Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/15976
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMenezes, Mariana Romanini-
dc.date.accessioned2024-02-28T16:28:26Z-
dc.date.available2024-02-28T16:28:26Z-
dc.date.issued2022-03-17-
dc.identifier.citationMENEZES, Mariana Romanini. Espinhos e ferrões: a comunidade de himenópteros visitantes florais do Jardim Botânico da UFRRJ e os fatores que afetam a visitação de flores. 2022. 56 f. Dissertação (Mestrado em Biologia Animal) - Instituto De Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/15976-
dc.description.abstractA ordem Hymenoptera inclui vários insetos que visitam flores (como, formigas, abelhas e vespas) e a coexistência de muitas espécies diferentes na mesma comunidade pode gerar competição interespecífica. Apesar de fazerem parte de uma mesma comunidade, são incomuns os trabalhos que avaliem a forma como estes grupos taxonômicos influenciam toda uma comunidade de himenópteros visitantes florais. Além disso, fatores abióticos também podem ter impacto nestas visitas florais, porque cada organismo responde de forma diferente às variações climáticas. O objetivo do presente estudo é avaliar os fatores abióticos, especificamente a umidade relativa e a temperatura do ar, que podem ter impacto no número e na frequência das interações entre himenópteros e flores e avaliar, por meio de redes de interação, a composição e organização de nichos de toda a comunidade de Hymenoptera florais no Jardim Botânico da Universidade Federal Rural do Rio de Janeiro. Durante um ano, foram coletadas amostras nesse jardim botânico, compartimentando temporalmente as coletas, de acordo com o período do dia (manhã ou tarde). Foi observada uma influência positiva da temperatura do ar no número de interações e visitas das formigas. Também é possível observar que a maioria destas redes de interação exibem um padrão aninhado e não-modular e um nível médio de especialização da rede. Além disso, as abelhas destacaram-se como as espécies com maior frequência de visitas e com o comportamento mais generalista. Este estudo demonstra como mudanças climáticas podem alterar a dinâmica de visitação na comunidade de himenópteros visitantes florais, corrobora com o conhecimento prévio estabelecido acerca de redes mutualísticas inseto-planta e reitera como um jardim botânico pode sustentar uma comunidade diversificada de himenópteros visitantes florais em um ambiente urbano e porque consiste numa ferramenta importante para a conservação da biodiversidade.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectRedes de interaçãopt_BR
dc.subjectabelhapt_BR
dc.subjectformigapt_BR
dc.subjectvespapt_BR
dc.subjecttemperaturapt_BR
dc.subjectInteraction networkspt_BR
dc.subjectbeept_BR
dc.subjectantpt_BR
dc.subjectwasppt_BR
dc.subjecttemperaturept_BR
dc.titleEspinhos e ferrões: a comunidade de himenópteros visitantes florais do jardim botânico da ufrrj e os fatores que afetam a visitação de florespt_BR
dc.typeDissertaçãopt_BR
dc.description.abstractOtherThe Hymenoptera order includes several flower-visiting insects (e.g. ants, bees, and wasps) and the coexistence of many different species in the same community can generate interspecific competition. Notwithstanding shared communities, research which evaluates how these taxonomic groups influence a whole community of flower-visiting Hymenoptera is lacking. Moreover, abiotic factors can also impact these floral visits, because each organism responds differently to climatic variations. The goal of this study is to evaluate abiotic factors, specifically relative air humidity and air temperature, which may be able to impact the number and the frequency of interactions between hymenopterans and flowers and to assess the composition and niche organization, by making use of interaction networks, of the entire community of flower-visiting Hymenoptera at the botanical garden of the Universidade