Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/17671
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Torre, Rafael | - |
dc.date.accessioned | 2024-07-30T14:15:32Z | - |
dc.date.available | 2024-07-30T14:15:32Z | - |
dc.date.issued | 2022-12-22 | - |
dc.identifier.citation | TORRE, Rafael. Estudo e avaliação da toxicidade dos óleos essenciais de Schinus terebinthifolius Raddi e Lippia alba [Mill] N.E.Br ex Britton & P. Wilson para a proteção de sementes contra Callosobruchus maculatus Fabricius, 1775. 2022. 73 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/17671 | - |
dc.description.abstract | A contínua utilização de agrotóxicos sintéticos trouxe o surgimento de preocupações a respeito de seus efeitos residuais tanto no meio ambiente, quanto à saúde humana, além de aumento de populações resistentes de pragas agrícolas. Métodos alternativos são estudados como forma de mitigar essas consequências, e entre eles está a utilização de óleos essenciais como forma de controle de pragas. Esse estudo buscou verificar os efeitos por fumigação de 12 óleos essenciais de diferentes composições químicas advindos de genótipos de duas espécies de plantas: Lippia alba (UFRRJ ECB021/022 QT citral/limoneno, UFRRJ ECB037/029/016 QT citral, UFRRJ ECB003/008 QT carvona/limoneno e UFRRJ ECB028 QT linalol) e Schinus terebinthifolius (UFRRJ ARO011 QT α-pineno, UFRRJ ARO050 QT sabineno, UFRRJ ARO079 QT α-felandreno/α-pineno, UFRRJ ARO025 QT β-pineno/α-pineno, UFRRJ ARO032 QT δ-careno/α-pineno, UFRRJ ARO094 QT limoneno, UFRRJ ARO078 QT α-felandreno/sabineno e UFRRJ ARO022 QT mirceno) contra o caruncho do feijão-caupi, Callosobruchus maculatus. Foram utilizadas concentrações na faixa entre 0,10 mg/mL de ar e 1,00 mg/mL de ar para avaliação de aspectos do ciclo de vida do inseto, como: mortalidade, postura de ovos, emergência de novos adultos e taxa de emergência. Além disso, eclosão larval e proteção da massa dos grãos de feijão foram avaliados em testes com os óleos dos genótipos de S. terebinthifolius: UFRRJ ARO032 QT δ-careno/α-pineno e UFRRJ ARO094 QT limoneno e com todos os óleos de L. alba. Os resultados indicaram tendências de inibição do ciclo de vida em todos os óleos testados, sendo o óleo do genótipo UFRRJ ECB028 QT linalol o que obteve menor CL50 (0,1017 mg/mL de ar). Os óleos de L. alba obtiveram melhor controle da reprodução de C. maculatus e melhora na proteção das sementes. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | defensivo botânico | pt_BR |
dc.subject | inseto-praga de grãos armazenados | pt_BR |
dc.subject | feijão-caupi | pt_BR |
dc.subject | botanical pesticide | pt_BR |
dc.subject | stored seed pest | pt_BR |
dc.subject | cowpea | pt_BR |
dc.title | Estudo e avaliação da toxicidade dos óleos essenciais de Schinus terebinthifolius Raddi e Lippia alba [Mill] N.E.Br ex Britton & P. Wilson para a proteção de sementes contra Callosobruchus maculatus Fabricius, 1775 | pt_BR |
dc.title.alternative | Study and evaluation of the toxicity of essential oils from Schinus terebinthifolius Raddi and Lippia alba [Mill] N.E.Br ex Britton & P. Wilson and bushy matgrass for seed protection against Callosobruchus maculatus Fabricius, 1775 | en |
dc.type | Dissertação | pt_BR |
dc.description.abstractOther | The continuous use of synthetic pesticides has raised concerns about their residual effects on both the environment and human health, as well as an increase in agricultural pests resistance. Alternative methods are studied as a way of mitigating these consequences, and among them is the use of essential oils as a manner of controlling pests. This work aimed to assess the fumigation effects of 12 essential oils of different chemical compositions from genotypes of two plant species: Lippia alba (UFRRJ ECB021/022 QT citral/limonene, UFRRJ ECB037/029/016 QT citral, UFRRJ ECB003/008 QT carvone/limonene e UFRRJ ECB028 QT linalool) e Schinus terebinthifolius (UFRRJ ARO011 QT α-pinene, UFRRJ ARO050 QT sabinene, UFRRJ ARO079 QT α-phellandrene/α-pinene, UFRRJ ARO025 QT β-pinene/α-pinene, UFRRJ ARO032 QT δ-carene/α-pinene, UFRRJ ARO094 QT limonene, UFRRJ ARO078 QT α-phellandrene/sabinene e UFRRJ ARO022 QT mircene) against the cowpea weevil, Callosobruchus maculatus. Concentrations in the range between 0.10 mg/mL of air and 1.00 mg/mL of air were used to evaluate aspects from insect reproductive cycle, such as: mortality, egg laying, emergence of new adults and emergence rate. Furthermore, larval hatching and bean grain mass preservation were assessed in assays with the oils of the S. terebinthifolius genotypes: UFRRJ ARO032 QT δ-carene/α-pinene e UFRRJ ARO094 QT limonene and with all L. alba oils. The results indicated reproductive cycle inhibition occurs in all oils tested, with the UFRRJ ECB028 QT linalool oil having the lowest LC50 (0.1017 mg/mL of air). L. alba oils achieved better control of C. maculatus reproduction and improved seed protection. | en |
