Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/17707
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGelsleichter, Yuri Andrei-
dc.date.accessioned2024-08-09T18:08:47Z-
dc.date.available2024-08-09T18:08:47Z-
dc.date.issued2020-03-25-
dc.identifier.citationELSLEICHTER, Yuri Andrei. Predição e mapeamento de propriedades de solos no Parque Nacional de Itatiaia com sensoriamento remoto proximal e imagens orbitais hiperes-pectrais. 2020. 89 f. Tese (Doutorado em Ciência, Tecnologia e Inovação em Agropecuária) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/17707-
dc.description.abstractO Parque Nacional de Itatiaia (INP, do inglês para Itatiaia National Park) fica localizado ao sul do estado do Rio de Janeiro, com o estudo realizado na Parte Alta do Parque, definida acima de 2000 msnm. Os objetivos do primeiro capítulo foram: (i) investigar a capacidade de pre dizer propriedades do solo (Al, Ca, K, Mg, Na, P, pH, Carbono Total (TC Total Carbon), H e N), utilizando os comprimentos de onda 350–2500 nm; e (ii) investigar e desenvolver pré processamentos espectrais para uso e comparação em algoritmos de aprendizado de máquina, como Redes Neurais Artificiais (ANN, Artificial Neural Networks), Random Forest (RF), Re gressão de Mínimos Quadrados Parciais (PLSR, Partial Least Squares Regression) e Cubist (CB). Foram coletadas amostras de solo, por horizontes, em 84 perfis de solo, compondo um total de 300 amostras. A validação cruzada aplicada para avaliar os modelos foi do tipo k­fold. O melhor pré­processamento espectral foi o Inverso da Reflectância de Fator 104 (IRF4) para TC com CB que superou os métodos comumente utilizados, com coeficiente de determinação (R2 ) médio de 0,85, RMSE de 1,96 para TC; e 0,67 com 0,041, respectivamente, para H. Para o mapeamento do TC nos solos do INP foram utilizadas três cenas de imagens hiperespectrais do sensor Compact High Resolution Imager (CHRIS) do satélite (plataforma espacial) Project for On Board Autonomy (PROBA). Este sensor conta com 62 bandas espectrais no intervalo dos comprimentos de onda 406 a 1019 nm (referente as bordas da primeira e última bandas res pectivamente). As imagens foram corrigidas quanto a ruídos, striping, distorções geométricas e interferências atmosféricas. A predição de TC foi feita usando essas imagens e associando covariáveis de relevo e imagens do sensor orbital RapidEye, obtendo R2 de 0,33. Utilizando­se apenas a cena RapidEye mais as covariáveis de terreno o R2 foi de 0,32. Essas imagens foram combinadas aos espectros proximais obtidos na primeira camada do solo, dos 84 perfis, para produzir imagens de refletância de solo de toda parte alta do INP. Essa técnica foi chamada de imageamento espectral de subsuperfície. A aplicação deste produto no Mapeamento Digital de Solos aumentou significativamente a predição de TC, com R2 de 0,58, com incremento de 75% em relação ao Mapeamento Digital de Solos convencional. Essa técnica inovadora, apresentada pela primeira vez neste estudo, é denominada Mapeamento Hiperespectral de Solos (HSM, em inglês Hyperspecrtal Soil Mapping), sendo o desenvolvimento desta técnica o objetivo princi pal do segundo capítulo. Essa técnica pode isolar o efeito de interferência atmosférica e efeitos de cobertura de solo e vegetação sobre a reflectância do solo. Pelo aumento da capacidade de predição do HSM, pode­se reduzir a quantidade amostral do levantamento pedológico, alcan çando assim resultado equivalente ao Mapeamento Digital do Solos. O HSM é ideal para áreas com acesso e locomoção muito restritos, como o INP, mas também pode ser aplicado para o mapeamento de atributos de solo, fins agrícolas e monitoramento ambiental.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectCovariáveis espectraispt_BR
dc.subjectPredição espectral de solospt_BR
dc.subjectMapa hiperespectralpt_BR
dc.subjectSpectral covariatespt_BR
dc.subjectSpectral prediction of soilspt_BR
dc.subjectHyperspectral mappt_BR
dc.titlePredição e Mapeamento de Propriedades de Solos no Parque Nacional de Itatiaia com Sensoriamento Remoto Proximal e Imagens Orbitais Hiperespectraispt_BR
dc.title.alternativePredicting and mapping soil properties in Itatiaia National Park with proximal remote sensing and hyperspectral orbital imagesen
dc.typeTesept_BR
dc.description.abstractOtherThe Itatiaia National Park (INP) is located Southern of Rio de Janeiro State, in the boundary with Minas Gerais and São Paulo states, Southeast region of Brazil. This study was carried out in the Upper Part of the INP, defined above the 2000 msnm. The objectives of the first chapter of this study were: (i) to investigate the ability to predict soil properties (Al, Ca, K, Mg, Na, P, pH, Total Carbon (TC), H and N), using wavelengths 350–2500 nm; and (ii) to investigate and develop spectral preprocessing for usage and comparison in machine learning algorithms, such as Artificial Neural Networks (ANN), Random Forest (RF), Partial Least Squares Regression (PLSR) and Cubist (CB). In the Upper Part of the INP soil samples were collected from the horizons of 84 soil profiles, composing a total of 300 samples. The cross­validation method used to evaluate the models was the k­fold type. The best spectral preprocessing was the Inverse of Reflectance to Factor of 104 (IRF4) for TC with CB. IRF4 surpassed the common methods used for preprocessing, with an average coefficient of determination (R2 ) of 0.85, RMSE of 1.96 for TC; and 0.67 with 0.041, respectively, for H. The results pointed out IRF4 as one of the best preprocessing associated with the RF and CB algorithms. To map the TC in the INP soils, there were used three scenes of Hyperspectral images from the Compact High­Resolution Imager (CHRIS) sensor from space platform Project for On Board Autonomy (PROBA), a satellite of the European Spatial Agency (ESA). This sensor contains 62 spectral bands in the wavelengths interval of 406 to 1019 nm (as reference, the edge of the first and last bands respectively). The images were corrected for noise, striping, geometric distortions