Federal Rural do Rio de Janeiro. For the duration of a year, samples were made in that botanical garden, compartmentalizing the collections temporally in accordance with the time of the insects' shift (morning or afternoon). A positive influence of air temperature on the number of ant interactions and visits were observed. It is also possible to observe that most of these interaction networks exhibited a nested and non-modular pattern and an average level of network specialization. In addition, bees stood out as the species with the highest frequency of visits and with the most generalist behavior. This study shows how climate change can alter visitation dynamics in a community of floral visiting Hymenoptera, corroborates previously established knowledge about insect-plant mutualistic networks, and demonstrates how a botanical garden can sustain a diverse community of floral visiting Hymenoptera in an urban environment and why it consists in an important tool for biodiversity conservation.pt_BR
dc.contributor.advisor1Queiroz, Jarbas Marçal de-
dc.contributor.advisor1ID445.546.641-04pt_BR
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-4175-1834pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3716769685247180pt_BR
dc.contributor.referee1Queiroz, Jarbas Marçal de-
dc.contributor.referee1ID445.546.641-04pt_BR
dc.contributor.referee1IDhttps://orcid.org/0000-0002-4175-1834pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3716769685247180pt_BR
dc.contributor.referee2Souza, Marcelo da Costa-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-2949-0173pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7007199583077652pt_BR
dc.contributor.referee3Maria, Tatiana Fabricio-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4708566984054710pt_BR
dc.creator.ID180.034.367-10pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7147144731222245pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdept_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpt_BR
dc.relation.referencesADEDOJA, O.A.; KEHINDE, T.; SAMWAYS, M.J. Insect-flower interaction networks vary among endemic pollinator taxa over an elevation gradient. PLoS One, n. 13, 2018. AGOSTINI, K. & SAZIMA, M. Plantas ornamentais e seus recursos para abelhas no campus da Universidade Estadual de Campinas, Estado de São Paulo, Brasil. Bragantia: 2003. ANJOS, D.; DÁTTILO, W.; DEL-CLARO, K. Unmasking the architecture of ant – diaspore networks in the Brazilian Savanna. PLoS One, n. 13, p. 1–17, 2018. AUAD, A.M.; FONSECA, M.G. A entomologia no cenário das mudanças climáticas. In W. Bettiol; E. Hamada; F. Angelotti; A. M. Auad & R. Ghini (Eds.), Aquecimento global e problemas fitossanitários (pp 93-115). Brasília: Embrapa, 2017. AZEVEDO, F.; GOMES V.S.R.; COUTINHO, R.L.M.; PHILIPPSEN, A.S. Formigas (Hymenoptera: Formicidae) em uma paisagem suburbana no noroeste do estado do Paraná, Brasil. Arquivos do Mudi, n. 26, 2022. BANASZAK-CIBICKA, W.; RATYŃSKA, H.; DYLEWSKI, Ł. Features of urban green space favorable for large and diverse bee populations (Hymenoptera: Apoidea: Apiformes). Urban For Urban Green, n. 20, p. 448–452, 2016. BARBOSA, B.C.; PASCHOALINI, M.; MACIEL, T.T.; PREZOTO, F. Visitantes florais e seus padrões temporais de atividade em flores de Dombeya wallichii (Lindl.) K. Schum (Malvaceae). Entomotropica, n. 31, p. 131–136, 2016. BASCOMPTE, J.; JORDANO, P.; MELIÁN, C.J.; OLESEN, J.M. The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America, n. 100, p. 9383–9387, 2003. BEEKMAN, M. & RATNIEKS, F.L.W. Long-range foraging by the honey-bee, Apis mellifera L. Functional Ecology, n. 14, p. 490-496, 2001. BLÜTHGEN, N.; MENZEL, F.; BLÜTHGEN, N. Measuring specialization in species interaction networks. BMC Ecology, n. 6, 2006. BLÜTHGEN, N.; MENZEL, F.; HOVESTADT, T.; FIALA, B.; BLÜTHGEN, N. Specialization, Constraints, and Conflicting Interests in Mutualistic Networks. Current Biology, n. 