Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/14652
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOsorio, Rodrigo de Paulo
dc.date.accessioned2023-12-22T03:04:03Z-
dc.date.available2023-12-22T03:04:03Z-
dc.date.issued2021-09-28
dc.identifier.citationOSORIO, Rodrigo de Paulo. Análise da relação entre o potencial antioxidante dos ácidos ferúlico e p-cumárico e a enzima catalase de saccharomyces cerevisiae. 2021. 71 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.por
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/14652-
dc.description.abstractO estresse oxidativo é uma condição gerada pela incapacidade do sistema de defesa antioxidante em controlar a ação dos oxidantes nas células, que podem reagir com lipídios, proteínas e DNA, prejudicando as propriedades das estruturas celulares. O estresse oxidativo tem sido associado a diversas patologias, como doenças neurodegenerativas, diabetes e câncer. Os ácidos ferúlico e p-cumárico são antioxidantes exógenos relacionados a efeitos positivos contra doenças neurodegenerativas. No entanto, é importante conhecer melhor os mecanismos de ação desses compostos. Assim, experimentos de viabilidade celular, atividade da catalase, atividade antioxidante e modelagem molecular foram realizados com o objetivo de analisar a relação entre o potencial antioxidante dos ácidos ferúlico e p-cumárico e a enzima catalase de Saccharomyces cerevisiae. Ambos os ácidos não apresentaram toxicidade na concentração de 10 μg.mL-1 para células. A análise do efeito desses ácidos na atividade da catalase sob diferentes concentrações de peróxido de hidrogênio (0,0 mM, 0,5 mM e 2,5 mM) revelou atividade catalásica de 77,76% e 53,63%; 127,52% e 104,39%; e 83,67% e 70,61% para os ácidos ferúlico e p-cumárico em relação ao controle negativo, respectivamente. Em relação ao potencial antioxidante, o pré-tratamento com ácidos mostrou aumento da viabilidade celular após estresse oxidativo com peróxido de hidrogênio (2,0 mM). Estes resultados foram observados no controle BY4741 (aumento maior que 20%) e mutante da cepa Δctt1 deficiente em catalase (aumento maior que 25%). Analisando por docagem molecular (GOLD), verificou-se que possivelmente os resíduos de aminoácido Val111, Pro124, Phe148, Phe149 e Phe159 são importantes para as interações de ambos os ácidos fenólicos com a enzima. Ao permitir a flexibilização das cadeias laterais com os resíduos de aminoácidos Val111, Phe148, Phe149, Phe156, Phe159 e Ile160 as pontuações para os ácidos fenólicos são elevadas, com destaque para a cadeia lateral do resíduo Phe159. Em conclusão, o ácido ferúlico e o ácido p-cumárico fornecem proteção celular contra o estresse oxidativo e essa proteção aparentemente não está relacionada ao seu efeito direto na catalase.por
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.rightsAcesso Abertopor
dc.subjectEstresse oxidativopor
dc.subjectÁcidos fenólicospor
dc.subjectCatalasepor
dc.subjectSaccharomyces cerevisiaepor
dc.subjectOxidative stresseng
dc.subjectPhenolic acidseng
dc.subjectCatalaseeng
dc.subjectSaccharomyces cerevisiaeeng
dc.titleAnálise da relação entre o potencial antioxidante dos ácidos ferúlico e p-cumárico e a enzima catalase de saccharomyces cerevisiaepor
dc.title.alternativeAnalysis of the relationship between the antioxidant potential of ferulic and p-coumaric acids and the catalase enzyme from saccharomyces cerevisiaeeng
dc.typeDissertaçãopor
