Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/15975
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFonseca, Milaine Silvano da-
dc.date.accessioned2024-02-28T15:44:47Z-
dc.date.available2024-02-28T15:44:47Z-
dc.date.issued2022-03-16-
dc.identifier.citationFONSECA, Milaine Silvano. Importância das escalas espaciais sobre a estrutura e beta diversidade das assembleias de peixes recifais da Baía da Ilha Grande, RJ. 2022. 55 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15975-
dc.description.abstractO entendimento da influência das escalas espaciais sobre a biodiversidade é fundamental para determinar quais medidas de conservação devem ser implementadas nos locais de uma região. Os peixes recifais são um componente fundamental para o funcionamento de ecossistemas recifais e têm sido ameaçados por impactos que ocorrem em escalas locais e regionais. Detectar quais escalas espaciais estão associadas a maior variação na composição das assembleias é crucial para identificar os processos no habitat que promovem esse padrão e propor medidas efetivas de conservação. Os objetivos deste estudo foram: (1) quantificar a variação espacial das assembleias de peixes recifais em escalas de dezenas de metros a dezenas de quilômetros, e (2) determinar se existem padrões de beta diversidade nessas escalas espaciais. Foram testadas as hipóteses de que (1) existe uma associação positiva entre a heterogeneidade do habitat e a beta diversidade, e (2) que a menor escala espacial comporta maior heterogeneidade e beta diversidade. Estes componentes da diversidade da assembleia de peixes (diversidade beta) e do habitat (heterogeneidade do habitat) foram avaliados em uma escala espacial local (entre transectos de locais) e uma maior escala espacial (entre locais de regiões). Cinco regiões foram estabelecidas na baía da Ilha Grande, com 2 abrangendo locais mais profundos e mais distantes da costa (Ilha Grande e Canal Central), e 3 com locais mais rasos, próximos da costa e sob influência estuarina (baía da Ribeira, Mambucaba e Paraty). Em cada local, 4-6 transectos foram amostrados, totalizando 289 transectos. A diferença na estrutura das assembleias de peixes entre as escalas espaciais foi testada usando a análise de variância multivariada permutacional (PERMANOVA) baseada no índice de Bray-Curtis. A variação na composição de espécies através das escalas espaciais (beta diversidade) foi testada com análise da Homogeneidade das Dispersões Multivariadas (PERMDISP) baseada no índice de Jaccard, enquanto os componentes aninhamento e rotatividade foram obtidos pelo pacote BetaPart. A maior variabilidade na estrutura da assembleia de peixes ocorreu entre os locais dentro de cada região (Pseudo-F = 3,9, p=0,0001, ECV = 26%). A distância da costa e a cobertura bentônica foram os melhores preditores da estrutura da assembleia. Uma assembleia de peixes predadores de invertebrados móveis e carnívoros caracterizou as amostras da baía da Ribeira e Paraty, enquanto uma assembleia mais rica com peixes de múltiplos grupos tróficos representou as amostras do Canal Central, Ilha Grande. A beta diversidade variou dentro dos locais (F=4,241, P=0,0001) e regiões (F=4,7173, p=0,0163). Entretanto, a escala local apresentou a maior dissimilaridade de Jaccard, com o componente de rotatividade (turnover) como principal contribuinte, enquanto nas regiões a dissimilaridade de Jaccard diminuiu e a contribuição da rotatividade e do aninhamento foi mais uniforme. A beta diversidade foi positivamente correlacionada a heterogeneidade do habitat (p<0,01), com os locais da Ilha Grande mais heterogêneos em comparação aos locais da baía da Ribeira e Paraty. A variação da assembleia de peixes na escala dos locais foi associada a heterogeneidade do habitat, enquanto os impactos associados a influência de rios e proximidade da costa atuam diferenciando as assembleias na escala das regiões. As medidas de conservação devem considerar a heterogeneidade dos habitats e histórico de uso na escala dos locais, e ações que minimizem os efeitos de impactos mais abrangentes e difusos na escala das regiões.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectictiofaunapt_BR