17, p. 341-346, 2007. BLÜTHGEN, N. & KLEIN, A.M. Functional complementarity and specialization: The role of biodiversity in plant-pollinator interactions. Basic and Applied Ecology, n. 12, p. 282–291, 2011. BLÜTHGEN, N. Interações plantas-animais e importância funcional da biodiversidade. In: K. Del-Claro & H.M. Torezan-Silingardi (Eds.), Ecologia das Interações Plantas-Animais (pp 259-272). Rio de Janeiro: Technical Books Editora, 2012. BRITO, E.L.S.; SÁ, C.A.; SANTOS, G.M.M.S. Body Size and Its Relation to the Foraging Schedules of Social Wasps. Neotropical Entomology, n. 49, p. 668–676, 2020. BROCK, R.E.; CINI, A.; SUMMER, S. Ecosystem services provided by aculeate wasps. Biological Reviews, n. 96, p. 1645–1675, 2021. BRODMANN, J.; TWELE, R.; FRANCKE, W.; HÖLZLER, G.; ZHANG, Q.; AYASSE, M. Orchids Mimic Green-Leaf Volatiles to Attract Prey-Hunting Wasps for Pollination. Current Biology, n. 18, p. 740–744, 2008. CAMPOS-NAVARRETE, M.J.; PARRA-TABLA, V.; RAMOS-ZAPATA, J.; DÍAZ-CASTELAZO, C.; REYES-NOVELO, E. Structure of plant–Hymenoptera networks in two coastal shrub sites in Mexico. Arthropod-Plant Interactions, n. 7, p. 607–617, 2013. CARVALHO, D.M.; PRESLEY, S.J.; SANTOS, G.M.M. Niche overlap and network specialization of flower-visiting bees in an agricultural system. Neotropical Entomology, n. 43, p. 489–499, 2014. 49 CARVER, M.; BLÜTHGEN, N.; GRIMSHAW, J.F. Aphis clerodendri Matsumura (Hemiptera: Aphididae), attendant ants (Hymenoptera: Formicidae) and associates on Clerodendrum (Verbenaceae) in Australia. Australian Journal of Entomology, n. 42, p. 109-113, 2003. CHALEGRE, S.L.; DOMINGOS-MELO, A.; DE LIMA, C.T.; GIULIETTI, A.M.; MACHADO, I. C. Nymphaea pulchella (Nymphaeaceae) and Trigona spinipes (Apidae) interaction: From florivory to effective pollination in ponds surrounded by pasture. Aquatic Botany, n. 166, p. 103267, 2020. CHAMBERLAIN, S.A.; KILPATRICK, J.R.; HOLLAND, J.N. Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant–plant mutualistic networks? Oecologia, n. 164, p. 741–750, 2010. CHEN, G. & SUN, W. The role of botanical gardens in scientific research, conservation, and citizen science. Plant Diversity, n. 40, p. 181–188, 2018. CLASSEN, A.; PETERS, M.K.; KINDEKETA, J.; APPELHANS, T.; EARDLEY, C.D.; GIKUNGU, M.W.; HEMP, A.; NAUSS, T.; STEFFAN-DEWENTER, I. Temperature versus resource constraints: which factors determine bee diversity on Mount Kilimanjaro, Tanzania? Global Ecology and Biogeography, n. 24, p. 642-652, 2015. CLASSEN, A.; EARDLEY, C.D.; HEMP, A.; PETERS, M.K.; PETERS, R.S.; SSYMANK, A.; STEFFAN-DEWENTER, I. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecology and Evolution, n. 10, p. 2182–2195, 2020. CLEMENTE, M.A.; LANGE, D.; DEL-CLARO, K.; PREZOTO, F.; CAMPOS, N.R.; BARBOSA, B.C. Flower-Visiting Social Wasps and Plants Interaction: Network Pattern and Environmental Complexity. Psyche, n. 10, 2012. COSTA, S.N.; ALVES, R.M.O.; CARVALHO, C.A.L.; CONCEIÇÃO, P.J. Fontes de pólen utilizadas por Apis mellifera Latreille na região semiárida. Ciência Animal Brasileira, n. 16, 2015. CYSNEIROS, V.C.; PEREIRA-MOURA, M.V.L.; PAULA, E.P.; BRAZ, D.M. Arboreal Eudicotyledons, Universidade Federal Rural do Rio de Janeiro Botanical Garden, state of Rio de Janeiro, Brazil. Check List, n. 7, p. 001–006, 2011. DÁTTILO, W.; GUIMARÃES, P.R.; IZZO, T.J. Spatial structure of ant-plant mutualistic networks. Oikos, n. 122, p. 1643–1648, 2013a. DÁTTILO, W.; RICO-GRAY, V.; RODRIGUES D.J.; IZZO, T.J. Soil and vegetation features determine the nested pattern of ant–plant networks in a tropical rainforest. Ecological Entomology, n. 38, p. 374-380, 2013b. DÁTTILO, W.; FAGUNDES, R.; GURKA, C.A.Q.; SILVA, M.S.A; VIEIRA, M.C.L.; IZZO, T.J.; DÍAZ-CASTELAZO, C.; DEL-CLARO, K.; RICO-GRAY, V. Individual-based ant-plant networks: Diurnal-nocturnal structure and species-area relationship. PLoS One, n. 9, 2014a. DÁTTILO, W.; DÍAZ-CASTELAZO, C; RICO-GRAY, V. Ant