and atmospheric interferences. The TC prediction was made using these images and associating relief covariates and images from the RapidEye orbital sensor, obtaining R2 of 0.33. Using only the RapidEye scene plus the terrain covariates the R2 was 0.32. These images were combined with the proximal spectra obtained in the top soil layer, of the 84 profiles, to produce soil reflectance images of INP Upper Part. This technique was called Subsurface spectral imaging, with the application of this product in Digital Soil Mapping the TC prediction increased significantly, with R2 0.58, showing an increase of 75% in relation to the conventional Digital Soil Mapping. This innovative technique is presented for the first time in this study, and is called Hyperspectral Soil Mapping (HSM). The development of this technique was the main objective of the second chapter. The spectral preprocessing image (in HSM) can isolate the effect of atmospheric interference and effects of the land cover and vegetation on the soil reflectance. Thus, by increasing the predictive capacity of the HSM, the sample size of the pedological survey can be reduced, having a result equivalent to the Digital Soil Mapping. In addition to reducing the cost of taking samples, this technique is ideal for areas with very restricted access and locomotion, as the case of INP, but it can also be applied for mapping of various soil properties, agricultural purposes and remote environmental monitoringen
dc.contributor.advisor1Anjos, Lúcia Helena Cunha dos-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-0063-3521pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7882538227876962pt_BR
dc.contributor.advisor-co1Debiasi, Paula-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-9518-7960pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2803273652115535pt_BR
dc.contributor.referee1Anjos, Lúcia Helena Cunha dos-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-0063-3521pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7882538227876962pt_BR
dc.contributor.referee2Antunes, Mauro Antonio Homem-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-0189-6227pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3818721407909667pt_BR
dc.contributor.referee3Pinheiro, Helena Saraiva Koenow-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-5742-7556pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6947091664236298pt_BR
dc.contributor.referee4Galvao, Lenio Soares-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/5507769922001047pt_BR
dc.contributor.referee5Nanni, Marcos Rafael-
dc.contributor.referee5IDhttps://orcid.org/0000-0003-4854-2661pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/3403155830874841pt_BR
dc.creator.IDhttps://orcid.org/0000-0003-0869-3000pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9657254584315936pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência, Tecnologia e Inovação em Agropecuáriapt_BR
dc.relation.referencesADELINE, K. R. M.; GOMEZ, C.; GORRETTA, N.; ROGER, J.­M. Predictive ability of soil properties to spectral degradation from laboratory Vis­NIR spectros copy data. 2017. Disponível em: <http://ac.els­cdn.com/S0016706116307637/1­s2. 0­S0016706116307637­main.pdf?_tid=3b80cb16­471e­11e7­8588­00000aacb35d&acdnat= 1496358263_fa77f7350b641a3f84221da6bb830181>. ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P. C.; GONÇALVES, J. L. d. M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013. ISSN 16101227. Disponível em: <https: //doi.org/10.1127/0941­2948/2013/0507>. ANTUNES, M. A. H.; DEBIASI, P.; COSTA, A. R. d.; GLERIANI, J. M. Correção atmosférica de imagens ALOS/AVINIR­2 utilizando o modelo 6S. Revista Brasileira de Cartografia, v. 4, n. 64, p. 531–539, 2012. AXIMOFF, I. A.; ALVES, R. G.; RODRIGUES, R. d. C. Campos de Altitude do Itatiaia: Aspectos Ambientais, Biológico e Ecológicos. Boletim do Parque Nacional do Itatiaia Nº 18, p. 74, 2014. BARRETO, C. G.; CAMPOS, J. B.; MENDES, R. D.; ROBERTO, D. M.; SCHWARZSTEIN, N. T.; ALVES, G. S. G.; COELHO, W. Plano de Manejo: Parque Nacional do Itatiaia ­ Encarte 3. Relatório Técnico Instituto Chico Mendes, p. 215, 2013. BARRETO, C. G.; CAMPOS, J. B.; ROBERTO, D. M.; ROBERTO, D. M.; SCHWARZSTEIN, N. T.; ALVES, G. S. G.; COELHO, W. Plano de Manejo: Parque Nacional do Itatiaia ­ Encarte 2. Relatório Técnico Instituto Chico Mendes, p. 117, 2013. BASSER, J. R. Q. LEARNING WITH CONTINUOUS CLASSES. Sydney, Australia, 1992. 343–348 p. Disponível em: <https://sci2s.ugr.es/keel/pdf/algorithm/congreso/ 1992­Quinlan­AI.pdf>. BECKWITH, R. S. Titration Curves of Soil Organic Matter. Nature, v. 184, n. 4687, p. 745–746, 8 1959. ISSN 0028­0836. Disponível em: <http://www.nature.com/articles/184745a0>. BEGIEBING, S.; BACH, H. Analyses of hyperspectral and directional CHRIS data for agricultural monitoring using a canopy reflectance model. European Space Agency, (Special Publication) ESA SP, n. 578, p. 50–57, 2004. ISSN 03796566. BEN­DOR, E.; CHABRILLAT, S.; DEMATTÊ, J. A. M.; TAYLOR, G. R.; HILL, J.; WHITING, M. L.; SOMMER, S. Using Imaging Spectroscopy to study soil properties. Remote Sensing of Environment, 2009. ISSN 00344257. BEN­DOR, E.; PATKIN, K.; BANIN, A.; KARNIELI, A. Mapping of several soil properties using DAIS­7915 hyperspectral scanner data ­ A case study over soils in Israel. International Journal of Remote Sensing, v. 23, n. 6, p. 1043–1062, 2002. ISSN 01431161. BOWERS, S. A.; HANKS, R. J. Reflection of Radiant Energy from Soils. v. 100, n. 2, 1964. Disponível em: <https://www.ars.usda.gov/ARSUserFiles/30200525/ 870Reflectionofradiantenergyfromsoils.pdf>. 66 BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, 2001. ISSN 08856125. BREIMAN, L.; CUTLER, A.; LIAW, A.; WIENER, M. randomForest: Breiman and Cutler’s Random Forests for Classification and Regression. 2018. Disponível em: <https://cran.r­project.org/package=randomForest>. Brockmann. BEAM 5.0. 2014. Disponível em: <http://www.brockmann­consult.de/cms/web/ beam/welcome>. CAMPBELL, J. B.; WYNNE, R. H. Introduction to remote sensing. 