dc.contributor.advisor1 | Souza, Marco Andre Alves de | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-2173-3513 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2162032695884224 | pt_BR |
dc.contributor.advisor-co1 | Pontes, Emerson Guedes | - |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-2679-238X | pt_BR |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/1562085358907265 | pt_BR |
dc.contributor.referee1 | Souza, Marco Andre Alves de | - |
dc.contributor.referee1ID | https://orcid.org/0000-0003-2173-3513 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/2162032695884224 | pt_BR |
dc.contributor.referee2 | Fernandes, Maria do Carmo de Araújo | - |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/8084053063267581 | pt_BR |
dc.contributor.referee3 | Araújo, Carolina Rodrigues de | - |
dc.contributor.referee3Lattes | - | pt_BR |
dc.contributor.referee4 | Damasceno Junior, Pedro Corrêa | - |
dc.contributor.referee4ID | https://orcid.org/0000-0001-8879-4850 | pt_BR |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/3493599001978076 | pt_BR |
dc.creator.ID | https://orcid.org/0000-0002-8248-7080 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/0093526400791701 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Química | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
dc.relation.references | ABDELGALEIL, S. A. M. et al. Insecticidal efficacy of two inert dusts and Trichoderma harzianum, applied alone or in combination, against Callosobruchus maculatus and Callosobruchus chinensis on stored cowpea seeds. Crop Protection, v. 146, 1 ago. 2021. ACGARWAL, K. K. et al. Toxicity of 1,8-clneole towards three species of stored product coleofterans. Insect Science and its Application, v. 21, n. 2, p. 155–160, 2001. AHUCHAOGU, C. E.; OJIAKO, F. O. Host seed type and volatile compound abundance level mould host location and preference behaviours in Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Chrysomelidae). Polish Journal of Entomology, v. 90, n. 4, p. 152–163, 2021. AKAMI, M. et al. Comparative expression of two detoxification genes by Callosobruchus maculatus in response to dichlorvos and Lippia adoensis essential oil treatments. Journal of Pest Science, v. 92, p. 665–676, 2019. ALVES, M. DE S. et al. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Protection, v. 119, p. 191–196, 2019. ALVES, M. S. et al. Composiçao e Toxicidade de Oleos Essenciais Testados por Fumigaçao Contra o Callosobruchus maculatus (Fabricius, 1775) Praga do Feijao-Caupi Armazenado. Revista Virtual de Química, v. 7, n. 6, p. 2387–2399, 1 nov. 2015. AMEZIAN, D.; NAUEN, R.; LE GOFF, G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. Insect Biochemistry and Molecular Biology, v. 138, 1 nov. 2021. ATAIDE, J. et al. Insecticidal activity and sublethal effects of essential oils on Sitophilus zeamais (Coleoptera: Curculionidae) and on Acanthoscelides obtectus (Coleoptera: Chrysomelidae). Acta Biológica Paranaense, v. 51, n. 83118, 23 fev. 2022. BARBOSA, D. R. E S. et al. Lethal and sublethal effects of chemical constituents from essential oils on Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) in cowpea stored grains. Journal of Plant Diseases and Protection, v. 128, n. 6, p. 1575–1586, 19 out. 2021. BASTOS, E. A. A cultura do feijão-caupi no Brasil. 1a ed. Teresina: EMBRAPA MEIO-NORTE, 2016. v. Único BECK, C. W.; BLUMER, L. S. A Handbook on Bean Beetles, Callosobruchus maculatus. Caryologia, n. September, 2014. CABALLERO, B. (ED.). Encyclopedia of Food Sciences and Nutrition. 2a ed. [s.l.] Elsevier Science Ltd, 2003. v. 5 CDC. Phosphine: Lung Damaging Agent | NIOSH | CDC. 2011. Disponível em: <https://www.cdc.gov/niosh/ershdb/emergencyresponsecard_29750035.html>. Acesso em: 12 jun. 2022 45 CHAUBEY, M. Biological activities of terpenes against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Entomology and Applied Science Letters, v. 2, n. 1, 2015. COPE, J. M.; FOX, C. W. Oviposition decisions in the seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae): effects of seed size on superparasitism. Journal of Stored Products Research, v. 39, n. 4, p. 355–365, 1 jan. 2003. CREDLAND, P. F.; WRIGHT, A. W. Factors affecting female fecundity in the cowpea seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Stored Products Research, v. 25, n. 3, p. 125–136, 1 jul. 1989. CUMMING, J. M. et al. Detoxification Mechanisms in Insects. Encyclopedia of Entomology, p. 1187–1201, 2008. DAYARAM, L.; KHAN, A. Repellent, Fumigant and Contact Toxicity of Salvia Officinalis, Rosmarinus Officinalis and Coriandrum Sativum Against Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). International Journal of Tropical Agriculture, v. 34, n. 4, p. 893–902, 2016. DEVI, M. B.; DEVI, N. V. Biology and morphometric measurement of cowpea weevil, Callosobruchus maculatus Fabr. (Coleoptera: Chrysomelidae) in green gram. Journal of Entomology and Zoology Studies, v. 2, n. 3, p. 74–76, 2014. DEWICK, P. M. Medicinal Natural Products: A Biosynthetic Approach. 