry, v. 13, n. 36, p. 9418–9426, 2 set. 2015. GAN, X. et al. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazole- chalcone conjugates. Bioorganic & Medicinal Chemistry Letters, v. 27, n. 18, p. 4298–4301, set. 2017. GIBSON, M. S.; BRADSHAW, R. W. The Gabriel Synthesis of Primary Amines. Angewandte Chemie International Edition in English, v. 7, n. 12, p. 919–930, 1968. GOMES, M. N. et al. Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, v. 22, n. 8, 25 jul. 2017. GUERRA, S. C. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. p. 28, 2018. HARTL, F. U.; BRACHER, A.; HAYER-HARTL, M. Molecular chaperones in protein folding and proteostasis. Nature, v. 475, n. 7356, p. 324–332, jul. 2011. HARTL, F. U.; HAYER-HARTL, M. Converging concepts of protein folding in vitro and in vivo. Nature Structural & Molecular Biology, v. 16, n. 6, p. 574–581, jun. 2009. HECK, R. F.; NOLLEY, J. P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. The Journal of Organic Chemistry, v. 37, n. 14, p. 2320– 2322, 1 jul. 1972. HUANG, X. et al. Expanding Pd-Catalyzed C−N Bond-Forming Processes: The First Amidation of Aryl Sulfonates, Aqueous Amination, and Complementarity with Cu-Catalyzed Reactions. Journal of the American Chemical Society, v. 125, n. 22, p. 6653–6655, 1 jun. 2003. HYEON, J. W. et al. Discovery of Novel Anti-prion Compounds Using In Silico and In Vitro Approaches. Scientific Reports, v. 5, n. 1, p. 14944, 9 out. 2015. ISHIBASHI, D. et al. Structure-Based Drug Discovery for Prion Disease Using a Novel Binding Simulation. EBioMedicine, v. 9, p. 238–249, 8 jun. 2016. JUARISTI, E.; DANIEL REYNA, J. Use of hexamethylphosphoramide (HMPA) in the alkylation of aromatic amines. Tetrahedron Letters, v. 25, n. 33, p. 3521–3524, jan. 1984. KAMER, P. C. J.; VAN LEEUWEN, P. W. N. M.; REEK, J. N. H. Wide Bite Angle Diphosphines: Xantphos Ligands in Transition Metal Complexes and Catalysis. Accounts of Chemical Research, v. 34, n. 11, p. 895–904, 1 nov. 2001. 113 KAYE, S. et al. The Use of Catalytic Amounts of CuCl and Other Improvements in the Benzyne Route to Biphenyl-Based Phosphine Ligands. Advanced Synthesis & Catalysis, v. 343, n. 8, p. 789–794, 2001. KIMURA, T. et al. Synthesis of GN8 derivatives and evaluation of their antiprion activity in TSE-infected cells. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 5, p. 1502–1507, 1 mar. 2011. KONKEN, C. P. et al. Development of symmetric O-BODIPYs with different optical properties as building blocks for the synthesis of ligands for multimodal imaging. Dyes and Pigments, v. 158, p. 88–96, nov. 2018. KORMOS, C. M. et al. Effect of the 3- and 4-Methyl Groups on the Opioid Receptor Properties of N-Substituted trans -3,4-Dimethyl-4-(3-hydroxyphenyl)piperidines. Journal of Medicinal Chemistry, v. 57, n. 7, p. 3140–3147, 10 abr. 2014. KORTH, C. et al. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proceedings of the National Academy of Sciences, v. 98, n. 17, p. 9836–9841, 14 ago. 2001. KOSUGI, M.; KAMEYAMA, M.; MIGITA, T. Palladium-catalyzed aromatic amination of aryl bromides with n,n-di-ethylamino-tributyltin. Chemistry Letters, v. 12, n. 6, p. 927–928, 5 jun. 1983. KOZŁOWSKA, J. et al. Synthesis and Biological Evaluation of Novel Aminochalcones as Potential Anticancer and Antimicrobial Agents. Molecules, v. 24, n. 22, p. 4129, jan. 2019. KREIN, D. M.; LOWARY, T. L. A Convenient Synthesis of 2-(Alkylamino)pyridines. The Journal of Organic Chemistry, v. 67, n. 14, p. 4965–4967, 1 jul. 2002. KUMAR, A. et al. Solvent free synthesis of chalcones over graphene oxide-supported MnO2 catalysts synthesized via combustion route. Materials Chemistry and Physics, v. 259, p. 124019, fev. 2021. KUWATA, K. et al. Locally Disordered