5. ed. London: The Guilford Press, 2011. 718 p. ISBN 978­1­60918­176­5. CARR, D.; ported by Nicholas Lewin­Koh; MAECHLER, M.; contains copies of lattice functions written by Deepayan Sarkar. hexbin: Hexagonal Binning Routines. 2019. Disponível em: <https://cran.r­project.org/package=hexbin>. CASTALDI, F.; PALOMBO, A.; SANTINI, F.; PASCUCCI, S.; PIGNATTI, S.; CASA, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment, v. 179, p. 54–65, 2016. ISSN 00344257. Disponível em: <http: //www.sciencedirect.com/science/article/pii/S0034425716301195>. CEZAR, E.; NANNI, M. R.; GUERRERO, C.; JUNIOR, C. A. da S.; CRUCIOL, L. G. T.; CHICATI, M. L.; SILVA, G. F. C. Organic matter and sand estimates by spectroradiometry: Strategies for the development of models with applicability at a local scale. Geoderma, Elsevier, v. 340, p. 224–233, 4 2019. ISSN 0016­7061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706117304482?via%3Dihub>. CHAGAS, C. d. S.; PINHEIRO, H. S. K.; JUNIOR, W. d. C.; ANJOS, L. H. C. d.; PEREIRA, N. R.; BHERING, S. B. Data mining methods applied to map soil units on tropical hillslopes in Rio de Janeiro, Brazil. Geoderma Regional, Elsevier, v. 9, p. 47–55, 6 2017. ISSN 2352­0094. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2352009417300603? via%3Dihub>. CHANG, C. W.; LAIRD, D. A. Near­infrared reflectance spectroscopic analysis of soil C and N. Soil Science, v. 167, n. 2, p. 110–116, 2002. ISSN 0038075X. CHANG, C.­W.; LAIRD, D. A.; MAUSBACH, M. J.; HURBURGH, J. C. R. Near­Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Science Society of America Journal, p. 480–490, 2001. CHICATI, M. S.; NANNI, M. R.; CHICATI, M. L.; FURLANETTO, R. H.; CEZAR, E.; OLIVEIRA, R. B. D. Hyperspectral remote detection as an alternative to correlate data of soil constituents. Remote Sensing Applications: Society and Environment, Elsevier, v. 16, p. 100270, 11 2019. ISSN 2352­9385. Disponível em: <https://www.sciencedirect.com/science/ article/pii/S2352938519302708?via%3Dihub>. CLAIROTTE, M.; GRINAND, C.; KOUAKOUA, E.; THÉBAULT, A.; SABY, N. P.; BERNOUX, M.; BARTHÈS, B. G. National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy. Geoderma, 2016. ISSN 00167061. 67 CLARK, R. N. Spectroscopy of rocks and minerals, and principles of spectros copy. 3. ed. Denver, Colorado: U.S. Geological Survey, 1999. v. 3. 3–58 p. ISSN 10869379. ISBN 0471294055. Disponível em: <https://pdfs.semanticscholar.org/1e02/ a41e9ff88cdf80bbe41bd81ecde71e779548.pdf>. COBLENTZ, W. W. Some Optical Properties of Iodine. III. PHYSICAL LABORATORY OF CORNELL UNIVERSITY, v. 1, p. 51–59, 1903. Disponível em: <https://journals.aps.org/>. COBLENTZ, W. W. Preliminary Communication on the Infra­Red Absorption Spectra of Organic Compounds. American Astronomical Society ­ Physical Laboratory, Cornell University, v. 20, n. 1, p. 207, 1904. Disponível em: <http://articles.adsabs.harvard.edu/ cgi­bin/nph­iarticle_query?1904ApJ....20..207C&defaultprint=YES&filetype=.pdf>. COELHO, F. F.; GIASSON, E.; CAMPOS, A. R.; COSTA, J. J. F.; COBLINSKI, J. A.; FERREIRA, T. O. Digital soil class mapping in Brazil: a systematic review. Sci. Agric. v, v. 78, n. 5, p. 2021, 2019. Disponível em: <https://doi.org/10.1590/1678­992X­2019­0227>. COLTHUP, N. B. Spectra­Structure Correlations in the Infra­Red Region. Journal of the Optical Society Of America, v. 40, n. 6, p. 397–400, 1950. Disponível em: <https: //www.osapublishing.org/DirectPDFAccess/E850BF6E­9E7F­C383­00DCF127C8C2007E_ 50048/josa­40­6­397.pdf?da=1&id=50048&seq=0&mobile=no>. CONFORTI, M.; CASTRIGNANÒ, A.; ROBUSTELLI, G.; SCARCIGLIA, F.; STELLUTI, M.; BUTTAFUOCO, G. Laboratory­based Vis–NIR spectroscopy and partial least square regression with spatially correlated errors for predicting spatial variation of soil organic matter content. CATENA, Elsevier, v. 124, p. 60–67, 1 2015. ISSN 0341­8162. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0341816214002537>. COSTA, E. M.; PINHEIRO, H. S. K.; ANJOS, L. H. C. D.; MARCONDES, R. A. T.; GELSLEICHTER, Y. A. Mapping soil properties in a poorly­accessible area. Revista Brasileira de Ciencia do Solo, Rio de Janeiro, v. 44, p. 1–21, 2020. ISSN 18069657. CUTTER, M. HDFclean V2 software. Guildford, UK: Surrey Research, 2006. Disponível em: <https://earth.esa.int/web/guest/­/hdfclean­v2­4409#_101_INSTANCE_cPK3_matmp>. CUTTER, M.; KELLAR­BLAND, H. CHRIS Data Format. Guildford, UK: Surrey Satellite Technology Limited, 2008. (07/07/2008). Disponível em: <https://earth.esa.int/c/document_ library/get_file?folderId=23844&name=DLFE­592.pdf>. DANGAL, S.; SANDERMAN, J.; WILLS, S.; RAMIREZ­LOPEZ, L.; DANGAL, S. R. S.; SANDERMAN, J.; WILLS, S.; RAMIREZ­LOPEZ, L. Accurate and Precise Prediction of Soil Properties from a Large Mid­Infrared Spectral Library. Soil Systems, Multidisciplinary Digital Publishing Institute, v. 3, n. 1, p. 11, 1 2019. ISSN 2571­8789. Disponível em: <http://www.mdpi.com/2571­8789/3/1/11>. DANIEL, K. W.; TRIPATHI, N. K.; HONDA, K. Artificial neural network analysis of laboratory and in situ spectra for the estimation of macronutrients in soils of Lop Buri (Thailand). Soil Research, v. 41, n. 1, p. 47, 2003. ISSN 1838­675X. Disponível em: <www.publish.csiro.au/ journals/ajsrhttp://go.galegroup.com/ps/i.do?id=GALE%7CA98314097&sid=googleScholar& v=2.1&it=r&linkaccess=fulltext&issn=00049573&p=AONE&sw=w&authCount=1&u=nysl_ ca_karigon&selfRedirect=truehttp://www.publish.csiro.au/?paper=SR02027>. 