2a Edição ed. Chichester: John Wiley & Sons, LTD, 2002. v. 0471496405 DICK, K. M.; CREDLAND, P. F. Egg production and development of three strains of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research, v. 20, n. 4, p. 221–227, 1 out. 1984. DONLEY, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environmental Health, v. 18, n. 1, p. 1–12, 7 jun. 2019. DUTRA, K. DE A. et al. Control of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with essential oils from four Citrus spp. plants. Journal of Stored Products Research, v. 68, p. 25–32, 1 jul. 2016. EKEH, F. O. K. I. N. Effects of Citrus sinensis Peel Oil on the Oviposition and Development of Cowpea Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) in Some Legume Grains. Pakistan Journal of Zoology, v. 45, n. 4, p. 967–974, 2013. ENAN, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, v. 130, n. 3, p. 325–337, 2001. EPPO. Phosphine fumigation of stored products to control stored product insects in general. EPPO Bulletin, v. 42, n. 3, p. 498–500, dez. 2012. ERB, M.; ROBERT, C. A. M. Sequestration of plant secondary metabolites by insect herbivores: Molecular mechanisms and ecological consequences. Current Opinion in Insect Science, v. 14, p. 8–11, 1 abr. 2016. FAO. FAOSTAT, 2019. Disponível em: https://www.fao.org/faostat/en/#data/QCL/visualize. Acesso em: 25 nov. 2022. 46 FERRY, N. et al. Plant-insect interactions: molecular approaches to insect resistance. Current opinion in biotechnology, v. 15, n. 2, p. 155–161, abr. 2004. GALLO, D. et al. Entomologia Agrícola. Piracicaba: FEALQ, 2002. GLOSS, A. D.; ABBOT, P.; WHITEMAN, N. K. How interactions with plant chemicals shape insect genomes. Current opinion in Insect Science, v. 36, p. 149-156, dez. 2019. GULLAN, P. J.; CRANSTON, P. S. Insetos - Fundamentos de entomologia. 5a ed. [s.l.] Guanabara Koogan, 2017. v. Unico GUSMÃO, N. M. S. et al. Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae, Bruchinae). Journal of Stored Products Research, v. 54, p. 41–47, 1 jul. 2013. HUANG, X. et al. Isolation and insecticidal activity of essential oil from artemisia lavandulaefolia dc. Against plutella xylostella. Toxins, v. 13, n. 12, 1 dez. 2021. ILEKE, K. D.; ODEYEMI, O. O.; ASHAMO, M. O. Varietal resistance of some cowpea cultivars to cowpea bruchid, Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae] infestation. FUTA Journal of Research in Sciences, v. 2013, n. 1, p. 72–81, [s.d.]. ISO. ISO 9235:2021 - Aromatic natural raw materials., 2021. Disponível em: <https://www.iso.org/obp/ui/#iso:std:iso:9235:ed-3:v1:en>. Acesso em: 12 jun. 2022 JAYARAM, C. S. et al. Chemical Composition and Insecticidal Activities of Essential Oils against the Pulse Beetle. Molecules, v. 27, n. 2, p. 568, 17 jan. 2022. JERIBI, C. et al. Comparative Study of Bioactive Compounds and Antioxidant Activity of Schinus terebinthifolius RADDI Fruits and Leaves Essential Oils. International Journal of Science and Research, v. 3, n. 12, 2014. JUMBO, L. O. V. et al. Toxicity to, oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PLoS ONE, v. 13, n. 11, 1 nov. 2018. KALPNA; HAJAM, Y. A.; KUMAR, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon, v. 8, n. 1, p. e08703, 1 jan. 2022. KÉBÉ, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. Journal of Biogeography, v. 44, n. 11, p. 2515–2526, 1 nov. 2017. KÉÏTA, S. M. et al. Effect of various essential oils on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research, v. 36, n. 4, p. 355–364, 15 out. 2000. KPOVIESSI, AD. et al. Resistance of cowpea to Cowpea bruchid (Callosobruchus maculatus Fab.): Knowledge level on the genetic advances. Journal of Plant Breeding and Crop Science, v. 11, n. 8, p. 185–195, 2019. KRISTEN WIRA WACANA SUMBA, U. Toxicological and Physiological Effects of Essential Oils against Tribolium castaneum and Callosobrochus maculatus Parakuat Dichoride to Soil 47 Arthropod View project Kairomone attractant for controlling Lyriomiza sp in long beans View project Sri Ita Tarigan. Article in Journal of Biopesticides, 2016. KRZYŻOWSKI, M. et al. The Effect of Rosmarinus officinalis Essential Oil Fumigation on Biochemical, Behavioral, and Physiological Parameters of Callosobruchus maculatus. Insects, v. 11, n. 344, jun. 2020. KRZYŻOWSKI, M.; BARAN, B.; FRANCIKOWSKI, J. Intergenerational Transmission of Resistance of Callosobruchus maculatus to Essential Oil Treatment. Molecules, v. 15, n. 4541, 26 jul. 2021. KUMRUNGSEE, N. et al. Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. Journal of Pest Science, v. 87, n. 4, p. 721–729, 5 jul. 2014. LAMBERT, M. M. et al. Activity of Syzygium aromaticum essential oil and its main constituent eugenol in the inhibition of the development of Ctenocephalides felis felis and the control of adults. Veterinary parasitology, v. 282, 1 jun. 2020. LI, Y. et al. THE OCTOPAMINE RECEPTOR octß2R IS ESSENTIAL FOR OVULATION AND FERTILIZATION IN THE FRUIT FLY Drosophila melanogaster. Archives of Insect Biochemistry and Physiology, v. 88, n. 3, p. 168–178, 1 mar. 2015. LIMA, M. P. L. et al. Stability of the resistance of cowpea genotypes to Callosobruchus maculatus (Fabr.) in successive generations. Scientia Agricola, v. 59, n. 2, jun. 2002. LIMA, M. P. L. et al. Alternation of cowpea genotypes affects the biology of Callosobruchus maculatus (Fabr.) (Coleoptera: Bruchidae). Scientia Agricola, v. 61, n. 1, p. 27–31, 1 jan. 2004. LUO, J. et al. Drosophila Insulin-Producing Cells Are Differentially Modulated by Serotonin and Octopamine Receptors and Affect Social Behavior. 