dominance hierarchy determines the nested pattern in ant–plant networks. Biological Journal, n. 113, p. 405-414, 2014b. DÁTTILO, W. & RICO-GRAY, V. Ecological Networks in the Tropics. Springer International Publishing, 2018. DE MARCO, J.R.P. & COELHO, F.M. Services performed by the ecosystem: forest remnants influence agricultural cultures’ pollination and production. Biodiversity and Conservation, n. 13, p. 1245–1255, 2014. DE VEGA, C.; HERRERA, C.M.; DÖTTERL, S. Perspectives in Plant Ecology, Evolution and Systematics Floral volatiles play a key role in specialized ant pollination. Perspectives in Plant Ecology, Evolution and Systematics, n. 16, p. 32–42, 2014. DEHLING, D.M. The Structure of Ecological Networks. In W. Dáttilo & V. Rico-Gray (Eds.), Ecological Networks in the Tropics (pp. 29-42). Springer International Publishing, 2018. DELAPLANE, K.S.; MAYER, D.F. Crop Pollination by Bees. Cambridge: CABI Publishing, 2000. 50 DEL-CLARO, K.; LANGE, D.; TOREZAN-SILINGARDI, H.M.; ANJOS, D.V.; CALIXTO, E.S.; DÁTTILO, W.; RICO-GRAY, V. The Complex Ant – Plant Relationship Within Tropical Ecological Networks. In: W. Dáttilo & V. Rico-Gray (Eds.), Ecological Networks in the Tropics (pp. 59–71). Springer International Publishing, 2018. DEL-CLARO, K.; RODRIGUEZ-MORALES, D.; CALIXTO, E.S.; MARTINS, A.S.; TOREZAN-SILINGARDI, H.M. Ant pollination of Paepalanthus lundii (Eriocaulaceae) in Brazilian savanna. Annals of Botany, n. 123, p. 1159–1165, 2019. DÍAZ-CASTELAZO, C; GUIMARÃES JR., P.R.; JORDANO, P.; JOHN, P.; THOMPSON, N.; MARQUIS, R.J.; RICO-GRAY, V. Changes of a mutualistic network over time: reanalysis over a 10-year period. Ecology, n. 91, p. 793–801, 2010. DÍAZ-CASTELAZO, C; SÁNCHEZ-GALVAN, I.; GUIMARÃES JR., P.R.; RAIMUNDO, R.L.G. ; RICO-GRAY, V. Long-term temporal variation in the organization of an ant – plant network. Annals of Botany, n. 111, p. 1285–1293, 2013. EBELING, A.; KLEIN, A.; TSCHARNTKE, T. Plant – flower visitor interaction webs: Temporal stability and pollinator specialization increases along an experimental plant diversity gradient. Basic and Applied Ecology, n. 12, p. 300–309, 2011. FEDERMAN, R.; CARMEL, Y.; KENT, R. Irrigation as an important factor in species distribution models. Basic and Applied Ecology, n. 14, p. 651–658, 2013. FELLERS, J.H. . Daily and seasonal activity in woodland ants. Oecologia, n. 78, p. 69–76, 1989. FORTUNA, M.A.; STOUFFER, D.B.; OLESEN, J.M., JORDANO, P.; MOUILLOT, D.; KRASNOV, B.R.; POULIN, R.; BASCOMPTE, J. Nestedness versus modularity in ecological networks: Two sides of the same coin? Journal of Animal Ecology, n. 79, p. 811–817, 2010. GARBUZOV, M. & RATNIEKS, F.L.W. Quantifying variation among garden plants in attractiveness to bees and other flower-visiting insects. Functional Ecology, n. 28, p. 364–374, 2014. GESLIN, B.; LE FÉON, V.; FOLSCHWEILLER, M.; FLACHER, F.; CARMIGNAC, D.; MOTARD, E.; PERRET, S.; DAJOZ, I. The proportion of impervious surfaces at the landscape scale structures wild bee assemblages in a densely populated region. Ecology and Evolution, n. 6, p. 6599–6615, 2016. GIANNINI, T.C.; GARIBALDI, L.A.; ACOSTA, A.L.; SILVA, J.S.; MAIA, K.P.; SARAIVA, A.M.; GUIMARÃES JR., P.R.; KLEINERT, A.M.P. Native and Non-Native Supergeneralist Bee Species Have Different Effects on Plant-Bee Networks. PLoS One, n. 10, 2015. GOBATTO, A.A.; CHAGAS, L.S.; PEREIRA, R.S. É o arboreto do Jardim Botânico do Rio de Janeiro hotspot urbano para os polinizadores? Biodiversidade, n. 20, p. 2–31, 2021. GONZÁLVEZ, F.G.; SANTAMARÍA, L.; CORLETT, R.T.; RODRÍGUEZ-GIRONÉS, M.A. Flowers attract weaver ants that deter less effective pollinators. Journal of Ecology, n. 101, p. 78–85, 2013. GRASS, I.; ALBRECHT, J.; JAUKER, F.; DIEKÖTTERDE, T.; WARZECHAD, D.; WOLTERSD, V.; FARWIGB, N. Agriculture, Ecosystems and Environment Much more than bees — Wildflower plantings support highly diverse flower-visitor communities from