Conformer of the Hamster Prion Protein: A Crucial Intermediate to PrPSc? Biochemistry, v. 41, n. 41, p. 12277–12283, 1 out. 2002. KUWATA, K. et al. Hot spots in prion protein for pathogenic conversion. Proceedings of the National Academy of Sciences, v. 104, n. 29, p. 11921–11926, 17 jul. 2007. LAURINDO, E. E.; BARROS FILHO, I. R. DE. Encefalopatia espongiforme bovina atípica: uma revisão. Arquivos do Instituto Biológico, v. 84, n. 0, 2017. LEE, B. K.; BISCOE, M. R.; BUCHWALD, S. L. Simple, Efficient Protocols for the Pd- Catalyzed Cross-Coupling Reaction of Aryl Chlorides and Dimethylamine. Tetrahedron letters, v. 50, n. 26, p. 3672–3674, 1 jul. 2009. LEE, J. et al. Prion Diseases as Transmissible Zoonotic Diseases. Osong Public Health and Research Perspectives, v. 4, n. 1, p. 57–66, fev. 2013. LEHNINGER, A. L.; NELSON, D. L.; COX, M. M. Lehninger principles of biochemistry. 6th ed ed. New York: W.H. Freeman, 2013. 114 LEI, T. et al. General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible-Light Catalysis. Angewandte Chemie International Edition, v. 56, n. 48, p. 15407–15410, 2017. LEITÃO, E. P. T. Chalcones: Retrospective Synthetic Approaches and Mechanistic Aspects of a Privileged Scaffold. Current Pharmaceutical Design, v. 26, n. 24, p. 2843–2858, 21 jul. 2020. LI, S.; HONG, M. Protonation, Tautomerization, and Rotameric Structure of Histidine: A Comprehensive Study by Magic-Angle-Spinning Solid-State NMR. Journal of the American Chemical Society, v. 133, n. 5, p. 1534–1544, 9 fev. 2011. LIBERSKI, P. P. Historical overview of prion diseases: a view from afar. Folia Neuropathologica, v. 50, n. 1, p. 1–12, 2012. LITTKE, A. F.; FU, G. C. Palladium-Catalyzed Coupling Reactions of Aryl Chlorides. Angewandte Chemie International Edition, v. 41, n. 22, p. 4176–4211, 2002. LIU, Y. et al. Structurally Diverse Cytotoxic Dimeric Chalcones from Oxytropis chiliophylla. Journal of Natural Products, v. 81, n. 2, p. 307–315, 23 fev. 2018. MAITI, D. et al. Palladium-catalyzed coupling of functionalized primary and secondary amines with aryl and heteroaryl halides: two ligands suffice in most cases. Chemical Science, v. 2, n. 1, p. 57–68, 6 dez. 2010. MALLUCCI, G. R. et al. Targeting Cellular Prion Protein Reverses Early Cognitive Deficits and Neurophysiological Dysfunction in Prion-Infected Mice. Neuron, v. 53, n. 3, p. 325–335, fev. 2007. MEYERS, C. et al. Study of a New Rate Increasing “Base Effect” in the Palladium-Catalyzed Amination of Aryl Iodides. The Journal of Organic Chemistry, v. 69, n. 18, p. 6010–6017, 1 set. 2004. MIYAURA, N.; SUZUKI, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society, Chemical Communications, n. 19, p. 866–867, 1 jan. 1979. MONSELLIER, E. et al. Aggregation Propensity of the Human Proteome. PLoS Computational Biology, v. 4, n. 10, p. e1000199, 17 out. 2008. MORENO, J. A. et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature, v. 485, n. 7399, p. 507–511, maio 2012. MORITA, Y. et al. Short and Practical Synthesis of N′,N′-Disubstituted N-Aryl-1,2- Ethylene-diamines by a Decarboxylative Ring-Opening Reaction under Nucleophilic Conditions. Synthesis, v. 2007, n. 16, p. 2517–2523, ago. 2007. NAGARAPU, L. et al. Synthesis and antimicrobial activity of novel analogs of trifenagrel. Journal of Heterocyclic Chemistry, v. 46, n. 2, p. 195–200, 1 mar. 2009. NIELSEN, S. F. et al. Antibacterial chalcones––bioisosteric replacement of the 4′-hydroxy group. Bioorganic & Medicinal Chemistry, v. 12, n. 11, p. 3047–3054, 1 jun. 2004. 115 NILSSON, J. W. et al. Solid-Phase Synthesis of Libraries Generated from a 4-Phenyl-2- carboxy-piperazine Scaffold. Journal of Combinatorial Chemistry, v. 3, n. 6, p. 546–553, 1 nov. 2001. OSMANIYE, D. et al. Synthesis and Anticandidal Activity of New Imidazole-Chalcones. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, v. 23, n. 4, 4 abr. 2018. PAVIA, D. L. et al. Introdução à espectroscopia. [s.l.] CENGAGE, 2010. POLO, E. Ultrasound-assisted synthesis of novel chalcone, heterochalcone and bis-chalcone derivatives and the evaluation of their antioxidant properties and as acetylcholinesterase inhibitors. Bioorganic Chemistry, p. 11, 2019. POONDRA, R. R.; TURNER, N. J. Microwave-Assisted Sequential Amide Bond Formation and Intramolecular Amidation: A Rapid Entry to Functionalized Oxindoles. Organic Letters, v. 7, n. 5, p. 863–866, 1 mar. 2005. PRUSINER, S. B. Novel proteinaceous infectious particles cause scrapie. Science, v. 216, n. 4542, p. 136–144, 9 abr. 1982. PRUSINER, S. B. Neurodegenerative Diseases and Prions. New England Journal of Medicine, v. 344, n. 20, p. 1516–1526, 17 maio 2001. RAIMUNDO, B. C. et al. Integrating Fragment Assembly and Biophysical Methods in the Chemical Advancement of Small-Molecule Antagonists of IL-2: An Approach for Inhibiting Protein−Protein Interactions. Journal of Medicinal Chemistry, v. 47, n. 12, p. 3111–3130, 1 jun. 2004. RAMIREZ, F.; DERSHOWITZ, S. Phosphinemethylenes.1 II. Triphenylphosphineacylmethylenes. The Journal of Organic Chemistry, v. 22, n. 1, p. 41– 45, 1 jan. 1957. RAMMOHAN, A. et al. Chalcone synthesis, properties and medicinal applications: a review. Environmental Chemistry Letters, v. 18, n. 2, p. 433–458, mar. 2020. REDDY, M. V. B. et al. Inhibitory effects of Mannich bases of heterocyclic chalcones on NO production by activated RAW 264.7 macrophages and superoxide anion generation and elastase release by activated human neutrophils. Bioorganic & Medicinal Chemistry, v. 19, n. 8, p. 2751–2756, 15 abr. 2011. RIOUX, B. et al. Design and multi-step synthesis of chalcone-polyamine conjugates as potent antiproliferative agents. Bioorganic & Medicinal Chemistry Letters, v. 27, n. 18, p. 4354– 4357, set. 2017. ROMANELLI, G. et al. Synthesis of chalcones catalyzed by aminopropylated silica sol–gel under solvent-free conditions. Journal of Molecular Catalysis A: Chemical, v. 340, n. 1–2, p. 24–32, abr. 2011. RUIZ-CASTILLO, P.; BUCHWALD, S. L. Applications of Palladium-Catalyzed C–N Cross- Coupling Reactions. Chemical Reviews, v. 116, n. 19, p. 12564–12649, 12 out. 2016. 116 SALEHI, B. et al. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Frontiers in Pharmacology, v. 11, 18 jan. 2021. SALOMÉ, C. et al. Buchwald–Hartwig reactions in water using surfactants. Tetrahedron, v. 70, n. 21, p. 3413–3421, maio 2014. SALVADOR, M. R. A. Doença de Creutzfeldt-Jakob. p. 59, 2014. SANTOS, S. N. et al. Regioselective microwave synthesis and derivatization of 1,5-diaryl-3- amino-1,2,4-triazoles and a study of their cholinesterase inhibition properties. RSC Advances, v. 9, n. 35, p. 20356–20369, 2019. SHANKARAIAH, N. et al. Synthesis of different heterocycles-linked chalcone conjugates as cytotoxic agents and tubulin polymerization inhibitors. Bioorganic & Medicinal Chemistry, v. 25, n. 17, p. 4805–4816, set. 2017. SHARMA, S. et al. Metal-Free Transfer Hydrogenation of Nitroarenes in Water with Vasicine: Revelation of Organocatalytic Facet of an Abundant Alkaloid. The Journal of Organic Chemistry, v. 79, n. 19, p. 9433–9439, 3 out. 2014. SHEKHAR, S.; HARTWIG, J. F. Effects of Bases and Halides on the Amination of Chloroarenes Catalyzed by Pd(P t Bu 3 ) 2. Organometallics, v. 26, n. 2, p. 340–351, jan. 2007. SIM, V. L. Prion Disease: Chemotherapeutic Strategies. Disponível em: <https://www.eurekaselect.com/96465/article>. Acesso em: 26 out. 2020. SPRINGOB, K. et al. Recent advances in the biosynthesis and accumulation of anthocyanins. Natural