dc.subjectdiversidade betapt_BR
dc.subjectestrutura do habitatpt_BR
dc.subjectichthyofaunapt_BR
dc.subjectbeta diversitypt_BR
dc.subjecthabitat structurept_BR
dc.titleImportância das escalas espaciais sobre a estrutura e beta diversidade das assembleias de peixes recifais da Baía da Ilha Grande, RJpt_BR
dc.title.alternativeImportance of spatial scales on the structure and beta diversity of reef fish assemblages in Ilha Grande Bay, RJ.en
dc.typeDissertaçãopt_BR
dc.description.abstractOtherUnderstanding the influence of spatial scales on biodiversity is essential to determine which conservation measures should be implemented at the sites in a region. Reef fish are a fundamental component for the functioning of reef ecosystems and have been threatened by impacts that occur at local and regional scales. Detecting which spatial scales are associated with greater variation in assemblage composition is crucial to identify the processes in the habitat that promote this pattern and propose effective conservation measures. The objectives of this study were: (1) to quantify the spatial variation of reef fish assemblages at scales from tens of meters to tens of kilometers, and (2) to determine whether there are patterns of beta diversity at these spatial scales. The tested hypotheses were that (1) there is a positive association between habitat heterogeneity and beta diversity, and (2) that smaller spatial scale leads to greater heterogeneity and beta diversity. These components of fish assemblage diversity (beta diversity) and habitat (habitat heterogeneity) were evaluated at a local spatial scale (between transects of sites) and a larger spatial scale (between sites of regions). Five regions were established in Ilha Grande Bay, with 2 covering deeper locations and increased distances from the coast (Ilha Grande and Canal Central), and 3 with shallower locations, close to the coast and under estuarine influence (Ribeira Bay, Mambucaba and Paraty). At each site, 4-6 transects were sampled, totaling 289 transects. The difference in fish assemblage structure across spatial scales was tested using permutational multivariate analysis of variance (PERMANOVA) based on the Bray-Curtis index. The variation in species composition across spatial scales (beta diversity) was tested with analysis of the Homogeneity of Multivariate Dispersions (PERMDISP) based on the Jaccard index, while the components of nestedness and turnover were obtained by the BetaPart package. The greatest variability in fish assemblage structure occurred between sites within each region (Pseudo-F = 3.9, p=0.0001, ECV = 26%). Distance from the coast and benthic cover were the best predictors of assemblage structure. An assemblage of predatory fishes of mobile and carnivorous invertebrates characterized the samples from the Ribeira and Paraty bays, while a richer assemblage with fish from multiple trophic groups represented the samples from the Central Channel, Ilha Grande. Beta diversity varied within sites (F=4.241, P=0.0001) and regions (F=4.7173, p=0.0163). However, the local scale presented the highest Jaccard dissimilarity, with the turnover component as the main contributor, while in the regions the Jaccard dissimilarity decreased, and the contribution of turnover and nestedness were more uniform. Beta diversity was positively correlated with habitat heterogeneity (p<0.01), with the Ilha Grande sites being more heterogeneous compared to the Ribeira and Paraty bay sites. The variation of the fish assemblage at the scale of the sites was associated with the heterogeneity of the habitat, while the impacts associated with the influence of rivers and proximity to the coast were associated to assemblages’ differences at the scale of the regions. Conservation measures should consider the heterogeneity of habitats and the usage history at the scale of sites, and actions that minimize the effects of broader and more diffuse impacts at the scale of regions.en