68 DAS, B. S.; RAY, S. S.; SARATHJITH, M. C.; SANTRA, P.; SAHOO, R. N.; SRIVASTAVA, R. Hyperspectral remote sensing: Opportunities, status and challenges for rapid soil assessment in India Hyperspectral remote sensing: opportunities, status and challenges for rapid soil assessment in India. n. September, 2015. DEMATTÊ, J.; RAMIREZ­LOPEZ, L.; RIZZO, R.; NANNI, M.; FIORIO, P.; FONGARO, C.; NETO, L. M.; SAFANELLI, J.; BARROS, P. da S.; DEMATTÊ, J. A. M.; RAMIREZ­LOPEZ, L.; RIZZO, R.; NANNI, M. R.; FIORIO, P. R.; FONGARO, C. T.; NETO, L. G. M.; SAFANELLI, J. L.; BARROS, P. P. D. S. Remote Sensing from Ground to Space Platforms Associated with Terrain Attributes as a Hybrid Strategy on the Development of a Pedological Map. Remote Sensing, Multidisciplinary Digital Publishing Institute, v. 8, n. 10, p. 826, 10 2016. ISSN 2072­4292. Disponível em: <http://www.mdpi.com/2072­4292/8/10/826>. DEMATTÊ, J. A.; DOTTO, A. C.; PAIVA, A. F.; SATO, M. V.; DALMOLIN, R. S.; ARAÚJO, M. d. S. B. de; SILVA, E. B. da; NANNI, M. R.; CATEN, A. ten; NORONHA, N. C.; LACERDA, M. P.; FILHO, J. C. de A.; RIZZO, R.; BELLINASO, H.; FRANCELINO, M. R.; SCHAEFER, C. E.; VICENTE, L. E.; SANTOS, U. J. dos; SAMPAIO, E. V. de S. B.; MENEZES, R. S.; SOUZA, J. J. L. de; ABRAHÃO, W. A.; COELHO, R. M.; GREGO, C. R.; LANI, J. L.; FERNANDES, A. R.; GONÇALVES, D. A.; SILVA, S. H.; MENEZES, M. D. de; CURI, N.; COUTO, E. G.; ANJOS, L. H. dos; CEDDIA, M. B.; PINHEIRO, E. F.; GRUNWALD, S.; VASQUES, G. M.; JÚNIOR, J. M.; SILVA, A. J. da; BARRETO, M. C. d. V.; NÓBREGA, G. N.; SILVA, M. Z. da; SOUZA, S. F. de; VALLADARES, G. S.; VIANA, J. H. M.; TERRA, F. da S.; HORÁK­TERRA, I.; FIORIO, P. R.; SILVA, R. C. da; JÚNIOR, E. F. F.; LIMA, R. H.; ALBA, J. M. F.; JUNIOR, V. S. de S.; BREFIN, M. D. L. M. S.; RUIVO, M. D. L. P.; FERREIRA, T. O.; BRAIT, M. A.; CAETANO, N. R.; BRINGHENTI, I.; MENDES, W. de S.; SAFANELLI, J. L.; GUIMARÃES, C. C.; POPPIEL, R. R.; SOUZA, A. B. e; QUESADA, C. A.; COUTO, H. T. Z. do. The Brazilian Soil Spectral Library (BSSL): A general view, application and challenges. Geoderma, Elsevier, p. 113793, 2019. ISSN 00167061. Disponível em: <https://doi.org/10.1016/j.geoderma.2019.05.043>. DEMATTÊ, J. A. M. Characterization and discrimination of soils by their reflected electromagnetic energy. Pesquisa Agropecuaria Brasileira, v. 37, n. 10, p. 1445–1458, 2002. ISSN 0100204X. DEMATTÊ, J. A. M.; FONGARO, C. T.; RIZZO, R.; SAFANELLI, J. L. Geospatial Soil Sensing System (GEOS3): A powerful data mining procedure to retrieve soil spectral reflectance from satellite images. Remote Sensing of Environment, Elsevier, v. 212, p. 161–175, 6 2018. ISSN 0034­4257. Disponível em: <https://www.sciencedirect.com/science/ article/pii/S0034425718302049?via%3Dihub>. DEMATTÊ, J. A. M.; TERRA, F. d. S. Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations. Geoderma, 2013. Disponível em: <http://www.elsevier.com/authorsrights>. DEMATTÊ, J. A. M.; TERRA, F. d. S.; QUARTAROLI, C. F. Spectral behavior of some modal soil profiles from São Paulo State, Brazil. Bragantia, v. 71, n. 3, p. 413–423, 2012. ISSN 1678­4499. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid= S0006­87052012000300015&lng=en&nrm=iso&tlng=en>. DONAGEMA, G. K.; CAMPOS, D. V. B. d.; CALDERANO, S. B.; TEIXEIRA, W. G.; VIANA, J. H. M. Manual de Métodos de Análise de Solos. n. October 2016, p. 230, 2011. 69 DOTTO, A. C.; DALMOLIN, R. S. D.; CATEN, A. ten; GRUNWALD, S. A systematic study on the application of scatter­corrective and spectral­derivative preprocessing for multivariate prediction of soil organic carbon by Vis­NIR spectra. Geoderma, 2018. ISSN 00167061. FANG, Q.; HONG, H.; ZHAO, L.; KUKOLICH, S.; YIN, K.; WANG, C. Visible and Near­Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review. Journal of Spectroscopy, v. 2018, p. 1–14, 2018. ISSN 2314­4920. Disponível em: <https://www.hindawi.com/journals/jspec/2018/3168974/>. FORMAGGIO, A. R.; EPIPHANIO, J. C. N.; VALERIANO, M. M.; OLIVEIRA, J. B. Comportamento espectral (450­2.450 nm) de solos tropicais de São Paulo. v. 0, n. 2, p. 467–474, 1996. FRITSCH, S.; GUENTHER, F.; WRIGHT, M. N. neuralnet: Training of Neural Networks. 2019. Disponível em: <https://cran.r­project.org/package=neuralnet>. GALLO, B. C.; DEMATTÊ, J. A.; RIZZO, R.; SAFANELLI, J. L.; MENDES, W. d. S.; LEPSCH, I. F.; SATO, M. V.; ROMERO, D. J.; LACERDA, M. P. Multi­temporal satellite images on topsoil attribute quantification and the relationship with soil classes and geology. Remote Sensing, v. 10, n. 10, p. 21, 2018. ISSN 20724292. GALVÃO, L. S.; PIZARRO, M. A.; EPIPHANIO, J. C. N. Variations in reflectance of tropical soils: Spectral­chemical composition relationships from AVIRIS data. Remote Sensing of Environment, v. 75, n. 2, p. 245–255, 2001. ISSN 00344257. GALVÃO, L. S.; VITORELLO, I. Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils. v. 19, n. 10, p. 1969–1979, 1998. GHOLIZADEH, A.; BORůVKA, L.; SABERIOON, M.; VAŠÁT, R.; GHOLIZADEH, A.; BORůVKA, L.; SABERIOON, M.; VAŠÁT, R. A Memory­Based Learning Approach as Compared to Other Data Mining Algorithms for the Prediction of Soil Texture Using Diffuse Reflectance Spectra. Remote Sensing, Multidisciplinary Digital Publishing Institute, v. 8, n. 4, p. 341, 4 2016. ISSN 2072­4292. Disponível em: <http://www.mdpi.com/2072­4292/8/4/341>. GOMES, L. C.; FARIA, R. M.; SOUZA, E. de; VELOSO, G. V.; SCHAEFER, C. E. G.; FILHO, E. I. F. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma, Elsevier, v. 340, n. January, p. 337–350, 2019. ISSN 00167061. Disponível em: <https://doi.org/10.1016/j.geoderma.2019.01.007>. GOMEZ, C.; LAGACHERIE, P.; COULOUMA, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral Vis–NIR data. Geoderma, v. 189­190, p. 176–185, 11 2012. ISSN 00167061. Disponível em: <http://s3.amazonaws. com/academia.edu.documents/43991751/Regional_predictions_of_eight_common_ soi20160322­22365­3s8zy2.pdf?AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A& Expires=1496365736&Signature=GWQVf7deHX9knvZrRJd3uSTe%2FhQ%3D& response­content­disposition=inline>. GOMEZ, C.; ROSSEL, R. A. V.; MCBRATNEY, A. B. Soil organic carbon prediction by hyperspectral remote sensing and field vis­NIR spectroscopy: An Australian case study. Geoderma, v. 146, n. 3­4, p. 403–411, 2008. ISSN 00167061. 70 GUANTER, L.; ALONSO, L.; GÓMEZ­CHOVA, L.; MORENO, J. Algorithm Theoretical Basis Document: CHRIS/PROBA Atmospheric Correction Module. 