dc.description.abstractOtherOxidative stress is a condition generated by the inability of the antioxidant defense system to control the action of oxidants in cells, which can react with lipids, proteins and DNA, damaging the properties of cells structures. Oxidative stress has been associated with several pathologies, such as neurodegenerative diseases, diabetes and cancer. Ferulic and p-coumaric acids are exogenous antioxidants related to positive effects against neurodegenerative diseases. However, it is important to understand better the action mechanisms of these compounds. Thus, cell viability, catalase activity, antioxidant activity and molecular modeling experiments were carried out in order to analyze the relationship between the antioxidant potential of ferulic and p-coumaric acids and the catalase enzyme from Saccharomyces cerevisiae. Both acids did not show toxicity at the concentration of 10 μg.mL-1 for cells. The analysis of the effect of these acids on catalase activity under different concentrations of hydrogen peroxide (0.0 mM, 0.5 mM and 2.5 mM) revealed catalase activity of 77.76% and 53.63%; 127.52% and 104.39%; and 83.67% and 70.61% for ferulic and p-coumaric acids in relation to the negative control, respectively. Regarding the antioxidant potential, pre- treatment with acids showed an increase in cell viability after oxidative stress with hydrogen peroxide (2.0 mM). These results were observed in the BY4741 control (greater than 20% increase) and the catalase deficient Δctt1 strain mutant (greater than 25% increase). Analyzing by molecular docking (GOLD), it was found that possibly the amino acid residues Val111, Pro124, Phe148, Phe149 and Phe159 are important for the interactions of both phenolic acids with the enzyme. By allowing the flexibility of the side chains with amino acid residues Val111, Phe148, Phe149, Phe156, Phe159 and Ile160, the scores for phenolic acids are high, with an emphasis on the side chain of residue Phe159. In conclusion, ferulic acid and p- coumaric acid provide cellular protection against oxidative stress and this protection is apparently unrelated to their direct effect on catalase.eng
dc.contributor.advisor1Riger, Cristiano Jorge
dc.contributor.advisor1ID030.096.277-00por
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7579-5958por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8756160468801705por
dc.contributor.advisor-co1Sant'Anna, Carlos Mauricio Rabello de
dc.contributor.advisor-co1ID827.232.227-72por
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-1989-5038por
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2087099684752643por
dc.contributor.referee1Riger, Cristiano Jorge
dc.contributor.referee1IDhttps://orcid.org/0000-0002-7579-5958por
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8756160468801705por
dc.contributor.referee2Silva, Carmelita Gomes da
dc.contributor.referee2ID074.918.587-24por
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8508086967228179por
dc.contributor.referee3Salles, Cristiane Martins Cardoso de
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3610279707231709por
dc.creator.ID150.834.247-46por
dc.creator.Latteshttp://lattes.cnpq.br/3365672536219079por
dc.publisher.countryBrasilpor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesAEBI, H. Catalase in vitro. Methods in enzymology, v. 105, p. 121 – 126, 1984. ANGELO, P. M.; JORGE, N. Compostos fenólicos em alimentos - uma breve revisão. Revista do Instituto Adolfo Lutz, v. 66, n. 1, p. 1 - 9, 2007. ANGELO, P. M.; JORGE, N. Compostos fenólicos em alimentos – Uma breve revisão. Revista do Instituto Adolfo Lutz, v. 66, n. 1, p. 1 – 9, 2007. ATANASOVA, M. et al. Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors. Molecular Informatics, v. 34, n. 6, p. 394 – 403, 2015. BARBOSA, K. B. F. et al. Estresse oxidativo: conceito, implicações e fatores modulatórios. Revista de Nutrição, v. 23, n. 4, p. 630 – 641, 2010. BARBOSA, L. F.; MEDEIROS, M. H. G. D.; AUGUSTO, O. Danos oxidativos e neurodegeneração: o quê aprendemos com animais transgênicos e nocautes? Química Nova, v. 29, n. 6, p. 1352 – 1360, 2006. BARREIRO, E. J. et al. Modelagem molecular: uma ferramenta para o planejamento racional de fármacos em química medicinal. Química Nova, v. 20, n. 3, p. 1 – 10, 1997. BARREIRO, E. J.; RODRIGUES, C. R. MODELAGEM MOLECULAR: UMA FERRAMENTA PARA O PLANEJAMENTO RACIONAL DE FÁRMACOS EM QUÍMICA MEDICINAL. Química Nova, v. 20, n. 3, p. 1 - 11, 1997. BARREIROS, A. L. B. S.; DAVID, J. M. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Química Nova, v. 29, n. 1, p. 113 – 126, 2006. BELO, M. F. R. F.; SOUZA, A. L. F. Estudo cinético da enzima catalase (E.C. 1.11.1.6) de extrato bruto de batata doce (Ipomoea batatas). Scientia Plena, v. 12, n. 7, p. 1-7, 2016. BEZERRA, G. S. N. et al. Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. Journal of Thermal Analysis and Calorimetry, v. 127, n. 2, p. 1683 – 1691, 2016. BHARADWAJ, P.; MARTINS, R.; MACREADIE, I. Yeast as a model for studying Alzheimer's disease. FEMS Yeast Research, v. 10, n. 8, p. 961 - 969, 2010. CERQUEIRA, F. M.; MEDEIROS, M. H. G. D.; AUGUSTO, O. Antioxidantes dietéticos: controvérsias e perspectivas. Química Nova, v. 30, n. 2, p. 441 – 448, 2007. CHAVES, O. et al. Theoretical and Experimental Studies of the Interaction between Human Serum Albumin and Artepillin C, an Active Principle of the Brazilian Green Propolis. Revista Virtual de Química, v. 11, n. 5, p. 1562 - 1578, 2019. CHOI, J.-H. et al. In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. Journal of Biochemical and Molecular Toxicology, v. 32, n. 1, p. 1 – 9, 2018. 54 CIGUT, T. et al. Antioxidative activity of propolis extract in yeast cells. Journal of Agricultural and Food Chemistry, v. 59, n. 21, p. 11449 - 11455, 2011. CRUZ, Á. S.; BARBOSA, M. L.; PINTO, T. D. J. A. Testes in vitro como alternativa aos testes in vivo de Draize. Revista do Instituto Adolfo Lutz, v. 63, n. 1, p. 1 – 7, 2004. DAVIS, I. W.; BAKER, D. ROSETTALIGAND Docking with Full Ligand and Receptor Flexibility. Journal of Molecular Biology, v. 385, n. 2, p. 381 - 392, 2009. DE SÁ, R. A. et al. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Brazilian Journal of Microbiology, v. 44, n. 3, p. 993 - 1000, 2013. DEGÁSPARI, C. H.; WASZCZYNSKYJ, N. Propriedades antioxidantes de compostos fenólicos. Revista Visão Acadêmica, v. 5, n. 1, p. 33 – 40, 2004. DONG, C.; ZHANG, N.-J.; ZHANG, L.-J. Oxidative stress in leukemia and antioxidant treatment. Chinese Medical Journal, v. 134, n. 16, p. 1897 - 1907, 2021. DOSS, H. M. et al. Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats. Life Sciences, v. 148, n. 1, p. 201 – 210, 2016. FERREIRA, A. L. A.; MATSUBARA, L. S. Radicais livres: conceitos, doenças relacionadas, sistema de defesa e estresse. Revista da Associação Médica Brasileira, v. 43, n. 1, p. 61 – 67, 1997. FERREIRA, L. G. et al. Molecular Docking and Structure-Based Drug Design Strategies. Molecules, v. 20, n. 7, p. 13385 – 13409, 2015. FERREIRA, P. S. et al. A Review of Analytical Methods for p-Coumaric Acid in Plant-Based Products, Beverages, and Biological Matrices. Critical Reviews in Analytical chemistry, v. 49, n. 4, p. 1 – 11, 2018. FRANÇA, M. B.; LIMA, K. C.; ELEUTHERIO, E. C. A. Oxidative Stress and Amyloid Toxicity: Insights From Yeast. Journal of Cellular Biochemistry, v. 118, n. 6, p. 1442 - 1452, 2017. GAY, N. H. et al. Neuroprotective Effects of Phenolic and Carboxylic Acids on Oxidative. Neurochemical Research, v. 43, n. 3, p. 1 – 15, 2018. GEMELLI, T. et al. ESTRESSE OXIDATIVO COMO FATOR IMPORTANTE NA FISIOPATOLOGIA DA DOENÇA DE ALZHEIMER. Revista Brasileira Multidisciplinar, v. 16, p. 67 - 77, 2013. GLORIEUX, C.; CALDERON, P. B. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biological Chemistry, v. 398, n. 10, p. 1 – 29, 2017. GOYAL, M. M.; BASAK, A. Human catalase: looking for complete identity. Protein & Cell, v. 1, n. 10, p. 888 - 897, 2010. GÜLÇIN, İ. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, v. 217, p. 213 - 220, 2006. 55 HAQUE, M. E. et al. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson's disease. Drug, Design, Development and Therapy, v. 9, p. 5499 – 5510, 2015. HARTIG, A.; RUIS, H. Nucleotide sequence of the Saccharomyces cerevisiae CTTl gene and deduced amino-acid sequence of yeast catalase T. European Journal of Biochemistry, v. 160, n. 3, p. 487 – 490, 1986. HERMAN, P. K. Stationary phase in yeast. Current Opinion in Microbiology, v. 5, n. 6, p. 602 - 607, 2002. HOFER, S. et al. Studying Huntington’s Disease in Yeast: From Mechanisms to Pharmacological Approaches. Frontiers in Molecular Neuroscience, v. 11, n. 318, p. 1 - 20, 2018. IMAI, H. et al. Lipid Peroxidation-Dependent Cell Death Regulated by GPx4 and Ferroptosis. Current Topics in Microbiology and Immunology, v. 403, p. 143- 170, 2017. JO, E.-R. et al. The protective role of ferulic acid against cisplatin-induced ototoxicity. International Journal of Pediatric Otorhinolaryngology, v. 120, p. 30 – 35, 2019. JO, E.-R. et al. The protective role of ferulic acid against cisplatin-induced ototoxicity. International Journal of Pediatric Otorhinolaryngology, v. 41, n. 5, p. 30 - 35, 2019. KILIC, I.; YESILOGLU, Y. Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 115, p. 719 – 723, 2013. KORB, O.; FINN, P. W.; JONES, G. The cloud and other new computational methods to improve molecular modelling. Expert Opinion on Drug Discovery, v. 9, n. 10, p. 1121 – 1131 , 2014. LAVOVÁ, B.; URMISKÁ, D.; SILLEROVÁ, S. Diauxic growth of a saccharomyces cerevisiae. Journal of Microbiology, Biotechnology and Food Sciences, v. 3, n. 1, p. 122 – 123, 2014. LI, H.; WANG, L.; LUO, Y. Composition Analysis by UPLC-PDA-ESI (−)-HRMS and Antioxidant Activity Using Saccharomyces cerevisiae Model of Herbal Teas and Green Teas from Hainan. Molecules, v. 23, n. 10, p. 2550, 2018. LIMA, É. S. et al. Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, v. 37, 2001. LIMA, É. S.; ABDALLA, D. S. P. Peroxidação lipídica: mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, v. 37, n. 3, p. 293 – 303, 2001. LOEWEN, P. C. et al. Unprecedented access of phenolic substrates to the heme active site of a catalase: substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X- ray crystallography and EPR spectroscopy. Proteins, v. 83, n. 5, p. 853 – 866, 2015. LUSHCHAK, V. I. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes. Acta Biochimica Polonica, v. 55, n. 4, p. 679 – 684, 2006. MACHADO, K. D. C.; FREITAS, R. M. D. Ácido ferúlico e sistema nervoso central: uma prospecção. Revista GEINTEC, v. 3, n. 2, p. 221 – 225, 2013. 56 MACHADO, M.; CASTRO, R. R.; MARINHO, E. S. Utilização do método semi-empírico PM7 para caracterização do fármaco atalureno: HOMO, LUMO, MESP. Revista Expressão Católica, v. 1, n. 1, p. 177 – 183 , 2016. MAJUMDER, D.; DAS, A.; SAHA, C. Catalase inhibition an anti cancer property of flavonoids: A kinetic and structural evaluation. International Journal of Biological Macromolecules, v. 104, p. 929 – 935, 2017. MANCUSO, C.; SANTANGELO, R. Ferulic acid: Pharmacological and toxicological aspects. Food and Chemical Toxicology, v. 65, p. 185 – 195, 2013. MARIS, A. F. et al. Diauxic shift-induced stress resistance against hydroperoxides in Saccharomyces cerevisiae is not an adaptive stress response and does not depend on functional mitochondria. Current Genetics, v. 39, n. 3, p. 137 – 148, 2001. MARTINS, D.; ENGLISH, A. M. Catalase activity is stimulated by H2O2 in rich culture medium and is required for H2O2 resistance and adaptation in yeast. Redox Biology, v. 