dc.contributor.advisor1Neves, Leonardo Mitrano-
dc.contributor.advisor1ID094.318.907-12pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9490750242360258pt_BR
dc.contributor.referee1Neves, Leonardo Mitrano-
dc.contributor.referee1ID094.318.907-12pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9490750242360258pt_BR
dc.contributor.referee2Skinner, Luis Felipe-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-0971-4870pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9748284881593806pt_BR
dc.contributor.referee3Tubino, Rafael de Almeida-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3833439576748268pt_BR
dc.creator.ID150.315.257-03pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4168117684708694pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Ciências Biológicas e Da Saúdept_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpt_BR
dc.relation.referencesAnderson, Marti J. A new method for non‐parametric multivariate analysis of variance. Austral ecology, v. 26, n. 1, p. 32-46, 2001. Anderson, M.J.; Gorley, R.N.; Clarke, K.R. Permanova+ for primer: guide to software and statistical methods. primer-e, plymouth, uk. p. 214, 2008 Acosta, A. Disease in Zoanthids: dynamics in space and time. In: The ecology and etiology of newly emerging marine diseases. Springer, Dordrecht. p. 113-130, 2001 Almany, Glenn R. Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos, v. 106, n. 2, p. 275-284, 2004. Arias-González, J. E.; Done, T.J.; Page, C.A.; Cheal, A.; Kininmonth, S.; Garza-Pérez, J.R. Towards a reefscape ecology: relating biomass and trophic structure of fish assemblages to habitat at Davies Reef, Australia. Marine Ecology Progress Series, v. 320, p. 29-41, 2006. Arias-González, J. E.; Legendre, P.; Rodríguez-Zaragoza, F. A. Scaling up beta diversity on Caribbean coral reefs. Journal of Experimental Marine Biology and Ecology, v. 366, n. 1-2, p. 28-36. 2008 Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global ecology and biogeography, v. 19, n. 1, p. 134-143. 2010 Baselga, A.; Orme, C. David L. betapart: an R package for the study of beta diversity. Methods in ecology and evolution, v. 3, n. 5, p. 808-812, 2012. Baselga, A.; Orme, D.; Villéger, S.; De Bortoli, J.; Leprieur, F.; Logez, M.; Henriques-Silva, R. Partitioning beta diversity into turnover and nestedness components. Package betapart, Version, p. 1-4. 2017 Beck, M. W.; Heck, K. L.; Able, K. W.; Childers, D. L.; Eggleston, D. B.; Gillanders, B. M.; ... & Weinstein, M. P. The role of nearshore ecosystems as fish and shellfish nurseries. Issues in Ecology, 2003. Bellwood, D.R.; Hughes, T.P. Regional-scale assembly rules and biodiversity of coral reefs. Science, v. 292, n. 5521, p. 1532-1535, 2001. 36 Bellwood, D.R.; Wainwright, P.C. The history and biogeography of fishes on coral reefs. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, CA, USA. v. 5, p. 32, 2002. Bouchon-Navaro, Y.; Bouchon, C.; Luis, M.; Legendre, P. Biogeographic patterns of coastal fish assemblages in the West Indies. J Exp Mar Biol Ecol. v. 315, n. 1, p. 31-47, 2005. Brasil. Decreto Nº 98.864, de 23 de janeiro de 1990. Cria a Estação Ecológica de Tamoios, e dá outras providências. Edição Federal. Brasília, 1990. Capel, K.C.C.; Creed, J.; Kitahara, M.V.; Chen, C.A.; Zilberberg, C. Multiple introductions and secondary dispersion of Tubastraea spp. in the southwestern atlantic. Sci. Rep. v. 9, n. 1, p. 1-11, 2019. Cardoso, C.D.P. Analysis of the Human Activities in the Tamoios Ecological Station to Subsidize the Strategic Management. PhD thesis (Environmental sciences). Universidade do Estado do Rio de Janeiro, Rio de Janeiro, p. 152. 2019 Clarke, K.R.; Warwick, R.M. Change in marine communities. An approach to statistical analysis and interpretation. PRIMER-E Ltd., Plymouth, UK. 2001. Clarke, R.T.; Gorley, R.N. Primer v6. PrimerE, Plymouth. 