Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/17722
Full metadata record
DC FieldValueLanguage
dc.contributor.authorConstantino, Augusto Bene Tomé-
dc.date.accessioned2024-08-15T14:49:01Z-
dc.date.available2024-08-15T14:49:01Z-
dc.date.issued2022-07-28-
dc.identifier.citationCONSTANTINO, Augusto Bene Tomé. Obtenção de proteínas e amido de amaranto e sua aplicação em coacervação complexa para carreamento de compostos bioativos em produtos alimentícios. 2022. 158 f. Tese (Doutorado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/17722-
dc.description.abstractAtualmente, há um aumento da busca por fontes naturais de polímeros para desenvolvimentos de diferentes produtos alimentícios devido aos seus benefícios à saúde. Dentre vários vegetais, o amaranto (Amaranthus sp.) pode ser destacado por conter concentrações relativamente altas de amido (até 69%) e proteínas (até 18%). Os benefícios do amaranto para a saúde são amplos, incluindo redução do colesterol sérico, propriedades antioxidantes e hipoglicémicos. Amidos e proteínas do amaranto são biopolímeros que podem ter muitas aplicações tecnológicas, desde a produção de filmes e emulsões, até a microencapsulação de ingredientes ativos. O objetivo desta tese foi microencapsular compostos bioativos por coacervação complexa utilizando biopolímeros de amaranto e hidrocolóides. Inicialmente, o isolado proteico do amaranto (API) foi modificado com ultrassom de alta intensidade (HIUS). Os efeitos do HIUS no API foram pronunciados no aumento dos grupos sulfidrílicos, dos grupos hidrofóbicos e redução dos tamanhos de partículas. Essas modificações determinaram as melhoras da solubilidade em água e das propriedades emulsificantes do API. No pH 6.5, cerca de 90% da vitamina D3 (VD3) foi microencapsulada em complexos heteroprotéicos do API tratado com ultrassom (API-U) e a lactoferrina (LF). As microcápsulas protegeram a VD3 da degradação durante o armazenamento e da degradação fotolítica. Também protegeram a VD3 durante a simulação in vitro da digestão gastrointestinal, permitndo uma alta biacessibilidade (B * = 47%). Além disso, as microcápsulas também protegeram 86% da VD3 durante a produção de pão, garantindo assim sua eficácia na fortificação deste alimento. Complexos coacervados formados por API-U e carboximetilcelulose sódica (CMC) foram utilizados para encapsular betanina no pH 3. Por betanina ser hidrossolúvel, formou-se uma emulsão dupla do tipo água-em-óleo-em-água. Foram obtidas microcápsulas de betanina com alta eficiência de encapsulação (EE = 87%), boa estabilidade térmica (50oC) e uma alta B * (85%). As microcápsulas da betanina foram utilizadas na produção de filmes comestíveis de gelatina e aumentaram os valores da elongação até a ruptura, reduziram a transmissão da luz e melhoraram as propriedades antioxidantes. A liberação dos antioxidantes presente nos filmes foi governada pela cinética do Peppas Sahlim. No final, microcápsulas de betacaroteno (β-C) foram produzidas utilizando complexos coacervados de amido de amaranto carboximetilado (CMS) e LF como material de parede. CMS com grau de substituição de 0.27 apresentou alta afinidade ao interagir eletrostaticamente com LF. Alta EE do β-C (98%) foi obtida no pH 5. As microcápsulas do β-C apresentaram boa estabilidade térmica e fotolítica. A liberação do β- C das microcápsulas foi baixa (19%) e lenta em matriz alimentar aquoso (50% etanol) comparada à matriz oleosa. Aplicação das microcápsulas β-C na fabricação de balas de goma foi viável, possibilitando uma B * de 22% e redução da sua dureza e mastigação. Portanto, os resultados obtidos do presente trabalho abrem uma nova perspectiva do uso dos biopolímeros de amaranto na microencapsulação de compostos bioativos por coacervação complexa e mostram a possibilidade da aplicação dessas microcápsulas na fortificação de alimentos, como pão e balas de goma, e na produção de embalagens comestíveis biologicamente ativas.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectcoacervação complexapt_BR
dc.subjectmicroencapsulaçãopt_BR