2008. Disponível em: <http://www.brockmann­consult.de/beam­wiki/display/CBOX/CHRIS+Proba+Toolbox+for+ BEAM>. GUEVARA, M.; OLMEDO, G. F.; STELL, E.; YIGINI, Y.; DUARTE, Y. A.; HERNÁNDEZ, C. A.; ARÉVALO, G. E.; ARROYO­CRUZ, C. E.; BOLIVAR, A.; BUNNING, S.; CAÑAS, N. B.; CRUZ­GAISTARDO, C. O.; DAVILA, F.; ACQUA, M. D.; ENCINA, A.; TACONA, H. F.; FONTES, F.; HERRERA, J. A. H.; NAVARRO, A. R. I.; LOAYZA, V.; MANUELES, A. M.; JARA, F. M.; OLIVERA, C.; HERMOSILLA, R. O.; PEREIRA, G.; PRIETO, P.; RAMOS, I. A.; BRINA, J. C. R.; RIVERA, R.; RODRÍGUEZ­RODRÍGUEZ, J.; ROOPNARINE, R.; IBARRA, A. R.; RIVEIRO, K. A. R.; SCHULZ, G. A.; SPENCE, A.; VASQUES, G. M.; VARGAS, R. R.; VARGAS, R. No silver bullet for digital soil mapping: country­specific soil organic carbon estimates across Latin America. SOIL, v. 4, n. 3, p. 173–193, 8 2018. ISSN 2199­398X. Disponível em: <https://www.soil­journal.net/4/173/2018/>. GUO, L.; ZHANG, H.; SHI, T.; CHEN, Y.; JIANG, Q.; LINDERMAN, M. Prediction of soil organic carbon stock by laboratory spectral data and airborne hyperspectral images. Geoderma, 2019. ISSN 00167061. HIJMANS, R. J. raster: Geographic Data Analysis and Modeling. 2019. Disponível em: <https://cran.r­project.org/package=raster>. HUNT, G. R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, IO FIGS, v. 42, n. 3, p. 501–511, 1977. ISSN 0026­8976. Disponível em: <http://library.seg.org/https://courses.eas.ualberta.ca/eas451/hunt1977.pdf>. HUNT, J. M.; TURNER, D. S. Determination of Mineral Constituents of Rocks by Infrared Spectroscopy. Analytical Chemistry, v. 25, n. 8, p. 1169–1174, 1953. ISSN 15206882. HUNT, J. M.; WISHERD, M. P.; BONHAM, L. C. Infrared Absorption Spectra of Minerals and Other Inorganic Compounds. Analytical Chemistry, v. 22, n. 12, p. 1478–1497, 1950. ISSN 15206882. IBGE. Brazilian Institute of Geography and Statistics. 2010. Disponível em: <https: //www.ibge.gov.br/>. IBGE. Manual Técnico de Pedologia. 3. ed. Rio de Janeiro: IBGE ­ Brazilian Institute of Geography and Statistics, 2015. v. 3. 430 p. ISSN 0103­9598. ISBN 9788524043598. Disponível em: <https://biblioteca.ibge.gov.br/index.php/biblioteca­catalogo?id=295017& view=detalhes>. IMBROISI, D.; GUARITÁ­SANTOS, A. J. M.; BARBOSA, S. S.; SHINTAKU, S. d. F.; MONTEIRO, H. J.; PONCE, G. A. E.; FURTADO, J. G.; TINOCO, C. J.; MELLO, D. C.; MACHADO, P. F. L. Gestão de resíduos químicos em universidades: Universidade de Brasília em foco. Química Nova, v. 29, n. 2, p. 404–409, 4 2006. ISSN 0100­4042. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100­40422006000200037&lng= pt&nrm=iso&tlng=pt>. IUSS Working Group WRB. World Reference Base for Soil Resources. 3. ed. Rome: FAO ­ FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED 71 NATIONS, 2015. v. 43. 264 p. ISSN 0014­4797. ISBN 9789251083697. Disponível em: <https://doi.org/10.1017/S0014479706394902>. JABER, S. M.; LANT, C. L.; AL­QINNA, M. I. Estimating spatial variations in soil organic carbon using satellite hyperspectral data and map algebra. International Journal of Remote Sensing, v. 32, n. 18, p. 5077–5103, 2011. ISSN 0143­1161. JENNY, H. Factors of Soil Formation. LWW, 1941. v. 52. 415 p. Disponível em: <https://journals.lww.com/soilsci/Citation/1941/11000/Factors_of_Soil_Formation.9.aspx>. JENSEN, J. R. Remote sensing of the environment: an earth resource perspective. 2. ed. South Carolina: Pearson, 2014. 614 p. ISBN 9878560507061. KOPAČKOVÁ, V.; BEN­DOR, E.; CARMON, N.; NOTESCO, G. Modelling Diverse Soil Attributes with Visible to Longwave Infrared Spectroscopy Using PLSR Employed by an Automatic Modelling Engine. Remote Sensing, v. 9, n. 2, p. 134, 2 2017. ISSN 2072­4292. Disponível em: <http://www.mdpi.com/2072­4292/9/2/134>. KUANG, B.; TEKIN, Y.; MOUAZEN, A. M. Comparison between artificial neural network and partial least squares for on­line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research, Elsevier, v. 146, p. 243–252, 3 2015. ISSN 0167­1987. Disponível em: <https://www.sciencedirect.com/science/article/pii/ S0167198714002475>. KUHN, M.; QUINLAN, R. Cubist: Rule­ And Instance­Based Regression Modeling. 2018. Disponível em: <https://cran.r­project.org/package=Cubist>. LAGACHERIE, P.; MCBRATNEY, A.; VOLTZ, M. Digital Soil Mapping: An Introductory Perspective. 1. ed. Amsterdam: Elsevier, 2007. 658 p. ISSN 01662481. ISBN 9780080468075. Disponível em: <https://books.google.com.br/books?hl=pt­PT& lr=&id=OjhtrR5QgqMC&oi=fnd&pg=PP1&dq=Digital+Soil+Mapping:+an+introductory+ perspective&ots=rGXyNqF5vl&sig=a96HWkO2­bZjpJ1jxzmAJ6e16ZY#v=onepage&q= DigitalSoilMapping%3Aanintroductoryperspective&f=falsehttps:>. LAL, R. Soil health and carbon management. Food and Energy Security, n. 1, p. 1–11, 2016. ISSN 20483694. Disponível em: <http://doi.wiley.com/10.1002/fes3.96>. LAMICHHANE, S.; KUMAR, L.; WILSON, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma, Elsevier, v. 352, p. 395–413, 10 2019. ISSN 0016­7061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706119300540>. LAWRENCE, R. L.; WOOD, S. D.; SHELEY, R. L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (randomForest). Remote Sensing of Environment, v. 100, n. 3, p. 356–362, 2006. ISSN 00344257. LIMA, L. A. d. S.; NEUMANN, M. R. B.; REATTO, A.; ROIG, H. L. Mapeamento de solos do tradicional ao digital. Documentos 316 Embrapa Cerrados, v. 316, n. Março, p. 52, 2013. Disponível em: <ainfo.cnptia.embrapa.br/digital/bitstream/item/116635/1/doc­316.pdf>. LIU, Y.; SUN, X.; OUYANG, A. Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA­BPNN. LWT ­ Food 72 Science and Technology, Academic Press, v. 43, n. 4, p. 602–607, 5 2010. ISSN 0023­6438. Disponível em: <https://www.sciencedirect.com/science/article/pii/S002364380900303X>. LU, G.; FEI, B. Medical hyperspectral imaging: a review. Journal of biomedical optics, v. 19, n. 1, p. 10901, 2014. Disponível em: <http://www.pubmedcentral.nih.gov/articlerender.fcgi? artid=3895860&tool=pmcentrez&rendertype=abstract>. MALEKI, M.; HOLM, L. V.; RAMON, H.; MERCKX, R.; BAERDEMAEKER, J. D.; MOUAZEN, A. Phosphorus Sensing for Fresh Soils using Visible and Near Infrared Spectroscopy. Biosystems Engineering, Academic Press, v. 95, n. 3, p. 425–436, 11 2006. ISSN 1537­5110. Disponível em: <https://www.sciencedirect.com/science/article/pii/ S1537511006002704>. MALONE, B. ithir: Soil data and some useful associated functions. 