2006. Creed, J. C. Two invasive alien azooxanthellate corals, Tubastraea coccinea and Tubastraea tagusensis, dominate the native zooxanthellate Mussismilia hispida in Brazil. Coral Reefs, v. 25, n. 3, p. 350-350, 2006. Creed, J. C.; Pires, D. O.; Figueiredo, M. D. O. Biodiversidade marinha da baía da Ilha Grande (Vol. 1). Brasília-DF: MMA/SBF. 2007. Creed, J.C.; Junqueira, A.D.O.R.; Fleury, B.G.; Mantelatto, M.C.; Oigman-Pszczol, S.S. The Sun-Coral Project: the first social-environmental initiative to manage the biological invasion of Tubastraea spp. in Brazil. Management of Biological Invasions. v. 8, n. 2, p. 181, 2017. Crist, T.O.; Veech, J.A.; Gering, J.C.; Summerville, K.S. Partitioning species diversity across landscapes and regions: A hierarchical analysis of alpha, beta, and gamma diversity. Am Nat. v. 162, n. 6, p. 734-743, 2003 37 Cruz, I. C.; Loiola, M.; Albuquerque, T.; Reis, R.; de Anchieta CC Nunes, J.; Reimer, J. D.; ... Creed, J. C. Effect of phase shift from corals to Zoantharia on reef fish assemblages. PloS one, v. 10, n. 1, p. e0116944, 2015. Davidson, I.C.; McCann, L.D.; Sytsma, M.D.; Ruiz, G.M. Interrupting a multi-species bioinvasion vector: the efficacy of in-water cleaning for removing biofouling on obsolete vessels. Mar. Pollut. Bull. v. 56, n. 9, p. 1538-1544, 2008. da Silva, I.M.; Hill, N.; Shimadzu, H.; Soares, A.M.; Dornelas, M. Spillover effects of a community-managed marine reserve. PloS One. v. 10, n. 4, p. e0111774, 2015. de Paula, A.F.; Creed, J.C., 2004. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: a case of accidental introduction. Bull. Mar. Sci. v. 74, n. 1, p. 175-183, 2004. de Paula, A.F.; de Oliveira Pires, D.; Creed, J.C. Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. J. Mar. Biol. Assoc. U. K. v. 94, n. 3, p. 481-492, 2014. Dias, C.; Bonecker, S.L.C. Long-term study of zooplankton in the estuarine system of Ribeira Bay, near a power plant (Rio de Janeiro, Brazil). Hydrobiologia. v. 94, n. 3, p. 481-492, 2014. Durante, L. M.; Cruz, I. C., Lotufo, T. M. The effect of climate change on the distribution of a tropical zoanthid (Palythoa caribaeorum) and its ecological implications. PeerJ, v. 6, p. e4777, 2018. Ellingsen, K.E.; Gray, J.S. Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? Journal of Animal Ecology, v. 71, n. 3, p. 373-389, 2002. Fabricius, K.; De’ath, G.; McCook, L.; Turak, E.; Williams, D. M. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Marine pollution bulletin, v. 51, n. 1-4, p. 384-398, 2005. Ferreira, C.EL.; Goncalves, J.E.A; Coutinho, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental Biology of Fishes, v. 61, p. 353–369. 2001. 38 Ferreira, C.E.L.; Floeter, S.R.; Gasparini, J.L.; Ferreira, B.P. Joyeux, J.C. Trophic structure patterns of Brazilian reef fishes: a latitudinal comparison. Journal of Biogeography, v. 31, n. 7, p. 1093–1106. 2004. Ferreira, C.E.L.; Ferreira, C.G.W.; Rangel, C.A.; Mendonça, J.P.; Gerhardinger, L.C.; Filho, A.C.; Godoy, E.A.; Luiz Junior, O.; Gasparini, J.L. In: Creed, J.C.; Pires, D.O.; Figueiredo, M.A.O. (Orgs). Biodiversidade marinha da Baía da Ilha Grande. Brasília, Ministério do Meio Ambiente (Série Biodiversidade 23) p. 293-332. 2007. Floeter, S. R.; Krohling, W.; Gasparini, J. L.; Ferreira, C. E.; Zalmon, I. R. Reef fish community structure on coastal islands of the southeastern Brazil: the influence of exposure and benthic cover. Environmental Biology of Fishes, 78(2), 147-160. Fonseca, M. S., Araújo, F. G., Teixeira-Neves, T. P., Corrêa, C., Pereira-Filho, G. H., Neves, L. M. Drivers of distribution of the parrotfish Sparisoma frondosum (agassiz, 1831) in Southwest Atlantic rocky reefs: Insights for management and conservation. Ocean & Coastal Management. v. 78, n. 2, p. 147-160, 2007. Francisco-Ramos, V., Arias-González, J.E. Additive Partitioning of Coral Reef Fish Diversity across Hierarchical Spatial Scales throughout the Caribbean. PloS one, v. 8, n. 10, p. e78761, 2013. Freret-Meurer, N.V., Andreata, J.V., Meurer, B.C., Manzano, F.V., Baptista, M.G.S., Teixeira, D.E., Longo, M.M. Spatial distribution of metals in sediments of the ribeira bay, Angra