complex to structurally simple agricultural landscapes. Agriculture, Ecosystems and Environment, n. 225, p. 45–53, 2016. GROUTSCH, J.K.; MILLER, N.C.; TUIWAWA M.; HAYES, S.; STEVENS, M.I.; SCHWARZ, M.P. Not all exotic pollinator introductions are bad: an introduced buzz-pollinating bee Amegilla pulchra (Hymenoptera: Apidae) in Fiji indicates little potential for enhancing the spread of weeds. Austral Entomology, n. 58, p. 533-539, 2018. GRUBER, M.A.M.; SANTORO, D.; COOLING, M.; LESTER, P.J.; HOFFMANN, B.D.; BOSER, C.; LACH, L. A global review of socioeconomic and environmental impacts of ants reveals new insights for risk assessment. Ecological Applications, n. 32, 2022. 51 GUALLPA-CALVA, M.A; GUILCAPI-PACHECO, E.D.; ESPINOZA-ESPINOZA, A.E. Flora apícola de la zona estepa espinosa Montano Bajo, en la Estación Experimental Tunshi, Riobamba, Ecuador. Dominio de las Ciencias, n. 5, p. 71-93, 2019. GUIMARÃES, P.R.; RICO-GRAY, V.; REIS, S.F.; THOMPSON, J.N. Asymmetries in specialization in ant–plant mutualistic networks. Proceedings of the Royal Society B, n. 273, p. 2041–2047, 2006. GUIMARÃES, P.R. & GUIMARÃES, P. Improving the analyses of nestedness for large sets of matrices. Environmental Modelling & Software, n. 21, p. 1512–1513, 2006. GUIMERÀ, R. & AMARAL, L.A.N. Cartography of complex networks: Modules and universal roles. Journal of Statistical Mechanics: Theory and Experiment, n. 02001, p. 1–13, 2005. HALL, D.M. et al. The city as a refuge for insect pollinators. Conservation Biology, n. 31, p. 24–29, 2017. HEINRICH, B. The Hot-Blooded Insects. Heidelberg: Springer Berlin, 1993. HIROTA, M.M. Monitoring the brazilian Atlantic forest cover. In: C. Galindo-Leal and I.G. Câmara (Eds.), The Atlantic Forest of South América: biodiversity status, threats, and outlook (pp. 60-65). Washington: Island Press, 2003. HÖLLDOBLER, B. & WILSON, E.O. The Ants. Cambridge: Harvard University Press, 1990. HOFMANN, M.M.; FLEISCHMANN, A.; RENNER, S.S. Changes in the bee fauna of a German botanical garden between 1997 and 2017, attributable to climate warming, not other parameters. Oecologia, n. 187, p. 701–706, 2018. IMPERATRIZ-FONSECA, V.L.; CANHOS, D.A.L.; ALVES, D.A.; SARAIVA, A.M. Polinizadores no Brasil: Contribuição e perspectivas para a biodiversidade, uso sustentável, conservação e serviços ambientais. São Paulo: Edusp, 2012. ITO, F. et al. Ant Species Diversity in the Bogor Botanic Garden, West Java, Indonesia, with Descriptions of Two New Species of the Genus Leptanilla (Hymenoptera, Formicidae). J-STAGE, n. 10, p. 379-404, 2001. JUNKER, R.R.; BLÜTHGEN, N.; BREHM, T.; BINKENSTEIN, J.; PAULUS, J.; SCHAEFER, H.M.; STANG, M. Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Functional Ecology, n. 27, p. 329-341, 2013. KLEIN, A.M.; VAISSIÈRE, B.E.; CANE, J.H.; STEFFAN-DEWENTER, I.; CUNNINGHAM, S.A.; KREMEN, C.; TSCHARNTKE, T. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B, n. 274, p. 303–313, 2007. KÖPPEN, W. Climatología: Con un estudio de los climas de la tierra. (Es) Traducido del alemán. México, D.F: Fondo de Cultura Económica, 1948. KOVAC, H.; STABENTHEINER, A.; BRODSCHNEIDER, R. What do foraging wasps optimize in a variable environment, energy investment or body temperature? Journal of Comparative Physiology A, n. 201, p. 1043–1052, 2015. LANGE, D.; DÁTTILO, W.; DEL-CLARO, K. Influence of extrafloral nectary phenology on ant–plant mutualistic networks in a neotropical savanna. Ecological Entomology, n. 38, p. 463-469, 2013. LANGE, D. & DEL-CLARO, K. Ant-Plant Interaction in a Tropical Savanna: May the Network Structure Vary over Time and Influence on the Outcomes of Associations? PLoS One, n. 9, 2014. LANGE, D.; CALIXTO, E.S.; ROSA, B.B.; SALES, T.A.; DEL-CLARO, K. Natural history and ecology of foraging of the Camponotus crassus Mayr, 1862 (Hymenoptera: Formicidae). Journal of Natural History, n. 53, p. 1737–1749, 2019. LARSON, J.L.; KESHEIMER, A.J; POTTER, D.A. Pollinator assemblages on dandelions and white clover in urban and suburban lawns. Journal of Insect Conservation, n. 18, p. 863–873, 2014. 