2014. MAŁEK, D. K.; CZARNOLESKI, M. Thermal Preferences of Cowpea Seed Beetles (Callosobruchus maculatus): Effects of Sex and Nuptial Gift Transfers. 2021. MANANDHAR, A.; MILINDI, P.; SHAH, A. An Overview of the Post-Harvest Grain Storage Practices of Smallholder Farmers in Developing Countries. Agriculture, v. 8, n. 4, 15 abr. 2018. MATOS, L. F. et al. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Industrial Crops and Products, v. 145, p. 112088, 1 mar. 2020. MBATA, G. N.; PAYTON, M. E. Effect of monoterpenoids on oviposition and mortality of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) under hermetic conditions. Journal of Stored Products Research, v. 53, p. 43–47, 1 abr. 2013. MONTELLA, I. R.; SCHAMA, R.; VALLE, D. The classification of esterases: an important gene family involved in insecticide resistance - A review. Memórias do Instituto Oswaldo Cruz, v. 107, n. 4, p. 437–449, jun. 2012. MUSSER, R. O. et al. Caterpillar saliva beats plant defences. Nature 2002 416:6881, v. 416, n. 6881, p. 599–600, 11 abr. 2002. 48 MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 6772, p. 853–858, 24 fev. 2000. NATTUDURAI, G. et al. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environmental Science and Pollution Research 2016 24:2, v. 24, n. 2, p. 1619–1629, 27 out. 2016. NICOLOPOULOU-STAMATI, P. et al. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, v. 4, n. 148, p. 8, 2016. OBOH, G. et al. Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na + /K +-ATPase activities. 2017. OLIVEIRA, J. V. DE et al. Fumigation and repellency of essential oils against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) in cowpea. Pesquisa Agropecuária Brasileira, v. 52, n. 1, p. 10–17, 1 jan. 2017. PEIXOTO, M. G. et al. Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Industrial Crops and Products, v. 71, p. 31–36, 1 set. 2015. PEREIRA, L. A. G.; BIANCHETTI, A. Fatores que afetam a viabilidade das sementes. Londrina. EMBRAPA-CNPSo. 1977. Boletim técnico n. 2. PRATES, L. H. F. et al. Eugenol diffusion coefficient and its potential to control Sitophilus zeamais in rice. Scientific Reports, 2019. PUROHIT, P.; JAYAS, D. S.; CHELLADURAI, V.; YADAV, B. K. Microwave treatment of mung bean (Vigna radiata) for reducing the cooking time. Applied Engineering in Agriculture, v. 29, n. 4, p. 547-555, 2013. RAFAEL, J. A. et al. Insetos do Brasil: Diversidade e Taxonomia. 1a ed. [s.l.] Holos Editora, 2012. v. Único REGNAULT-ROGER, C.; VINCENT, C.; ARNASON, J. T. Essential oils in insect control: Low-risk products in a high-stakes world. Annual Review of Entomology, v. 57, p. 405–424, 2012. RODRÍGUEZ-GONZÁLEZ, Á. et al. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris, L.). Insects, v. 10, n. 5, p. 151, 25 maio 2019. RÖNN, J.; KATVALA, M.; ARNQVIST, G. Coevolution between harmful male genitalia and female resistance in seed beetles. Proceedings of the National Academy of Sciences of the United States of America, v. 104, n. 26, p. 10921–10925, 26 jun. 2007. RÖNN, J. L.; HOTZY, C. Do longer genital spines in male seed beetles function as better anchors during mating? Animal Behaviour, v. 83, n. 1, p. 75–79, jan. 2012. SÁ, L. F. R. DE et al. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Insect Physiology, v. 60, n. 1, p. 50–57, jan. 2014. 49 SAVALLI, U. M.; FOX, C. W. The effect of male size, age, and mating behavior on sexual selection in the seed beetle Callosobruchus maculatus. Ethology Ecology and Evolution, v. 11, n. 1, p. 49–60, 1 jan. 1999. SCHÜTZLER, N. et al. Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state. 2019. SHU, S. et al. Sex pheromone production in Callosobruchus maculatus (Coleoptera: Bruchidae): Electroantennographic and behavioral responses. Journal of Stored Products Research, v. 32, n. 1, p. 21–30, 1996. SHUKLA, R. et al. Efficacy of essential oils of Lippia alba (Mill.) N.E. Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behaviour of pulse beetle, Callosobruchus chinensis L. Journal of the Science of Food and Agriculture, v. 91, n. 12, p. 2277–2283, 1 set. 2011. STILLWELL, R. C.; FOX, C. W. Environmental eVects on sexual size dimorphism of a seed-feeding beetle. POPULATION ECOLOGY, v. 153, p. 273–280, 2007. SUN, J. et al. Investigation of Pesticidal Effects of Peucedanum terebinthinaceum Essential Oil on Three Stored-Product Insects. Month-Month, p. 1307–6167, 2019. SUWANNAYOD, S. et al. Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects, v. 10, n. 6, p. 178, 2019. SWAMY, S. V. S. G; WESLEY, B. J; KAMAKSHI, J. Relative susceptibility of chickpea varieties to pulse bruchid, Callosobruchus maculatus (F.). Journal of Entomology and Zoology Studies, v. 7, n. 3, p. 442-446, 2019. TAK, J. H.; ISMAN, M. B. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Scientific Reports, v. 7, n. 1, p. 1–11, 9 fev. 2017. TITOUHI, F. et al. Protective effects of three Artemisia essential oils against Callosobruchus maculatus and Bruchus rufimanus (Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies. Journal of Stored Products Research, v. 72, p. 11–20, 1 maio 2017. TRIPATHI, A. K. et al. Insecticidal and Ovicidal Activity of the Essential Oil of Anethum sowa Kurz against Callosobruchus maculatus F. (Coleoptera: Bruchidae). International Journal of Tropical Insect Science, v. 21, n. 1, p. 61–66, 2001. TRIPATHI, K. D. Essentials of Medical Pharmacology. 6a ed. Nova Delhi: Jaypee Brothers Medical Pub, 2008. v. Único TUDA, M. et al. Global Genetic Differentiation in a Cosmopolitan Pest of Stored Beans: Effects of Geography, Host-Plant Usage and Anthropogenic Factors. PLOS ONE, v. 9, n. 9, p. e106268, 2014. UNOKI, S.; MATSUMOTO, Y.; MIZUNAMI, M. Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. The European journal of neuroscience, v. 24, n. 7, p. 2031–2038, out. 2006. 50 URSPRUNG, C.; DEN HOLLANDER, M.; GWYNNE, D. T. Female seed beetles, Callosobruchus maculatus, remate for male-supplied water rather than ejaculate nutrition. Behavioral Ecology and Sociobiology, v. 63, n. 6, p. 781–788, abr. 2009. UTIDA, S. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). Journal of Stored Products Research, v. 8, n. 2, p. 111–125, 1 jun. 1972. VAN HUIS, A. et al. Impact of the egg parasitoid Uscana lariophaga and the larval-pupal parasitoid Dinarmus basalis on Callosobruchus maculatus populations and cowpea losses. Entomologia Experimentalis et Applicata, v. 104, n. 2–3, p. 289–297, 2002. VAN LIESHOUT, E.; MCNAMARA, K. B.; SIMMONS, L. W. Why Do Female Callosobruchus maculatus Kick Their Mates? PLOS ONE, v. 9, n. 4, p. e95747, 21 abr. 2014. WANG, H. Y. et al. Insecticidal and repellent efficacy of the essential oil from Lobularia maritima and trans-3-pentenenitrile against insect pests of stored grains Insecticidal and repellent efficacy of the essential oil from Lobularia maritima and trans-3-pentenenitrile against insect pests of stored grains. International Journal of Food Properties, v. 23, n. 1, p. 1125–1135, 2020. YA-ALI, P.; YARAHMADI, F.; MEHRNIA, M. A. Efficacies of Two Nano-Formulations of Tasmanian Blue Gum Essential Oil to Control Callosobruchus maculatus. Journal of Economic Entomology, v. 113, n. 3, p. 1555–1562, 6 jun. 2020.ABDELGALEIL, S. A. M. et al. Insecticidal efficacy of two inert dusts and Trichoderma harzianum, applied alone or in combination, against Callosobruchus maculatus and Callosobruchus chinensis on stored cowpea seeds. Crop Protection, v. 146, 1 ago. 2021. ACGARWAL, K. K. et al. Toxicity of 1,8-clneole towards three species of stored product coleofterans. Insect Science and its Application, v. 21, n. 2, p. 155–160, 2001. AHUCHAOGU, C. E.; OJIAKO, F. O. Host seed type and volatile compound abundance level mould host location and preference behaviours in Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Chrysomelidae). Polish Journal of Entomology, v. 90, n. 4, p. 152–163, 2021. AKAMI, M. et al. Comparative expression of two detoxification genes by Callosobruchus maculatus in response to dichlorvos and Lippia adoensis essential oil treatments. Journal of Pest Science, v. 92, p. 665–676, 2019. ALVES, M. DE S. et al. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Protection, v. 119, p. 191–196, 2019. ALVES, M. S. et al. Composiçao e Toxicidade de Oleos Essenciais Testados por Fumigaçao Contra o Callosobruchus maculatus (Fabricius, 1775) Praga do Feijao-Caupi Armazenado. Revista Virtual de Química, v. 7, n. 6, p. 2387–2399, 1 nov. 2015. AMEZIAN, D.; NAUEN, R.; LE GOFF, G. Comparative analysis of the detoxification gene inventory of four major Spodoptera pest species in response to xenobiotics. Insect Biochemistry and Molecular Biology, v. 138, 1 nov. 2021. ATAIDE, J. et al. Insecticidal activity and sublethal effects of essential oils on Sitophilus zeamais (Coleoptera: Curculionidae) and on Acanthoscelides obtectus (Coleoptera: Chrysomelidae). Acta Biológica Paranaense, v. 51, n. 83118, 23 fev. 2022. BARBOSA, D. R. E S. et al. Lethal and sublethal effects of chemical constituents from essential oils on Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) in cowpea stored grains. Journal of Plant Diseases and Protection, v. 128, n. 6, p. 1575–1586, 19 out. 2021. BASTOS, E. A. A cultura do feijão-caupi no Brasil. 1a ed. Teresina: EMBRAPA MEIO-NORTE, 2016. v. Único BECK, C. W.; BLUMER, L. S. A Handbook on Bean Beetles, Callosobruchus maculatus. Caryologia, n. September, 2014. CABALLERO, B. (ED.). Encyclopedia of Food Sciences and Nutrition. 