2018. MCBRATNEY, A. B.; SANTOS, M. L. M.; MINASNY, B. On digital soil mapping. Geoderma, Sydney, v. 117, n. 1­2, p. 3–52, 2003. ISSN 00167061. MCGILL, W. J.; ROSSEL, R. A. V.; ZHEJIANG, Z. S. Improved estimates of organic carbon using proximally sensed vis – NIR spectra corrected by piecewise direct standardization. European Journal of Soil Science, 2015. Disponível em: <https: //www.researchgate.net/profile/Wenjun_Ji/publication/277313637_Improved_estimates_of_ organic_carbon_using_proximally_sensed_vis­NIR_spectra_corrected_by_piecewise_direct_ standardization/links/5567687808aeccd77737890f.pdf>. MENDES, W. d. S.; NETO, L. G. M.; DEMATTÊ, J. A.; GALLO, B. C.; RIZZO, R.; SAFANELLI, J. L.; FONGARO, C. T. Is it possible to map subsurface soil attributes by satellite spectral transfer models? Geoderma, Elsevier, v. 343, p. 269–279, 6 2019. ISSN 0016­7061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706117321006? via%3Dihub>. MEVIK, B.­H.; WEHRENS, R.; LILAND, K. H. pls: Partial Least Squares and Principal Component Regression. 2019. Disponível em: <https://cran.r­project.org/package=pls>. MINASNY, B.; MCBRATNEY, A. B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, v. 32, p. 1378–1388, 2006. Disponível em: <http://ac.els­cdn.com/S009830040500292X/1­s2. 0­S009830040500292X­main.pdf?_tid=813b89b4­471b­11e7­9bf1­00000aacb35e&acdnat= 1496357091_d2061d09a2d7ff9f1fb6c16bc645f076>. MODENESI, M. Depósitos de vertente e evolução quaternária do planalto do Itatiaia. Revista do Instituto Geológico, v. 13, n. 1, p. 31–46, 1992. Disponível em: <http://turmalina.igc.usp. br/scielo.php?script=sci_abstract&amp;pid=S0100­929X1992000100002&amp;lng=pt&amp; nrm=iso&amp;tlng=en>. MOREIRA, L. C. J.; TEIXEIRA, A. d. S.; GALVÃO, L. S. Potential of multispectral and hyperspectral data to detect saline­exposed soils in Brazil. GIScience & Remote Sensing, Taylor & Francis, v. 52, n. 4, p. 416–436, 7 2015. ISSN 1548­1603. Disponível em: <http://www.tandfonline.com/doi/full/10.1080/15481603.2015.1040227>. 73 MORELLOS, A.; PANTAZI, X.­E.; MOSHOU, D.; ALEXANDRIDIS, T.; WHETTON, R.; TZIOTZIOS, G.; WIEBENSOHN, J.; BILL, R. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS­NIR spectroscopy. Biosystems Engineering, Academic Press, v. 152, p. 104–116, 12 2016. ISSN 1537­5110. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1537511015304165>. MOUAZEN, A.; KUANG, B.; BAERDEMAEKER, J. D.; RAMON, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, Elsevier, v. 158, n. 1­2, p. 23–31, 8 2010. ISSN 0016­7061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706110000753>. MULDER, V. L.; BRUIN, S. de; SCHAEPMAN, M. E.; MAYR, T. R. The use of remote sensing in soil and terrain mapping ­ A review. Geoderma, Elsevier B.V., v. 162, n. 1­2, p. 1–19, 2011. ISSN 00167061. Disponível em: <http://dx.doi.org/10.1016/j.geoderma.2010.12.018>. MURRELL, P. gridBase: Integration of base and grid graphics. 2014. Disponível em: <https://cran.r­project.org/package=gridBase>. NANNI, M. R.; CEZAR, E.; JUNIOR, C. A. d. S.; SILVA, G. F. C.; GUALBERTO, A. A. da S. Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies. Archives of Agronomy and Soil Science, Taylor & Francis, v. 64, n. 5, p. 682–695, 4 2018. ISSN 0365­0340. Disponível em: <https://www.tandfonline.com/doi/full/10.1080/03650340.2017.1373185>. NAWAR, S.; MOUAZEN, A.; NAWAR, S.; MOUAZEN, A. M. Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On­Line Vis­NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon. Sensors, Multidisciplinary Digital Publishing Institute, v. 17, n. 10, p. 2428, 10 2017. ISSN 1424­8220. Disponível em: <http://www.mdpi.com/1424­8220/17/10/2428>. NETO, O. R.; TEIXEIRA, A.; LEÃO, R.; MOREIRA, L.; GALVÃO, L. Hyperspectral Remote Sensing for Detecting Soil Salinization Using ProSpecTIR­VS Aerial Imagery and Sensor Simulation. Remote Sensing, Multidisciplinary Digital Publishing Institute, v. 9, n. 1, p. 42, 1 2017. ISSN 2072­4292. Disponível em: <http://www.mdpi.com/2072­4292/9/1/42>. NEUWIRTH, E. RColorBrewer: ColorBrewer Palettes. 2014. Disponível em: <https: //cran.r­project.org/package=RColorBrewer>. NGUYEN, H.; BUI, X.­N.; TRAN, Q.­H.; MAI, N.­L. A new soft computing model for estimating and controlling blast­produced ground vibration based on Hierarchical K­means clustering and Cubist algorithms. Applied Soft Computing, Elsevier, v. 77, p. 376–386, 4 2019. ISSN 1568­4946. Disponível em: <https://www.sciencedirect.com/science/article/pii/ S156849461930050X#b34>. NOURI, M.; GOMEZ, C.; GORRETTA, N.; ROGER, J. M. Clay content mapping from airborne hyperspectral Vis­NIR data by transferring a laboratory regression model. 2017. Disponível em: <http://ac­els­cdn­com.ez30.periodicos.capes.gov.br/S0016706117303956/ 1­s2.0­S0016706117303956­main.pdf?_tid=752464bc­48b4­11e7­98b8­00000aab0f27& acdnat=1496532735_93b022d0e9e2022574527f4a9f254956>. 74 NUSSBAUM, M.; SPIESS, K.; BALTENSWEILER, A.; GROB, U.; KELLER, A.; GREINER, L.; SCHAEPMAN, M. E.; PAPRITZ, A. Evaluation of digital soil mapping approaches with large sets of environmental covariates. SOIL, Copernicus Publications on behalf of the European Geosciences Union, v. 4, n. 1, p. 1–22, 1 2018. ISSN 2199398X. Disponível em: <https://soil.copernicus.org/articles/4/1/2018/soil­4­1­2018.pdf>. PADARIAN, J.; MINASNY, B.; MCBRATNEY, A. Using deep learning to predict soil properties from regional spectral data. Geoderma Regional, Elsevier, v. 16, p. e00198, 3 2019. ISSN 2352­0094. Disponível em: <https://www.sciencedirect.com/science/article/pii/ S2352009418302785>. PADILHA, M. C. d. C.; VICENTE, L. E.; DEMATTÊ, J. A.; LOEBMANN, D. G. dos S. W.; VICENTE, A. K.; SALAZAR, D. F.; GUIMARÃES, C. C. B. Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near São Paulo, Brazil. Geoderma Regional, Elsevier, v. 21, p. e00253, 6 2020. ISSN 2352­0094. Disponível em: <https://www.sciencedirect.com/science/article/pii/S235200942030002X?via%3Dihub>. PAIM, C.; PALMA, E.; EIFLER­LIMA, V. Gerenciar Resíduos Químicos:Uma Necessidade. Caderno de Farmácia, v. 18, p. 23–31, 2002. Disponível em: <https://analiticaqmcresiduos. paginas.ufsc.br/files/2013/10/farmacos­UFRGS.pdf>. PEJOVIĆ, M.; NIKOLIĆ, M.; HEUVELINK, G. B.; HENGL, T.; KILIBARDA, M.; BAJAT, B. Sparse regression interaction models for spatial prediction of soil properties in 3D. Computers and Geosciences, v. 118, n. May, p. 1–13, 2018. ISSN 00983004. PINHEIRO, E. F. M.; CEDDIA, M. B.; CLINGENSMITH, C. M.; GRUNWALD, S.; VASQUES, G. M. Prediction of Soil Physical and Chemical Properties by Visible and Near­Infrared Diffuse Reflectance Spectroscopy in the Central Amazon. Remote Sensing, Multidisciplinary Digital Publishing Institute, v. 9, n. 4, p. 293, 3 2017. ISSN 2072­4292. Disponível em: <http://www.mdpi.com/2072­4292/9/4/293>. PINHEIRO, H. S. K.; BARBOSA, T. P. R.; ANTUNES, M. A. H.; CARVALHO, D. C. d.; NUMMER, A. R.; JUNIOR, W. d. C.; CHAGAS, C. d. S.; FERNANDES­FILHO, E. I.; PEREIRA, M. G. Assessment of Phytoecological Variability by Red­Edge Spectral Indices and Soil­Landscape Relationships. Remote Sensing, Multidisciplinary Digital Publishing Institute, v. 11, n. 20, p. 2448, 10 2019. ISSN 2072­4292. Disponível em: <https://www.mdpi.com/2072­4292/11/20/2448>. QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project, 2019. Disponível em: <http://qgis.osgeo.org>. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2019. Disponível em: <https://www.r­project.org/>. RapidEye. Satellite Imagery product specifications. 2012. RIPLEY, B. MASS: Support Functions and Datasets for Venables and Ripley’s MASS. 2019. Disponível em: <https://cran.r­project.org/package=MASS>. ROSA, P. A. d. S.; RUBERTI, E. Nepheline syenites to syenites and granitic rocks of the Itatiaia Alkaline Massif, Southeastern Brazil: new geological insights into a migratory ring Complex. Brazilian Journal of Geology, Sociedade Brasileira de Geologia, v. 48, n. 2, p. 75 347–372, 5 2018. ISSN 2317­4692. Disponível em: <http://www.scielo.br/scielo.php?script= sci_arttext&pid=S2317­48892018000200347&lng=en&tlng=en>. ROSENBLATT, F. The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, v. 65, n. 6, p. 386–408, 1958. Disponível em: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=rep1&type=pdf>. ROSSEL, R. A. V. ParLeS: Software for chemometric analysis of spec troscopic data. 2008. Disponível em: <https://www.researchgate.net/profile/ Raphael_Viscarra_Rossel/publication/223256650_ParLeS_Software_for_ Chemometric_Analysis_of_Spectroscopic_Data/links/00b49537e8ad4322f1000000/ ParLeS­Software­for­Chemometric­Analysis­of­Spectroscopic­Data.pdf>. ROSSEL, R. A. V.; ADAMCHUK, V. I.; SUDDUTH, K. A.; MCKENZIE, N. J.; LOBSEY, C. Proximal Soil Sensing. An Effective Approach for Soil Measurements in Space and Time. 1. ed. Elsevier Inc., 2011. v. 113. 237–282 p. ISSN 00652113. ISBN 9780123864734. Disponível em: <http://dx.doi.org/10.1016/B978­0­12­386473­4.00010­5>. ROSSEL, R. A. V.; CATTLE, S. R.; ORTEGA, A.; FOUAD, Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, v. 150, p. 253–266, 2009. Disponível em: <https://djfextranet.agrsci.dk/sites/soilsensors/public/ Documents/BoStenbergliterature/Rossel2009.pdf>. ROSSEL, R. A. V.; JEON, Y. S.; ODEH, I. O. A.; MCBRATNEY, A. B. Using a legacy soil sample to develop a mid­IR spectral library. Australian Journal of Soil Research, 2008. ISSN 00049573. ROSSEL, R. V.; BEHRENS, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, Elsevier, v. 158, n. 1­2, p. 46–54, 8 2010. ISSN 00167061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706109004315https: //linkinghub.elsevier.com/retrieve/pii/S0016706109004315>. ROSSEL, R. V.; WALVOORT, D.; MCBRATNEY, A.; JANIK, L.; SKJEMSTAD, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, v. 131, p. 59–75, 2005. Disponível em: <https://www.researchgate.net/profile/Raphael_Viscarra_Rossel/publication/223767466_ Visible_Near_Infrared_Mid_Infrared_or_Combined_Diffuse_Reflectance_Spectroscopy_for_ Simultaneous_Assessment_of_Various_Soil_Properties/links/54af47f10cf2b48e8ed63bf3. pdf>. ROUDIER, P.; HEDLEY, C. B.; LOBSEY, C. R.; ROSSEL, R. A. V.; LEROUX, C. Evaluation of two methods to eliminate the effect of water from soil vis – NIR spectra for predictions of organic carbon. Geoderma, v. 296, p. 98–107, 2017. Disponível em: <https: //www.researchgate.net/profile/Pierre_Roudier2/publication/314230371_Evaluation_of_two_ methods_to_eliminate_the_effect_of_water_from_soil_vis­NIR_spectra_for_predictions_of_ organic_carbon/links/58bdd87da6fdcc2d14eb4fe5/Evaluation­of­two­methods­to­e>. Rulequest Research. Rulequest, data mining with cubist. 2019. Disponível em: <https://rulequest.com/cubist­info.html>. 76 SAMUEL­ROSA, A.; HEUVELINK, G. B. M.; VASQUES, G. M.; ANJOS, L. H. C. Do more detailed environmental covariates deliver more accurate soil maps? Geoderma, Elsevier B.V., v. 243­244, p. 214–227, 2015. ISSN 00167061. Disponível em: <http://dx.doi.org/10.1016/j.geoderma.2014.12.017>. SANTOS, H. G. d.; JACOMINE, P. K. T.; ANJOS, L. H. C. d.; OLIVEIRA, V. A. d.; LUMBRERAS, J. F.; COELHO, M. R.; ALMEIDA, J. A. d.; FILHO, J. C. d. A.; OLIVEIRA, J. B. d.; CUNHA, T. J. F.; Embrapa Soils. Brazilian soil classification system. 5. ed. Brasília: Embrapa Soils, 2018. 