dc.subjectfortificação de alimentopt_BR
dc.subjectfilme comestívelpt_BR
dc.subjectcomplex coacervationpt_BR
dc.subjectmicroencapsulationpt_BR
dc.subjectfood fortificationpt_BR
dc.subjectedible filmpt_BR
dc.titleObtenção de proteínas e amido de amaranto e sua aplicação em coacervação complexa para carreamento de compostos bioativos em produtos alimentíciospt_BR
dc.title.alternativeObtantion of proteins and starch from amaranth and its application in complex coacervation to carry bioactive compounds in food productsen
dc.typeTesept_BR
dc.description.abstractOtherCurrently, there is an increase in the search for natural sources of polymers for the development of different food products due to their health benefits. Among several vegetables, amaranth (Amaranthus sp.) can be highlighted for containing relatively high concentrations of starch (up to 69%) and proteins (up to 18%). The health benefits of amaranth are broad, including lowering serum cholesterol, and antioxidant and hypoglycemic properties. Amaranth starches and proteins are biopolymers that can have many technological applications, from the production of films and emulsions to the microencapsulation of active ingredients. The objective of this thesis was to microencapsulate bioactive compounds by complex coacervation using amaranth biopolymers and hydrocolloids. Initially, the amaranth protein isolate (API) was modified with high-intensity ultrasound (HIUS). The effects of HIUS on API were pronounced in the increase of sulfhydryl groups, hydrophobic groups, and reduction of particle sizes. These modifications determined improvements in the water solubility and emulsifying properties of the API. At pH 6.5, about 90% of the vitamin D3 (VD3) was microencapsulated in heteroprotein complexes of ultrasound-treated API (API-U) and lactoferrin (LF). The microcapsules protected VD3 from degradation during storage and photolytic degradation. They also protected VD3 during the in vitro simulation of gastrointestinal digestion, allowing high bioaccessibility (B* = 47%). In addition, the microcapsules also protected 86% of VD3 during bread production, thus ensuring their effectiveness in fortifying this food. Complex coacervates formed by API-U and sodium carboxymethylcellulose (CMC) were used to encapsulate betanin at pH 3. Because betanin is water-soluble, a water-in-oil-in-water double emulsion was formed. Betanin microcapsules with high encapsulation efficiency (EE = 87%), good thermal stability (50oC), and a high B* (85%) were obtained. Betanin microcapsules were used to produce edible gelatine films and increased elongation at break values, reduced light transmission, and improved antioxidant properties. The release of antioxidants present in the films was governed by Peppas-Sahlim kinetic. In the end, beta-carotene (β-C) microcapsules were produced using complex coacervates of carboxymethylated amaranth starch (CMS) and LF as wall material. CMS with a degree of substitution of 0.27 showed high affinity when interacting electrostatically with LF. High EE of β-C (98%) was obtained at pH 5. The β-C microcapsules showed good thermal and photolytic stability. The release of β-C from microcapsules was low (19%) and slow in the aqueous food matrix (50% ethanol) compared to the oily matrix. Applying β-C microcapsules to manufacture gummy candies was feasible, allowing a B* of 22% and reducing its hardness and chewing. Therefore, the results obtained from the present work open a new perspective on the use of amaranth biopolymers in the microencapsulation of bioactive compounds by complex coacervation and show the possibility of applying these microcapsules in the food fortification and the production of Biologically active edible packaging.en
dc.contributor.advisor1Garcia Rojas, Edwin Elard-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-3388-8424pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1205756654416987pt_BR
dc.contributor.referee1Garcia Rojas, Edwin Elard-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-3388-8424pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1205756654416987pt_BR