2a ed. [s.l.] Elsevier Science Ltd, 2003. v. 5 CDC. Phosphine: Lung Damaging Agent | NIOSH | CDC. 2011. Disponível em: <https://www.cdc.gov/niosh/ershdb/emergencyresponsecard_29750035.html>. Acesso em: 12 jun. 2022 45 CHAUBEY, M. Biological activities of terpenes against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Entomology and Applied Science Letters, v. 2, n. 1, 2015. COPE, J. M.; FOX, C. W. Oviposition decisions in the seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae): effects of seed size on superparasitism. Journal of Stored Products Research, v. 39, n. 4, p. 355–365, 1 jan. 2003. CREDLAND, P. F.; WRIGHT, A. W. Factors affecting female fecundity in the cowpea seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Stored Products Research, v. 25, n. 3, p. 125–136, 1 jul. 1989. CUMMING, J. M. et al. Detoxification Mechanisms in Insects. Encyclopedia of Entomology, p. 1187–1201, 2008. DAYARAM, L.; KHAN, A. Repellent, Fumigant and Contact Toxicity of Salvia Officinalis, Rosmarinus Officinalis and Coriandrum Sativum Against Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). International Journal of Tropical Agriculture, v. 34, n. 4, p. 893–902, 2016. DEVI, M. B.; DEVI, N. V. Biology and morphometric measurement of cowpea weevil, Callosobruchus maculatus Fabr. (Coleoptera: Chrysomelidae) in green gram. Journal of Entomology and Zoology Studies, v. 2, n. 3, p. 74–76, 2014. DEWICK, P. M. Medicinal Natural Products: A Biosynthetic Approach. 2a Edição ed. Chichester: John Wiley & Sons, LTD, 2002. v. 0471496405 DICK, K. M.; CREDLAND, P. F. Egg production and development of three strains of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research, v. 20, n. 4, p. 221–227, 1 out. 1984. DONLEY, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environmental Health, v. 18, n. 1, p. 1–12, 7 jun. 2019. DUTRA, K. DE A. et al. Control of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with essential oils from four Citrus spp. plants. Journal of Stored Products Research, v. 68, p. 25–32, 1 jul. 2016. EKEH, F. O. K. I. N. Effects of Citrus sinensis Peel Oil on the Oviposition and Development of Cowpea Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) in Some Legume Grains. Pakistan Journal of Zoology, v. 45, n. 4, p. 967–974, 2013. ENAN, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, v. 130, n. 3, p. 325–337, 2001. EPPO. Phosphine fumigation of stored products to control stored product insects in general. EPPO Bulletin, v. 42, n. 3, p. 498–500, dez. 2012. ERB, M.; ROBERT, C. A. M. Sequestration of plant secondary metabolites by insect herbivores: Molecular mechanisms and ecological consequences. Current Opinion in Insect Science, v. 14, p. 8–11, 1 abr. 2016. FAO. FAOSTAT, 2019. Disponível em: https://www.fao.org/faostat/en/#data/QCL/visualize. Acesso em: 25 nov. 2022. 46 FERRY, N. et al. Plant-insect interactions: molecular approaches to insect resistance. Current opinion in biotechnology, v. 15, n. 2, p. 155–161, abr. 2004. GALLO, D. et al. Entomologia Agrícola. Piracicaba: FEALQ, 2002. GLOSS, A. D.; ABBOT, P.; WHITEMAN, N. K. How interactions with plant chemicals shape insect genomes. Current opinion in Insect Science, v. 36, p. 149-156, dez. 2019. GULLAN, P. J.; CRANSTON, P. S. Insetos - Fundamentos de entomologia. 5a ed. [s.l.] Guanabara Koogan, 2017. v. Unico GUSMÃO, N. M. S. et al. Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. essential oils in the management of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae, Bruchinae). Journal of Stored Products Research, v. 54, p. 41–47, 1 jul. 2013. HUANG, X. et al. Isolation and insecticidal activity of essential oil from artemisia lavandulaefolia dc. Against plutella xylostella. Toxins, v. 13, n. 12, 1 dez. 2021. ILEKE, K. D.; ODEYEMI, O. O.; ASHAMO, M. O. Varietal resistance of some cowpea cultivars to cowpea bruchid, Callosobruchus maculatus (Fab.) [Coleoptera: Chrysomelidae] infestation. FUTA Journal of Research in Sciences, v. 2013, n. 1, p. 72–81, [s.d.]. ISO. ISO 9235:2021 - Aromatic natural raw materials., 2021. Disponível em: <https://www.iso.org/obp/ui/#iso:std:iso:9235:ed-3:v1:en>. Acesso em: 12 jun. 2022 JAYARAM, C. S. et al. Chemical Composition and Insecticidal Activities of Essential Oils against the Pulse Beetle. Molecules, v. 27, n. 2, p. 568, 17 jan. 2022. JERIBI, C. et al. Comparative Study of Bioactive Compounds and Antioxidant Activity of Schinus terebinthifolius RADDI Fruits and Leaves Essential Oils. International Journal of Science and Research, v. 3, n. 12, 2014. JUMBO, L. O. V. et al. Toxicity to, oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PLoS ONE, v. 13, n. 11, 1 nov. 2018. KALPNA; HAJAM, Y. A.; KUMAR, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon, v. 8, n. 1, p. e08703, 1 jan. 2022. KÉBÉ, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. Journal of Biogeography, v. 44, n. 11, p. 2515–2526, 1 nov. 2017. KÉÏTA, S. M. et al. Effect of various essential oils on Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research, v. 36, n. 4, p. 