dos Reis, Rio de Janeiro, Brazil. Mar. Pollut. Bull. v. 60, n. 4, p. 627-629, 2010. Garcia, J., Pelletier, D., Carpentier, L., Roman, W., & Bockel, T. Scale‐dependency of the environmental influence on fish β‐diversity: Implications for ecoregionalization and conservation. Journal of Biogeography, v. 45, n. 8, p. 1818-1832, 2018. Gering, J.C., Crist, T.O., Veech, J.A. Additive partitioning of species diversity across multiple spatial scales: Implications for regional conservation of biodiversity. v. 17, n. 2, p. 488-499, 2003. Goatley, C.H.; Bellwood, D.R. Sediment suppresses herbivory across a coral reef depth gradient. Biol. Lett. v. 8, n. 6, p. 1016-1018, 2012. 39 Gordon, S.E.; Goatley, C.H.; Bellwood, D.R. Low-quality sediments deter grazing by the parrotfish Scarus rivulatus on inner-shelf reefs. Coral Reefs. v. 35, n. 1, p. 285-291, 2016. Harborne, A.R.; Mumby, P.J.; Zychaluk, K.; Hedley, J.D.; Blackwell, P.G. 2006. Modeling the beta diversity of coral reefs. Ecology, v. 87, n. 11, p. 2871–81. Harborne, A. R.; Mumby, P. J.; Ferrari, R. The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environmental biology of fishes. v. 94, n. 2, p. 431-442, 2012. Henry, L.A.; Davies, A.J.; Roberts, M.J. Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs, v. 29, n. 2, p. 427-436, 2010. Hewitt, J.E.; Thrush, S.E.; Halliday, J.; Duffy, C. The importance of small-scale habitat structure for maintaining beta diversity. Ecology, v. 86, n. 6, p. 1619-1626, 2005. Jost, L.; DeVries, P.; Walla, T.; Greeney, H.; Chao, A. & Ricotta, C. Partitioning diversity for conservation analyses. Diversity and Distributions, v. 16, n. 1, p. 65-76, 2010. Johnsson, R.M.F.; Ikemoto, S.M. Diagnóstico do setor costeiro da Baía da Ilha Grande: Subsídios a elaboração do zoneamento ecológico-econômico costeiro. Instituto Estadual do Ambiente, Rio de Janeiro, p. 242. 2015 Lande R. Statistics and partitioning of species diversity and similarity among multiple communities. Oikos, p. 5-13. 1996. Lages, B.G.; Fleury, B.G.; Menegola, C.; Creed, J.C. Change in tropical rocky shore communities due to an alien coral invasion. Mar. Ecol. Prog. Ser. v. 438, p. 85-96, 2011. Loiseau, N.; Legras, G.; Kulbicki, M.; Mérigot, B.; Harmelin‐Vivien, M.; Mazouni, N., ... Gaertner, J. C. Multi‐component β‐diversity approach reveals conservation dilemma between species and functions of coral reef fishes. Journal of Biogeography, v. 44, n. 3, p. 537-547, 2017. Kohler, K.E.; Gill, S.M. Coral Point Count with Excel extensions (CPCe): Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, v. 32, p. 1259–1269. 2006. 40 Mahiques, M.M.; Furtado, V.V. Utilização da análise dos componentes principais na caracterização dos sedimentos de superfície de fundo da Baía da Ilha Grande. Bolm. Inst. Oceanogr., S Paulo, v. 37, p. 1-19, 1989. Mantelatto, M. C.; Carlos-Júnior, L. A.; Côrrea, C.; de Lima Cardoso, C. F.; Creed, J. C. Depth-related drivers of benthic community structure on shallow subtidal rocky reefs. Estuarine, Coastal and Shelf Science, 107743. MCardle, B.H.; Anderson, M.J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, v. 82, p. 290–297. 2001. Moura, R. L.; Amado-Filho, G. M.; Moraes, F. C.; Brasileiro, P. S.; Salomon, P. S.; Mahiques, M. M., ... Thompson, F. L. An extensive reef system at the Amazon River mouth. Science advances. v. 2, n. 4, p. e1501252, 2016. Moura, R. L.; Abieri, M. L.; Castro, G. M.; Carlos-Júnior, L. A.; Chiroque-Solano, P. M.; Fernandes, N. C., ... & Bastos, A. C. Tropical rhodolith beds are a major and belittled reef fish habitat. Scientific reports, v. 11, n. 1, p. 1-10, 2021. Miranda, R.J.; José de Anchieta, C.C.; Mariano-Neto, E.; Sippo, J.Z.; Barros, F. Do invasive corals alter coral reef processes? An empirical approach evaluating reef fish trophic interactions. Mar. Environ. Res. v. 138, p. 19-27, 2018. Miyazawa, E.; Montilla, L. M.; Agudo-Adriani, E. A.; Ascanio, A.; Mariño-Briceño, G.; Croquer, A. On the importance of spatial scales on beta diversity of coral assemblages: a study from Venezuelan