52 LATIF, A.; IQBAL, N.; EJAZ, M.; MALIK, S.A.; SAEED, S.; GULSHAN, A.B.; ALVI, A.M.; DAD, K. Pollination biology of Callistemon viminalis (Sol. Ex Gaertn.) G. Don (Myrtaceae), Punjab, Pakistan. Journal of Asia-Pacific Entomology, n. 19, p. 467-471, 2016. LAVISKI, B.F.S.; MAYHÉ-NUNES, A.J.; NUNES-FREITAS, A.F. Structure of ant-diaspore networks and their functional outcomes in a Brazilian Atlantic Forest. Sociobiology, n. 68, 2021. LIMA, A.C.O.L.; CASTILHO-NOLL, M.S.M.; GOMES, B.; NOLL, F.B. Social Wasp Diversity (Vespidae, Polistinae) in a Forest Fragment in the Northeast of São Paulo State Sampled with Different Methodologies. Sociobiology, n. 55, p. 613–625, 2010. LIMA, Y.F.; MELQUIADES, C.C.V.; SILVA, E.M.S. Diversidade e Comportamento de Abelhas na Florada de Antigonon leptopus HOOK. & ARN. (Polygonaceae) em Região Semiárida. HOLOS, n. 8, p. 1-13, 2021. LOPES, T.N.; VERÇOZA, F.C.; MISSAGIA, C.C.C. Fenologia reprodutiva e visitantes florais de Cordia superba Cham. (Boraginaceae) na vegetação da restinga de Grumari, Rio de Janeiro. Revista de Biologia Neotropical, n. 12, p. 39-43, 2015. LORENZI, H. Plantas para jardim no Brasil: herbáceas, arbustivas e trepadeiras. Nova Odessa: Instituto Plantarum, 2015. LORENZI, H. Árvores e arvoretas exóticas no Brasil: madeireiras, ornamentais e aromáticas. Nova Odessa: Instituto Plantarum de estudos de flora, 2018. LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Jardim Botânico Plantarum, 2020. LOYOLA, R.D.; MARTINS, R.P. (2006). Trap-nest occupation by solitary wasps and bees (Hymenoptera: Aculeata) in a forest urban remanent. Neotropical Entomology, n. 35, 2006. LUNA, P.; VILLALOBOS, R.; ESCOBAR, R.; NEVES, F.S.; DÁTTILO, W. Global trends in the trophic specialisation of flower-visitor networks are explained by current and historical climate. Ecology Letters, n. 25, p. 113-124, 2021. MARÍN, L.; MARTÍNEZ-SÁNCHEZ, M.E.; SAGOT, P.; NAVARRETE, D.; MORALESA, H. Floral visitors in urban gardens and natural areas: Diversity and interaction networks in a neotropical landscape. Basic and Applied Ecology, n. 43, p. 3–15, 2020. MARINHO, D.; VIVALLO, F. Unveiling the trap-nesting bees and wasps’ fauna (Hymenoptera: Apocrita) and associated organisms of the Jardim Botânico do Rio de Janeiro, Brazil. Papéis Avulsos de Zoologia, n. 60, 2020. MARUYAMA, P.K.; BONIZÁRIO, C.; MARCON, A.P., et al. Plant-hummingbird interaction networks in urban areas: Generalization and the importance of trees with specialized flowers as a nectar resource for pollinator conservation. Biological Conservation, n. 230, p. 187–194, 2019. MAURI, M.; ELLI, T.; CAVIGLIA, G.; UBOLDI, G.; AZZI, M. RAWGraphs: A Visualisation Platform to Create Open Outputs. In: Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, 2017, Nova Iorque. Nova Iorque: ACM, 2017. p. 28:1–28:5 MAZZEO, N.M.; TORRETTA, J.P. Wild bees (Hymenoptera: Apoidea) in an urban botanical garden in Buenos Aires, Argentina. Studies on Neotropical Fauna and Environment, n. 50, p. 182-193, 2014 MELLO, M.A.R.; SANTOS, G.M. DE M.; MECHI, M.R.; HERMES, M.G. High generalization in flower-visiting networks of social wasps. Acta Oecologica, n. 37, p. 37–42, 2011. MELLO, M.A.R.; MUYLAERT, R.L.; PINHEIRO, R.B.P.; FERREIRA, G.M.F. Guia para análise de redes ecológicas. Especialização (pp 74-46). Belo Horizonte, 2016. MUKHOPADHYAY, A.; QUADER, S. Ants on Clerodendrum infortunatum: Disentangling Effects of Larceny and Herbivory. Environmental Entomology, n. 47, p. 1143–1151, 2018. NAGASAKI, O. Functional specialization for pollination by scoliid wasps and solitary bees of Ampelopsis glandulosa (Vitaceae). Flora, n. 284, p. 151921, 2021. 