355–364, 15 out. 2000. KPOVIESSI, AD. et al. Resistance of cowpea to Cowpea bruchid (Callosobruchus maculatus Fab.): Knowledge level on the genetic advances. Journal of Plant Breeding and Crop Science, v. 11, n. 8, p. 185–195, 2019. KRISTEN WIRA WACANA SUMBA, U. Toxicological and Physiological Effects of Essential Oils against Tribolium castaneum and Callosobrochus maculatus Parakuat Dichoride to Soil 47 Arthropod View project Kairomone attractant for controlling Lyriomiza sp in long beans View project Sri Ita Tarigan. Article in Journal of Biopesticides, 2016. KRZYŻOWSKI, M. et al. The Effect of Rosmarinus officinalis Essential Oil Fumigation on Biochemical, Behavioral, and Physiological Parameters of Callosobruchus maculatus. Insects, v. 11, n. 344, jun. 2020. KRZYŻOWSKI, M.; BARAN, B.; FRANCIKOWSKI, J. Intergenerational Transmission of Resistance of Callosobruchus maculatus to Essential Oil Treatment. Molecules, v. 15, n. 4541, 26 jul. 2021. KUMRUNGSEE, N. et al. Toxicity of essential oil compounds against diamondback moth, Plutella xylostella, and their impact on detoxification enzyme activities. Journal of Pest Science, v. 87, n. 4, p. 721–729, 5 jul. 2014. LAMBERT, M. M. et al. Activity of Syzygium aromaticum essential oil and its main constituent eugenol in the inhibition of the development of Ctenocephalides felis felis and the control of adults. Veterinary parasitology, v. 282, 1 jun. 2020. LI, Y. et al. THE OCTOPAMINE RECEPTOR octß2R IS ESSENTIAL FOR OVULATION AND FERTILIZATION IN THE FRUIT FLY Drosophila melanogaster. Archives of Insect Biochemistry and Physiology, v. 88, n. 3, p. 168–178, 1 mar. 2015. LIMA, M. P. L. et al. Stability of the resistance of cowpea genotypes to Callosobruchus maculatus (Fabr.) in successive generations. Scientia Agricola, v. 59, n. 2, jun. 2002. LIMA, M. P. L. et al. Alternation of cowpea genotypes affects the biology of Callosobruchus maculatus (Fabr.) (Coleoptera: Bruchidae). Scientia Agricola, v. 61, n. 1, p. 27–31, 1 jan. 2004. LUO, J. et al. Drosophila Insulin-Producing Cells Are Differentially Modulated by Serotonin and Octopamine Receptors and Affect Social Behavior. 2014. MAŁEK, D. K.; CZARNOLESKI, M. Thermal Preferences of Cowpea Seed Beetles (Callosobruchus maculatus): Effects of Sex and Nuptial Gift Transfers. 2021. MANANDHAR, A.; MILINDI, P.; SHAH, A. An Overview of the Post-Harvest Grain Storage Practices of Smallholder Farmers in Developing Countries. Agriculture, v. 8, n. 4, 15 abr. 2018. MATOS, L. F. et al. Chemical composition and insecticidal effect of essential oils from Illicium verum and Eugenia caryophyllus on Callosobruchus maculatus in cowpea. Industrial Crops and Products, v. 145, p. 112088, 1 mar. 2020. MBATA, G. N.; PAYTON, M. E. Effect of monoterpenoids on oviposition and mortality of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) under hermetic conditions. Journal of Stored Products Research, v. 53, p. 43–47, 1 abr. 2013. MONTELLA, I. R.; SCHAMA, R.; VALLE, D. The classification of esterases: an important gene family involved in insecticide resistance - A review. Memórias do Instituto Oswaldo Cruz, v. 107, n. 4, p. 437–449, jun. 2012. MUSSER, R. O. et al. Caterpillar saliva beats plant defences. Nature 2002 416:6881, v. 416, n. 6881, p. 599–600, 11 abr. 2002. 48 MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 6772, p. 853–858, 24 fev. 2000. NATTUDURAI, G. et al. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environmental Science and Pollution Research 2016 24:2, v. 24, n. 2, p. 1619–1629, 27 out. 2016. NICOLOPOULOU-STAMATI, P. et al. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, v. 4, n. 148, p. 8, 2016. OBOH, G. et al. Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na + /K +-ATPase activities. 2017. OLIVEIRA, J. V. DE et al. Fumigation and repellency of essential oils against Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) in cowpea. Pesquisa Agropecuária Brasileira, v. 52, n. 1, p. 10–17, 1 jan. 2017. PEIXOTO, M. G. et al. Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Industrial Crops and Products, v. 71, p. 31–36, 1 set. 2015. PEREIRA, L. A. G.; BIANCHETTI, A. Fatores que afetam a viabilidade das sementes. Londrina. EMBRAPA-CNPSo. 1977. Boletim técnico n. 2. PRATES, L. H. F. et al. Eugenol diffusion coefficient and its potential to control Sitophilus zeamais in rice. Scientific Reports, 2019. PUROHIT, P.; JAYAS, D. S.; CHELLADURAI, V.; YADAV, B. K. Microwave treatment of mung bean (Vigna radiata) for reducing the cooking time. Applied Engineering in Agriculture, v. 29, n. 4, p. 547-555, 2013. RAFAEL, J. A. et al. Insetos do Brasil: Diversidade e Taxonomia. 