coral reefs. PeerJ, v. 8, p. e9082, 2020. Neves, L. M.; Teixeira-Neves, T. P.; Pereira-Filho, G. H.; Araujo, F. G. The farther the better: effects of multiple environmental variables on reef fish assemblages along a distance gradient from river influences. PloS one, v. 11, n. 12, p. e0166679, 2016. Nogueira, C.R.; Bonecker, A.C.; Bonecker, S.L.; Santos, C.C. Studies of zooplankton near the nuclear power plant—angra I. Preoperational conditions (rio de Janeiro, brasil) (ASCE). In: Coastal Zone, vol. 91, pp. 3221–3233 Pereira, I. A. D. Influência da estrutura do habitat na distribuição do peixe limpador Elacatinus figaro na Baía da Ilha Grande, RJ. Trabalho de conclusão de curso, bacharelado em Gestão Ambiental, Universidade Federal Rural do Rio de Janeiro. p. 38. 2017. 41 Peixoto, M. J. S. Mudanças a longo prazo (2010-2019) na comunidade de peixes recifais da ilha de Búzios, baía da ilha Grande, RJ. Trabalho de conclusão de curso, bacharelado em Gestão Ambiental, Universidade Federal Rural do Rio de Janeiro. 45p. 2021. Pérez-Matus, A.; Shima, J.S. Disentangling the effects of macroalgae on the abundance of temperate reef fishes. Journal of Experimental Marine Biology and Ecology, v. 388, n. 1-2, p. 1–10. 2010. Pikitch, E.K., Santora, C.; Babcock, E.A. et al. Ecosystem-based fishery management. Science 305:346–347. 2004. Pinheiro, H. T.; Rocha, L. A.; Macieira, R. M.; Carvalho‐Filho, A.; Anderson, A. B.; Bender, M. G., ... Floeter, S. R. South‐western Atlantic reef fishes: Zoogeographical patterns and ecological drivers reveal a secondary biodiversity centre in the Atlantic Ocean. Diversity and Distributions, v. 24, n. 7, p. 951-965, 2018. Rodríguez-Zaragoza, F.A.; Arias-González, J.E. Additive diversity partitioning of reef fish across multiple spatial scales. Caribb J Sci. v. 44, n. 1, p. 90-101, 2008. de Oliveira Soares, M.; Davis, M.; de Macedo Carneiro, P.B. Northward range expansion of the invasive coral (Tubastraea tagusensis) in the southwestern. Atlantic. Mar. Biodivers. v. 48, n. 3, p. 1651-1654, 2018. Spalding, M. D.; Fox, H. E.; Allen, G. R.; Davidson, N.; Ferdaña, Z. A.; Finlayson, M. A. X.; ... Robertson, J. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience. v. 57, n. 7, p. 573-583, 2007. Steneck, R.S.; Graham, M.H.; Bourque, B.J.; Corbett, D.; Erlandson, J.M.; Estes, J.A.; Tegner, M.J. Kelp Forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation, v. 29, p. 436–459. 2002. Skinner, L. F.; Barboza, D. F.; Rocha, R. M. Rapid Assessment Survey of introduced ascidians in a region with many marinas in the southwest Atlantic Ocean, Brazil. Management of Biological Invasions, v. 7, n. 1, p. 13-20, 2016. Teixeira-Neves, T.P.; Neves, L.M.; Araújo, F.G. The development of a preliminary rock reef fish multimetric index for assessing thermal and urban impacts in a tropical bay. Mar. Pollut. Bull. v. 109, n. 1, p. 290-300, 2016. 42 Teixeira-Neves, T. P.; Neves, L. M.; Araújo, F. G. Hierarchizing biological, physical and anthropogenic factors influencing the structure of fish assemblages along tropical rocky shores in Brazil. Environmental Biology of Fishes, v. 98, n. 6, p. 1645-1657, 2015. Thrush, S. F.; Hewitt, J. E.; Cummings, V. J.; Norkko, A.; Chiantore, M. β-diversity and species accumulation in Antarctic coastal benthos: influence of habitat, distance and productivity on ecological connectivity. PLoS One, v. 5, n. 7, p. e11899, 2010. Veech, J.A.; Crist, T.O. PARTITION 3.0 Software for the partitioning of species diversity. 2009 Whittaker, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, v. 30, p. 279–338. 1960. Zuur, A.F.; Ieno, E.N.; Smith, G.M. Analysing ecological data. Berlin: Springer Verlag, 2007, 672 p. Zawada, D. G.; Piniak, G. A.; Hearn, C. J. Topographic complexity and roughness of a tropical benthic seascape. Geophysical research letters, v. 37, n. 14, 2010.pt_BR
dc.subject.cnpqBiologia Geralpt_BR
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Milaine Silvano da Fonseca.pdf1.41 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.