dc.contributor.referee2Oliveira, Eduardo Basílio de-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-2329-2507pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4091528830821027pt_BR
dc.contributor.referee3Bonomo, Renata Cristina Ferreira-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-9896-4099pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/6268031157235728pt_BR
dc.contributor.referee4Kurozawa, Louise Emy-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4052839942489847pt_BR
dc.contributor.referee5Cabral, Lourdes Maria Correa-
dc.contributor.referee5IDhttps://orcid.org/0000-0003-2513-0381pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/7249897840870537pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-6266-0328pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6395974272617389pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Tecnologiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência e Tecnologia de Alimentospt_BR
dc.relation.referencesAmjadi, S., Ghorbani, M., Hamishehkar, H., & Roufegarinejad, L. (2018). Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chemistry, 256, 156–162. https://doi.org/10.1016/j.foodchem.2018.02.114 Andrés-Bello, A., Barreto-Palacios, V., García-Segovia, P., Mir-Bel, J., & Martínez-Monzó, J. (2013). Effect of pH on Color and Texture of Food Products. Food Engineering Reviews, 5(3), 158–170. https://doi.org/10.1007/s12393-013-9067-2 AOAC. (2005). Official method of Analysis (18th ed.). Association of Officiating Analytical Chemists. Bach, Q. V., Vu, C. M., Vu, H. T., Hoang, T., Dieu, T. V., & Nguyen, D. D. (2019). Epoxidized soybean oil grafted with CTBN as a novel toughener for improving the fracture toughness and mechanical properties of epoxy resin. Polymer Journal 2019 52:3, 52(3), 345–357. https://doi.org/10.1038/S41428-019-0275-3 Barbosa, A. E. G., Bastos, L. P. H., & Garcia-Rojas, E. E. (2021). Complex Coacervates Formed between Whey Protein Isolate and Carboxymethylcellulose for Encapsulation of β-Carotene from Sacha Inchi Oil: Stability, In Vitro Digestion and Release Kinetics. Food Biophysics, 1–13. https://doi.org/10.1007/s11483-021-09670-2 Bastos, L. P. H., de Carvalho, C. W. P., & Garcia-Rojas, E. E. (2018). Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International Journal of Biological Macromolecules, 120, 332–338. https://doi.org/10.1016/j.ijbiomac.2018.08.050 Bhattacharyya, D., Singhal, R. S., & Kulkarni, P. R. (1995). A comparative account of conditions for synthesis of sodium carboxymethyl starch from corn and amaranth starch. Carbohydrate Polymers, 27(4), 247–253. https://doi.org/10.1016/0144- 8617(95)00083-6 Brazil, Ministério da Saúde, & Agência Nacional de Vigilância Sanitária. (2005). Resolução n° 269, de 22 de setembro de 2005. Aprova o regulamento técnico sobre a ingestão diária recomendada (IDR) de proteína, vitaminas e minerais. Diário Oficial da República Federativa do Brasil. Brodkorb, A., Egger, L., Alminger, M., Alvito, P., Assunção, R., Ballance, S., Bohn, T., Bourlieu-Lacanal, C., Boutrou, R., Carrière, F., Clemente, A., Corredig, M., Dupont, D., Dufour, C., Edwards, C., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., ... Recio, I. (2019). INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols, 14(4), 991–1014. https://doi.org/10.1038/s41596-018- 0119-1 Bruschi, M. L. (2015). Strategies to Modify the Drug Release from Pharmaceutical Systems. Elsevier. https://doi.org/10.1016/C2014-0-02342-8 Constantino, A. B. T., & Garcia-Rojas, E. E. (2022). Vitamin D3 microcapsules formed by heteroprotein complexes obtained from amaranth protein isolates and lactoferrin: Formation, characterization, and bread fortification. Food Hydrocolloids, 129, 107636. https://doi.org/10.1016/j.foodhyd.2022.107636 Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural Pigments: Carotenoids, Anthocyanins, and Betalains — Characteristics, Biosynthesis, Processing, and Stability. Crit Rev