1a ed. [s.l.] Holos Editora, 2012. v. Único REGNAULT-ROGER, C.; VINCENT, C.; ARNASON, J. T. Essential oils in insect control: Low-risk products in a high-stakes world. Annual Review of Entomology, v. 57, p. 405–424, 2012. RODRÍGUEZ-GONZÁLEZ, Á. et al. Insecticidal Properties of Ocimum basilicum and Cymbopogon winterianus against Acanthoscelides obtectus, Insect Pest of the Common Bean (Phaseolus vulgaris, L.). Insects, v. 10, n. 5, p. 151, 25 maio 2019. RÖNN, J.; KATVALA, M.; ARNQVIST, G. Coevolution between harmful male genitalia and female resistance in seed beetles. Proceedings of the National Academy of Sciences of the United States of America, v. 104, n. 26, p. 10921–10925, 26 jun. 2007. RÖNN, J. L.; HOTZY, C. Do longer genital spines in male seed beetles function as better anchors during mating? Animal Behaviour, v. 83, n. 1, p. 75–79, jan. 2012. SÁ, L. F. R. DE et al. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Insect Physiology, v. 60, n. 1, p. 50–57, jan. 2014. 49 SAVALLI, U. M.; FOX, C. W. The effect of male size, age, and mating behavior on sexual selection in the seed beetle Callosobruchus maculatus. Ethology Ecology and Evolution, v. 11, n. 1, p. 49–60, 1 jan. 1999. SCHÜTZLER, N. et al. Tyramine action on motoneuron excitability and adaptable tyramine/octopamine ratios adjust Drosophila locomotion to nutritional state. 2019. SHU, S. et al. Sex pheromone production in Callosobruchus maculatus (Coleoptera: Bruchidae): Electroantennographic and behavioral responses. Journal of Stored Products Research, v. 32, n. 1, p. 21–30, 1996. SHUKLA, R. et al. Efficacy of essential oils of Lippia alba (Mill.) N.E. Brown and Callistemon lanceolatus (Sm.) Sweet and their major constituents on mortality, oviposition and feeding behaviour of pulse beetle, Callosobruchus chinensis L. Journal of the Science of Food and Agriculture, v. 91, n. 12, p. 2277–2283, 1 set. 2011. STILLWELL, R. C.; FOX, C. W. Environmental eVects on sexual size dimorphism of a seed-feeding beetle. POPULATION ECOLOGY, v. 153, p. 273–280, 2007. SUN, J. et al. Investigation of Pesticidal Effects of Peucedanum terebinthinaceum Essential Oil on Three Stored-Product Insects. Month-Month, p. 1307–6167, 2019. SUWANNAYOD, S. et al. Synergistic Toxicity of Plant Essential Oils Combined with Pyrethroid Insecticides against Blow Flies and the House Fly. Insects, v. 10, n. 6, p. 178, 2019. SWAMY, S. V. S. G; WESLEY, B. J; KAMAKSHI, J. Relative susceptibility of chickpea varieties to pulse bruchid, Callosobruchus maculatus (F.). Journal of Entomology and Zoology Studies, v. 7, n. 3, p. 442-446, 2019. TAK, J. H.; ISMAN, M. B. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni. Scientific Reports, v. 7, n. 1, p. 1–11, 9 fev. 2017. TITOUHI, F. et al. Protective effects of three Artemisia essential oils against Callosobruchus maculatus and Bruchus rufimanus (Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies. Journal of Stored Products Research, v. 72, p. 11–20, 1 maio 2017. TRIPATHI, A. K. et al. Insecticidal and Ovicidal Activity of the Essential Oil of Anethum sowa Kurz against Callosobruchus maculatus F. (Coleoptera: Bruchidae). International Journal of Tropical Insect Science, v. 21, n. 1, p. 61–66, 2001. TRIPATHI, K. D. Essentials of Medical Pharmacology. 6a ed. Nova Delhi: Jaypee Brothers Medical Pub, 2008. v. Único TUDA, M. et al. Global Genetic Differentiation in a Cosmopolitan Pest of Stored Beans: Effects of Geography, Host-Plant Usage and Anthropogenic Factors. PLOS ONE, v. 9, n. 9, p. e106268, 2014. UNOKI, S.; MATSUMOTO, Y.; MIZUNAMI, M. Roles of octopaminergic and dopaminergic neurons in mediating reward and punishment signals in insect visual learning. The European journal of neuroscience, v. 24, n. 7, p. 2031–2038, out. 2006. 50 URSPRUNG, C.; DEN HOLLANDER, M.; GWYNNE, D. T. Female seed beetles, Callosobruchus maculatus, remate for male-supplied water rather than ejaculate nutrition. Behavioral Ecology and Sociobiology, v. 63, n. 6, p. 781–788, abr. 2009. UTIDA, S. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). Journal of Stored Products Research, v. 8, n. 2, p. 111–125, 1 jun. 1972. VAN HUIS, A. et al. Impact of the egg parasitoid Uscana lariophaga and the larval-pupal parasitoid Dinarmus basalis on Callosobruchus maculatus populations and cowpea losses. Entomologia Experimentalis et Applicata, v. 104, n. 2–3, p. 289–297, 2002. VAN LIESHOUT, E.; MCNAMARA, K. B.; SIMMONS, L. W. Why Do Female Callosobruchus maculatus Kick Their Mates? PLOS ONE, v. 9, n. 4, p. e95747, 21 abr. 2014. WANG, H. Y. et al. Insecticidal and repellent efficacy of the essential oil from Lobularia maritima and trans-3-pentenenitrile against insect pests of stored grains Insecticidal and repellent efficacy of the essential oil from Lobularia maritima and trans-3-pentenenitrile against insect pests of stored grains. International Journal of Food Properties, v. 23, n. 1, p. 1125–1135, 2020. YA-ALI, P.; YARAHMADI, F.; MEHRNIA, M. A. Efficacies of Two Nano-Formulations of Tasmanian Blue Gum Essential Oil to Control Callosobruchus maculatus. Journal of Economic Entomology, v. 113, n. 3, p. 1555–1562, 6 jun. 2020. | pt_BR |
dc.subject.cnpq | Química | pt_BR |
Appears in Collections: | Mestrado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Rafael Torre.Pdf | 2.06 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.