53 NISHIDA, S. M.; NAIDE, S.S.; PAGNIN, D. Plantas que atraem aves e outros bichos. São Paulo: Cultura Acadêmica, 2014. NOGUEIRA, R.R.; SANTOS, D.F.B.; CALIXTO, E.S.; TOREZAN-SILINGARDI, H.M.; DEL-CLARO, K. Negative Effects of Ant-Plant Interaction on Pollination: Costs of a Mutualism. Sociobiology, n. 68, 2021. OLESEN, J.M.; BASCOMPTE, J.; DUPONT, Y.L.; JORDANO, P. The modularity of pollination networks. PNAS, n. 104, p. 19891–19896, 2007. OLIVEIRA, F.L.; DIAS, V.H.P.; COSTA, E.M. Influência das variações climáticas na atividade de vôo das abelhas jandairas Melipona subnitida Ducke (Meliponinae). Revista Ciência Agronômica, n. 43, 2012. OLIVEIRA JR., J.F.; DELGADO, R.C.; GOIS, G.; LANNES, A.; DIAS, F.O.; SOUZA, J.C.; SOUZA, M. Análise da Precipitação e sua Relação com Sistemas Meteorológicos em Seropédica, Rio de Janeiro. FLORAM, n. 21, p. 140-149, 2014. PAAIJMANS, K.P.; HEINIG, R.L.; SELIGA, R.A.; BLANFORD, J.I.; BLANFORD, S.; MURDOCK, C.C.; THOMAS, M.B. Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, n. 19, p. 2373–2380, 2013. PAINI, D.R. Impact of the introduced honey bee (Apis mellifera) (Hymenoptera : Apidae) on native bees: A review. Austral Ecology, n. 29, p. 399–407, 2004. PETANIDOU, T.; KALLIMANIS, A.S.; LAZARINA, M. et al. Climate drives plant–pollinator interactions even along small-scale climate gradients: the case of the Aegean. Plant Biology, n. 20, p. 176-183, 2017. PICK, R.A.; BLOCHTEIN, B. Atividades de vôo de Plebeia saiqui (Holmberg) (Hymenoptera, Apidae, Meliponini) durante o período de postura da rainha e em diapausa. Revista Brasileira de Zoologia, n. 19, p. 827 - 839, 2002. PIMENTEL, R.G.; RANGEL, G.C. Biologia Floralde duas espécies de Dombeya(Malvaceae) no Jardim Botânico da UFRRJ. Revista Trópica – Ciências Agrárias e Biológicas, n. 09, p. 77-85, 2017. QUEIROZ, Antônio C.M. et al. Ant diversity decreases during the dry season: A meta-analysis of the effects of seasonality on ant richness and abundance. BioTropica, n. 00, p. 1-11, 2022. R CORE TEAM (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ RAJU, A.J.S.; RAJU, V.K.; VICTOR, P.; NAIDU, S.A. Floral ecology, breeding system and pollination in Antigonon leptopus L. (Polygonaceae). Plant Species Biology, n. 16, p. 159-164, 2001. RICO-GRAY, V.; OLIVEIRA, P.S. The Ecology and Evolution of Ant-Plant Interactions. Chicago: University of Chicago Press, 2007. RICO-GRAY, V.; DÍAZ-CASTELAZO, C.; RAMÍREZ-HERNÁNDEZ, A.; GUIMARÃES JR., P.R.; HOLLAND, J.N. Abiotic factors shape temporal variation in the structure of an ant – plant network. Arthropod-Plant Interactions, n. 6, p. 289–295, 2012. ROHITASH & JAI, R. K. Reproductive biology of Clerodendrum splendens (Verbenaceae). Advances in Bio Research, n. 1, p. 84-86, 2010. RUSSO, L.; KEYZER, C.W.; HARMON-THREATT, A.N.; LECROY, K.A.; MACLVOR, J.S. The managed-to-invasive species continuum in social and solitary bees and impacts on native bee conservation. Current Opinion in Insect Science, n. 46, p. 43-49, 2021. SAKAGAMI, S.F.; LAROCA, S.; MOURE, J.S. Wild Bee Biocoenotics in Sao Jose dos Pinhais ( PR ). Journal of the Faculty of Science, n. 16, p. 235–291, 1967. SANTOS, G.M.M.; DÁTTILO, W.; PRESLEY, S.J. The seasonal dynamic of ant-flower networks in a semi-arid tropical environment. Ecological Entomology, n. 39, 2014 54 SANTOS, M.N.; DELABIE, J.H.C.; QUEIROZ, J.M. Parques Urbanos na Conservação da Diversidade de Formigas: Estudo de Caso no Rio de Janeiro. In: O.C. Bueno, A.E.C. M.S.C. Campos, Morini (Eds.), Formigas em ambientes urbanos no Brasil (pp. 337-361). Bauru: Canal 6 editora, 2017. SCHLINDWEIN, C. Are oligolectic bees always the most effective pollinators? In: B. M. Freitas & J. O. P. Pereira (Eds.), Solitary bees: Conservation, rearing and management for pollination (pp. 231–240). Fortaleza: Imprensa Universitária - Universidade Federal do Ceará, 2004. SILVEIRA, F. A.; MELO, G. A.; ALMEIDA, E. A. Abelhas brasileiras: Sistemática e Identificação. Belo Horizonte: Fundação Araucária, 2002. SILVA, F.R.; ROSSA-FERES, D.C. Fragmentation