Product Reports, v. 20, n. 3, p. 288–303, 13 jun. 2003. SURRY, D. S.; BUCHWALD, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci., v. 2, n. 1, p. 27–50, 2011. TANWANI, L.; FURMAN, C.; RITCHIE, C. Diagnostic Challenges in Creutzfeldt-Jakob Disease: Case Report. Southern Medical Journal, v. 96, n. 8, p. 832–835, ago. 2003. TOMORI, H.; FOX, J. M.; BUCHWALD, S. L. An Improved Synthesis of Functionalized Biphenyl-Based Phosphine Ligands. The Journal of Organic Chemistry, v. 65, n. 17, p. 5334–5341, 1 ago. 2000. TRÖSTER, A. et al. Enantioselective Intermolecular [2 + 2] Photocycloaddition Reactions of 2(1H)-Quinolones Induced by Visible Light Irradiation. Journal of the American Chemical Society, v. 138, n. 25, p. 7808–7811, 29 jun. 2016. VINOGRADOV, M. G.; TUROVA, O. V.; ZLOTIN, S. G. Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. Organic & Biomolecular Chemistry, v. 17, n. 15, p. 3670–3708, 2019. VOET, D.; VOET, J. Bioquímica. 4a ed. Porto Alegre: Artmed, 2013. WAGNER, P. et al. t-BuXPhos: a highly efficient ligand for Buchwald–Hartwig coupling in water. Green Chemistry, v. 16, n. 9, p. 4170–4178, 19 ago. 2014. 117 WANG, G. et al. A Strategy To Prepare Peptide Heterodimers in the Solid Phase with an Acid- Labile Linker. Organic Letters, v. 21, n. 18, p. 7351–7355, 20 set. 2019. WANG, J. et al. Selective cleavage of the N-propargyl group from sulfonamides and amides under ruthenium catalysis. Tetrahedron Letters, v. 59, n. 20, p. 1902–1905, 16 maio 2018. WANG, Z. (ED.). Comprehensive Organic Name Reactions and Reagents. 1a edição ed. Hoboken, N.J: Wiley-Interscience, 2009. WIDENHOEFER, R. A.; BUCHWALD, S. L. Halide and Amine Influence in the Equilibrium Formation of Palladium Tris(o-tolyl)phosphine Mono(amine) Complexes from Palladium Aryl Halide Dimers. Organometallics, v. 15, n. 12, p. 2755–2763, 11 jun. 1996. WOLFE, J. P.; WAGAW, S.; BUCHWALD, S. L. An Improved Catalyst System for Aromatic Carbon−Nitrogen Bond Formation: The Possible Involvement of Bis(Phosphine) Palladium Complexes as Key Intermediates. Journal of the American Chemical Society, v. 118, n. 30, p. 7215–7216, 1 jan. 1996. WU, J.-H. et al. Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorganic & Medicinal Chemistry Letters, v. 13, n. 10, p. 1813–1815, 19 maio 2003. XU, C.; CHEN, G.; HUANG, X. Chalcones by the Wittig Reaction of a Stable Ylide with Aldehydes Under Microwave Irradiation. Organic Preparations and Procedures International, v. 27, n. 5, p. 559–561, 1 out. 1995. YAMAMOTO, N. Hot Spot of Structural Ambivalence in Prion Protein Revealed by Secondary Structure Principal Component Analysis. The Journal of Physical Chemistry B, v. 118, n. 33, p. 9826–9833, 21 ago. 2014. ZHANG, X. et al. Multi-targetable chalcone analogs to treat deadly Alzheimer’s disease: Current view and upcoming advice. Bioorganic Chemistry, v. 80, p. 86–93, 1 out. 2018. ZHUANG, C. et al. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev., p. 49, 2017por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/73777/2021%20-%20Lucas%20Caruso%20Araujo%20Bezerra.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6717
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-07-06T15:29:56Z No. of bitstreams: 1 2021 - Lucas Caruso Araujo Bezerra.pdf: 10817534 bytes, checksum: f3cf0c8dc09f67ed4dc3e696d4496b90 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-07-06T15:29:56Z (GMT). No. of bitstreams: 1 2021 - Lucas Caruso Araujo Bezerra.pdf: 10817534 bytes, checksum: f3cf0c8dc09f67ed4dc3e696d4496b90 (MD5) Previous issue date: 2021-02-26eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Lucas Caruso Araujo Bezerra.pdf2021 - Lucas Caruso Araujo Bezerra10.56 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.