303–343 p. ISBN 9788570358219. SANTOS, R. F. d.; NETO, A. G. P.; CSORDAS, S. M. O Parque Nacional do Itatiaia. Fundação Brasileira para o Desenvolvimento Sustentável, p. 09–19, 2000. SAVITZKY, A.; GOLAY, M. J. E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, American Chemical Society, v. 36, n. 8, p. 1627–1639, 7 1964. ISSN 0003­2700. Disponível em: <http://pubs.acs.org/doi/abs/10.1021/ ac60214a047>. SELIGE, T.; BÖHNER, J.; SCHMIDHALTER, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma, Elsevier, v. 136, n. 1­2, p. 235–244, 12 2006. ISSN 0016­7061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706106001030>. SOARES, P. F. C.; ANJOS, L. H. C. dos; PEREIRA, M. G.; PESSENDA, L. C. R. Histosols in an Upper Montane Environment in the Itatiaia Plateau. Revista Brasileira de Ciência do Solo, v. 40, p. 14, 2016. Disponível em: <https://www.rbcsjournal.org/pt­br/article/ histosols­in­an­upper­montane­environment­in­the­itatiaia­plateau/>. STEVENS, A.; RAMIREZ­LOPEZ, L. prospectr: Miscellaneous functions for processing and sample selection of vis­NIR diffuse reflectance data. 2014. Disponível em: <https://cran.r­project.org/package=prospectr>. STEVENS, A.; WESEMAEL, B. V.; VANDENSCHRICK, G.; TOURÉ, S.; TYCHON, B. Detection of carbon stock change in agricultural soils using spectroscopic techniques. Soil Science Society of America Journal, v. 70, n. 3, p. 844–850, 2006. ISSN 03615995. TANG, Y.; JONES, E.; MINASNY, B. Evaluating low­cost portable near infrared sensors for rapid analysis of soils from South Eastern Australia. Geoderma Regional, Elsevier, v. 20, p. e00240, 3 2020. ISSN 2352­0094. Disponível em: <https://www.sciencedirect.com/science/ article/pii/S2352009419302391?via%3Dihub>. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de metodos de analises. 3. ed. Brasília: Embrapa, 2017. 574 p. ISBN 9788570357717. TERRA, F. S.; DEMATTÊ, J. A.; ROSSEL, R. A. V. Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid­IR reflectance data. Geoderma, Elsevier, v. 255­256, p. 81–93, 10 2015. ISSN 0016­7061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706115001317>. TERRA, F. S.; DEMATTÊ, J. A.; ROSSEL, R. A. V. Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis. Geoderma, Elsevier, v. 318, p. 123–136, 5 2018. ISSN 0016­7061. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0016706117302768>. 77 TOMZHINSKI, G. W.; RIBEIRO, K. T.; FERNANDES, M. d. C. Análise geoecológica dos incêndios florestais do Parque Nacional do Itatiaia. Boletim do Parque Nacional do Itatiaia N ◦ 15, p. 158, 2012. TORGO, L. DMwR: Functions and data for Data Mining with R. 2013. Disponível em: <https://cran.r­project.org/package=DMwR>. TZIACHRIS, P.; METAXA, E.; PAPADOPOULOS, F.; PAPADOPOULOU, M. Spatial Modelling and Prediction Assessment of Soil Iron Using Kriging Interpolation with pH as Auxiliary Information. ISPRS International Journal of Geo­Information, Multidisciplinary Digital Publishing Institute, v. 6, n. 9, p. 283, 9 2017. ISSN 2220­9964. Disponível em: <http://www.mdpi.com/2220­9964/6/9/283>. USHEY, K.; ALLAIRE, J. J.; WICKHAM, H.; RITCHIE, G. rstudioapi: Safely Access the RStudio API. 2019. Disponível em: <https://cran.r­project.org/package=rstudioapi>. VASQUES, G.; GRUNWALD, S.; SICKMAN, J. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near­infrared spectra. Geoderma, Elsevier, v. 146, n. 1­2, p. 14–25, 7 2008. ISSN 0016­7061. Disponível em: <https: //www.sciencedirect.com/science/article/pii/S0016706108000980#tblfn10>. VASQUES, G. M.; DEMATTÊ, J. A. M.; ROSSEL, R. A. V.; RAMÍREZ­LÓPEZ, L.; TERRA, F. S. Soil classification using visible/near­infrared diffuse reflectance spectra from multiple depths. Geoderma, v. 223­225, p. 73–78, 2014. Disponível em: <http://ac.els­cdn.com/S0016706114000445/1­s2.0­S0016706114000445­main. pdf?_tid=4a1960be­4928­11e7­878a­00000aab0f27&acdnat=1496582484_ 99a5cc32c7256f6ede65092e6972dbda>. VERMOTE, E. F.; TANRÉ, D.; DEUZÉ, J. L.; HERMAN, M.; MORCRETTE, J. J. Second simulation of the satellite signal in the solar spectrum, 6s: an overview. IEEE Transactions on Geoscience and Remote Sensing, v. 35, n. 3, p. 675–686, 1997. ISSN 01962892. WADOUX, A.; MINASNY, B.; MCBRATNEY, A. Machine learning for digital soil mapping: applications, challenges and suggested solutions. Earth­Science Reviews, v. 210, 2020. Disponível em: <https://www.sciencedirect.com/science/article/abs/pii/ S0012825220304050>. WALKLEY, A.; BLACK, I. A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, v. 37, n. 1, p. 29–38, 1 1934. ISSN 0038­075X. Disponível em: <http://journals.lww.com/00010694­193401000­00003>. WANG, X.; CHEN, Y.; GUO, L.; LIU, L. Construction of the Calibration Set through Multivariate Analysis in Visible and Near­Infrared Prediction Model for Estimating Soil Organic Matter. Remote Sensing, Multidisciplinary Digital Publishing Institute, v. 9, n. 3, p. 201, 2 2017. ISSN 2072­4292. Disponível em: <http://www.mdpi.com/2072­4292/9/3/201>. WICKHAM, H. stringr: Simple, Consistent Wrappers for Common String Operations. 2019. Disponível em: <https://cran.r­project.org/package=stringr>. WICKHAM, H.; CHANG, W.; HENRY, L.; PEDERSEN, T. L.; TAKAHASHI, K.; WILKE, C.; WOO, K.; YUTANI, H. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 2019. Disponível em: <https://cran.r­project.org/package=ggplot2>. 78 WICKHAM, H.; FRANÇOIS, R.; HENRY, L.; MÜLLER, K. dplyr: A Grammar of Data Manipulation. 2019. Disponível em: <https://cran.r­project.org/package=dplyr>. WING, M. K.; WESTON, S.; WILLIAMS, A.; KEEFER, C.; ENGELHARDT, A.; COOPER, T.; MAYER, Z.; KENKEL, B.; BENESTY, M.; LESCARBEAU, R.; ZIEM, A.; SCRUCCA, L.; TANG, Y.; CANDAN, C.; HUNT., T.; WING, M. K. C. from J.; WESTON, S.; WILLIAMS, A.; KEEFER, C.; ENGELHARDT, A.; COOPER, T.; MAYER, Z.; KENKEL, B.; the R Core Team; BENESTY, M.; LESCARBEAU, R.; ZIEM, A.; SCRUCCA, L.; TANG, Y.; CANDAN, C.; HUNT., T. caret: Classification and Regression Training. 2019. Disponível em: <https://cran.r­project.org/package=caret>. XIE, X.­L.; LI, A.­B. Improving spatial estimation of soil organic matter in a subtropical hilly area using covariate derived from vis­NIR spectroscopy. Biosystems Engineering, Academic Press, v. 152, p. 126–137, 12 2016. ISSN 1537­5110. Disponível em: <https://www.sciencedirect.com/science/article/pii/S1537511015303639?dgcid=raven_sd_ recommender_email>. ZHANG, G. l.; LIU, F.; SONG, X. d. Recent progress and future prospect of digital soil mapping: A review. Journal of Integrative Agriculture, Nanjing, v. 16, n. 12, p. 2871–2885, 12 2017. ISSN 20953119. Disponível em: <https://www.sciencedirect.com/science/article/pii/ S2095311917617623>.pt_BR
dc.subject.cnpqEngenharia Agrícolapt_BR
Appears in Collections:Doutorado em Ciência, Tecnologia e Inovação em Agropecuária

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2020 - Yuri Andrei Gelsleichter.pdf80.87 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.