gradients differentially affect the species range distributions of four taxonomic groups in semi-deciduous Atlantic forest. Biotropica, n. 49, p. 283-292, 2016. SILVA, A.F.; CARVALHO, Y.C.; COSTA, S.J.M. Fauna de Formigas (Hymenoptera, Formicidae) em um fragmento de Floresta Atlântica no Estado de Minas Gerais. Rev. Bras. Zoociências, n. 19, p. 44-55, 2018. SIMÕES, D.; GOBBI, N.; BATARCE, B.R. Mudanças sazonais na estrutura populacional em colônias de 3 espécies do gênero Mischocyttarus. Naturalia, n. 10, p. 89–105, 1985. SMITH, R.M.; THOMPSON, K.; HODGSON, J.G.; WARREN, P.H.; GASTON, K.J. Urban domestic gardens (IX): Composition and richness of the vascular plant flora, and implications for native biodiversity. Biological Conservation, n. 129, p. 312–322, 2006. SPIESMAN, B.J.; INOUYE, B.D. Habitat loss alters the architecture of plant-pollinator interaction networks. Ecology, n. 94, p. 2688–2696, 2013. TOGNI, O.C.; LOCHER, G.D.A.; GIANNOTTI, E.; TOBIAS, O. The Social Wasp Community (Hymenoptera, Vespidae) in an Area of Atlantic Forest, Ubatuba, Brazil. Check List, n. 10, p. 10–17, 2014. TOREZAN-SILINGARDI, H.M. Flores e animais: uma introdução à história natural da polinização. In K. Del-Claro & H.M. Torezan-Silingardi (Eds.), Ecologia das Interações Plantas-Animais (pp 111-139). Rio de Janeiro: Technical Books Editora, 2012. TSCHOEKE, P.H.; OLIVEIRA, E.E.; DALCIN, M.S.; SILVEIRA-TSCHOEKE, M.C.A.C.; SANTOS, G.R. Diversity and flower-visiting rates of bee species as potential pollinators of melon (Cucumis melo L.) in the Brazilian Cerrado. Scientia Horticulturae, n. 186, p. 207–216, 2015. TWERD, L.; BANASZAK-CIBICKA, W. Wastelands: their attractiveness and importance for preserving the diversity of wild bees in urban areas. Journal of Insect Conservation, n. 23, p. 573–588, 2019. TWERD, L.; BANASZAK-CIBICKA, W.; SOBIERAJ-BETLIŃSKA, A.; WALDON-RUDZIONEK, B.; HOFFMANN, R. Contributions of phenological groups of wild bees as an indicator of food availability in urban wastelands. Ecological Indicators, n. 126, 2021. VALE, V.S.; SCHIAVINI, I.; LOPES, S.F.; OLIVEIRA, A.P.; DIAS NETO, O.C.; GUSSON, A.E. Functional groups in a semideciduous seasonal forest in Southeastern Brazil. Biotemas, n. 26, p. 45-58, 2013. VILA-VERDE, G.; DOS SANTOS, C.R.; BOMFIM, G.S. Insetos (Insecta: Hymenoptera, Lepidoptera e Odonata) e as Mudanças Climáticas. Terræ Di-datica, n. 17, 1-11, 2021. VILLAMIL, N.; BOEGE, K.; STONE, G.N. Ant-Pollinator Conflict Results in Pollinator Deterrence but no Nectar. Frontiers in Plant Science, n. 9, p. 1–14, 2018. VIZENTIN-BUGONI, J.; MARUYAMA, P. K.; SOUZA, C. S., et al. Plant-Pollinator Networks in the Tropics: A Review . In W. Dáttilo & V. Rico-Gray (Eds.), Ecological Networks in the Tropics (pp. 29-42). Springer International Publishing, 2018. 55 WANG, Y.; DEANGELIS, D.L.; NATHANIEL HOLLAND, J. Dynamics of an ant-plant-pollinator model. Communications in Nonlinear Science and Numerical Simulation, n. 20, p. 950–964, 2015. WATTS, S.; DORMANN, C.F.; MARTÍN GONZÁLEZ, A.M.; OLLERTON J. The influence of floral traits on specialization and modularity of plant-pollinator networks in a biodiversity hotspot in the Peruvian Andes. Annals of Botany, n. 118, p. 415–429, 2016. WINKLER, K.; WÄCKERS, F.L.; KAUFMAN, L.V.; LARRAZA, V.; VAN LENTEREN, J.C. Nectar exploitation by herbivores and their parasitoids is a function of flower species and relative humidity. Biological Control, n. 50, p. 299–306, 2009. WITTMANN, D. Nest Architecture, Nest Site Preferences and Distribution of Plebeia wittmanni (Moure & Camargo, 1989) in Rio Grande do Sul, Brazil (Apidae: Meliponinae). Studies on Neotropical Fauna and Environment, n. 24, p. 17-23, 2008.pt_BR
dc.subject.cnpqBiologia Geralpt_BR
Appears in Collections:Mestrado em Biologia Animal

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Mariana Romanini Menezes.pdf3.61 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.