2, p. 308 – 313, 2014. MARTINS, V. D. C. et al. Determination of the Phytochemical Composition and Antioxidant Potential of Eugenia copacabanensis and Myrciaria tenella Leaves (Myrtaceae) Using a Saccharomyces cerevisiae Model. Chemistry & Biodiversity, v. 18, n. 6, p. 1 - 28, 2021. MATÉ, M. J. et al. Structure of Catalase-A from Saccharomyces cerevisiae. Journal of Molecular Biology, v. 286, n. 1, p. 136 – 147, 1999. MATES, J.; PÉREZ-GÓMEZ, C. Antioxidant enzymes and human diseases. Clinical Biochemistry, v. 32, n. 8, p. 595 – 603, 1999. MEHDI, M. M.; SOLANKI, P.; SINGH, P. Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging. Archives of Gerontology and Geriatrics, v. 95, p. 1 - 19, 2021. MEIRA, K. L.; ALMEIDA, W. L. C.; LAVORATO, S. N. Avaliação da cumarina e seus derivados substituídos como potenciais inibidores da enzima GST-π e determinação de seus perfis farmacocinéticos via estudos in silico. Revista da Universidade Federal do Oeste da Bahia, v. 3, n. 1, p. 46, 2018. MORAES, D. P. et al. Caracterização de uma nova cultivar de amora-preta BRS Xingu: Composição química, compostos fenólicos e capacidade antioxidante in vitro e in vivo. Food Chemistry, v. 322, p. 1 - 9, 2020. NAJJAR, F. M. et al. Studies to reveal the nature of interactions between catalase and curcumin using computational methods and optical techniques. International Journal of Biological Macromolecules, v. 95, p. 550 – 556, 2017. NEMALI, M. R. et al. Comparison of constitutive and inducible levels of expression of peroxisomal beta-oxidation and catalase genes in liver and extrahepatic tissues of rat. Cancer Research, v. 48, n. 18, p. 5316 – 5324, 1988. 57 NGUYEN, P.; YU, H.; KELLER, P. A. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins. Interdisciplinary Sciences--Computational Life Sciences, v. 10, n. 4, p. 1 – 10, 2017. NISHIMOTO, T. et al. Important Role of Catalase in the Cellular Response of the Budding Yeast Saccharomyces cerevisiae Exposed to Ionizing Radiation. Current Microbiology, v. 70, n. 3, p. 1 – 4, 2015. OHASHI, A. et al. CAPE increases the expression of SOD3 through epigenetics in human retinal endothelial cells. Journal of Clinical Biochemistry and Nutrition, v. 61, n. 1, p. 6 - 13, 2017. OLIVEIRA, D. M. D.; BASTOS, D. H. M. Biodisponibilidade de ácidos fenólicos. Química Nova, v. 34, n. 6, p. 1051 – 1055, 2011. OLUGBODI, J. O. et al. Glyphaea brevis – In vitro antioxidant and in silico biological activity of major constituents and molecular docking analyses. Toxicology in Vitro, v. 59, p. 1 – 25, 2019. OU, S.; KWOK, K.-C. Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, v. 84, n. 11, p. 1261 – 1267, 2004. PEI, K. et al. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. Journal of the Science of Food and Agriculture, v. 96, n. 9, p. 2952 – 2959, 2015. PETROVA, V. Y.; RASHEVA, T. V.; KUJUMDZIEVA, A. V. Catalase enzyme in mitochondria of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, v. 5, n. 1, p. 29 – 41, 2002. PINZI, L.; RASTELLI, G. Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, v. 20, n. 18, p. 1 – 13, 2019. PUTNAM, C. D. et al. Active and Inhibited Human Catalase Structures: ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology, v. 296, n. 1, p. 295 - 309, 2000. PUTNAM, C. D. et al. Active and Inhibited Human Catalase Structures: Ligand and NADPH Binding and Catalytic Mechanism. Journal of Molecular Biology, v. 296, n. 1, p. 295 - 309, 2000. QI, X. et al. Mechanism and intervention measures of iron side effects on the intestine. Critical Reviews in Food Science and Nutrition, v. 60, n. 12, p. 2113 - 2125, 2020. RASHTBARI, S. et al. Investigation of the binding mechanism and inhibition of bovine liver catalase by quercetin: Multi-spectroscopic and computational study. BioImpacts, v. 7, n. 3, p. 147 – 153, 2017. REN, Z. et al. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion- induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. International Journal of Molecular Medicine, v. 40, n. 5, p. 1444 – 1456, 2017. RIBEIRO, S. M. R. et al. A formação e os efeitos das espécies reativas de oxigênio no meio biológico. Bioscience Journal, v. 21, n. 3, p. 133 – 149, 2005. RYAZANTSEV, M. N. et al. Quantum Mechanical and Molecular Mechanics Modeling of Membrane- Embedded Rhodopsins. The Journal of Membrane Biology, v. 252, n. 4, p. 425 - 449, 2019. 58 SADOWSKA-BARTOSZ, I. et al. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Research, v. 13, n. 8, p. 820 – 830, 2013. SAKAMULA, R.; THONG-ASA, W. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metabolic Brain Disease, v. 33, n. 3, p. 765 – 773, 2018. SANT’ANNA, C. M. R. D. Métodos de Modelagem Molecular para Estudo e Planejamento de Compostos Bioativos: Uma Introdução. Revista Virtual de Química, n. 1, p. 49 – 57 , 2009. ISSN 1. SHEN, Y. et al. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. Biomedicine & Pharmacotherapy, v. 111, p. 579 – 587, 2019. SILVA, M. L. C. et al. Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Revista Ciência Agrícola, v. 31, n. 3, p. 669 – 679, 2010. SOARES, A. M. D. S.; MACHADO, O. L. T. Defesa de plantas: Sinalização química e espécies reativas de oxigênio. Revista Trópica: Ciências Agrárias e Biológicas, v. 1, n. 1, p. 9 – 19, 2007. SOARES, D. G.; ANDREAZZA, A. C.; SALVADOR, M. Saccharomyces cerevisiae como modelo biológico para avaliação da capacidade antioxidante de compostos. Revista Brasileira de Farmácia, v. 85, n. 2, p. 45 – 47, 2004. SOARES, V. C. G. et al. Cytotoxicity of active ingredients extracted from plants of the Brazilian "Cerrado". Natural Product Communications, v. 6, n. 7, p. 983 - 984, 2011. SU, L.-J. et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Medicine and Cellular Longevity, p. 1 - 13, 2019. TEHRANI, H. S.; MOOSAVI-MOVAHEDI, A. A. Catalase and its mysteries. Progress in Biophysics and Molecular Biology, v. 140, p. 1 - 10, 2018. TSAI, C.-F.; WU, J.-Y.; HSU, Y.-W. Protective Effects of Rosmarinic Acid against Selenite-Induced Cataract and Oxidative Damage in Rats. International Journal of Medical Sciences, v. 16, n. 5, p. 729 - 740, 2019. WHITTAKER, J. W. Non-heme manganese catalase – The ‘other’ catalase. Archives of Biochemistry and Biophysics, v. 525, n. 2, p. 111 - 120, 2012. YAN, M. H.; WANG, X.; ZHU, X. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radical Biology and Medicine, v. 62, p. 90 - 101, 2013. YUE, Y. et al. p-Coumaric acid improves oxidative and osmosis stress responses in Caenorhabditis elegans. Journal of the Science of Food and Agriculture, v. 99, n. 3, p. 1190 – 1197, 2018. ZDUNSKA, K. et al. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacology and Physiology, v. 31, p. 332 – 335, 2018.por
dc.subject.cnpqQuímicapor
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/74196/2021%20-%20Rodrigo%20de%20Paulo%20Osorio.pdf.jpg*
dc.originais.urihttps://tede.ufrrj.br/jspui/handle/jspui/6797
dc.originais.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2023-08-04T13:39:43Z No. of bitstreams: 1 2021 - Rodrigo de Paulo Osorio.pdf: 2196118 bytes, checksum: e15a37a9ea19ef3537401cd1a5913f73 (MD5)eng
dc.originais.provenanceMade available in DSpace on 2023-08-04T13:39:43Z (GMT). No. of bitstreams: 1 2021 - Rodrigo de Paulo Osorio.pdf: 2196118 bytes, checksum: e15a37a9ea19ef3537401cd1a5913f73 (MD5) Previous issue date: 2021-09-28eng
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2021 - Rodrigo de Paulo Osorio.pdf2021 - Rodrigo de Paulo Osorio2.14 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.