Food Sci Nutr, 40(3), 173–289. https://doi.org/10.1080/10408690091189257 135 Du, Y., Bao, C., Huang, J., Jiang, P., Jiao, L., Ren, F., & Li, Y. (2019). Improved stability, epithelial permeability and cellular antioxidant activity of β-carotene via encapsulation by self-assembled α-lactalbumin micelles. Food Chemistry, 271, 707–714. https://doi.org/10.1016/j.foodchem.2018.07.216 Gunes, R., Palabiyik, I., Konar, N., & Said Toker, O. (2022). Soft confectionery products: Quality parameters, interactions with processing and ingredients. Food Chemistry, 385, 132735. https://doi.org/10.1016/J.FOODCHEM.2022.132735 He, J.-F., Goyal, R., Laroche, A., Zhao, M.-L., & Lu, Z.-X. (2012). Water stress during grain development affects starch synthesis, composition and physicochemical properties in triticale. Journal of Cereal Science, 56(3), 552–560. https://doi.org/10.1016/j.jcs.2012.07.011 Ilyasoglu, H., & El, S. N. (2014). Nanoencapsulation of EPA/DHA with sodium caseinate– gum arabic complex and its usage in the enrichment of fruit juice. LWT - Food Science and Technology, 56(2), 461–468. https://doi.org/10.1016/j.lwt.2013.12.002 Jain, A., Thakur, D., Ghoshal, G., Katare, O. P., & Shivhare, U. S. (2016). Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules, 87, 101–113. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2016.01.117 Kaur, P., Ghoshal, G., & Jain, A. (2019). Bio-utilization of fruits and vegetables waste to produce β-carotene in solid-state fermentation: Characterization and antioxidant activity. Process Biochemistry, 76, 155–164. https://doi.org/10.1016/J.PROCBIO.2018.10.007 Kong, X., Kasapis, S., Bertoft, E., & Corke, H. (2010). Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch - Stärke, 62(6), 302–308. https://doi.org/doi:10.1002/star.200900235 Kurt, A., Bursa, K., & Toker, O. S. (2022). Gummy candies production with natural sugar source: Effect of molasses types and gelatin ratios. Food Science and Technology International, 28(2), 118–127. https://doi.org/10.1177/1082013221993566 Lan, Y., Chen, B., & Rao, J. (2018). Pea protein isolate–high methoxyl pectin soluble complexes for improving pea protein functionality: Effect of pH, biopolymer ratio and concentrations. Food Hydrocolloids, 80, 245–253. https://doi.org/10.1016/j.foodhyd.2018.02.021 Lan, Y., Ohm, J. B., Chen, B., & Rao, J. (2020). Phase behavior and complex coacervation of concentrated pea protein isolate-beet pectin solution. Food Chemistry, 307, 125536. https://doi.org/10.1016/J.FOODCHEM.2019.125536 Lan, Y., Ohm, J. B., Chen, B., & Rao, J. (2021). Microencapsulation of hemp seed oil by pea protein isolate−sugar beet pectin complex coacervation: Influence of coacervation pH and wall/core ratio. Food Hydrocolloids, 113, 106423. https://doi.org/10.1016/J.FOODHYD.2020.106423 Marfil, P. H. M., Paulo, B. B., Alvim, I. D., & Nicoletti, V. R. (2018). Production and characterization of palm oil microcapsules obtained by complex coacervation in gelatin/gum Arabic. Journal of Food Process Engineering, 41(4). https://doi.org/10.1111/jfpe.12673 Mehran, M., Masoum, S., & Memarzadeh, M. (2020). Microencapsulation of Mentha spicata essential oil by spray drying: Optimization, characterization, release kinetics of essential oil from microcapsules in food models. Industrial Crops and Products, 154, 112694. https://doi.org/10.1016/J.INDCROP.2020.112694 136 Millard, M. M., Dintzis, F. R., Willett, J. L., & Klavons, J. A. (1997). Light-Scattering Molecular Weights and Intrinsic Viscosities of Processed Waxy Maize Starches in 90% Dimethyl Sulfoxide and H2O. Cereal Chemistry, 74(5), 687–691. https://doi.org/doi:10.1094/CCHEM.1997.74.5.687 Nita, L. E., Chiriac, A. P., Rusu, A. G., Ghilan, A., Dumitriu, R. P., Bercea, M., & Tudorachi, N. (2020). Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly(2- Dimethylaminoethyl Methacrylate) for Anti-Inflammatory Drug Delivery. Macromolecular Bioscience, 20(4), 1900412. https://doi.org/10.1002/MABI.201900412 Olson, J. A. (1989). Provitamin A Function of Carotenoids: The Conversion of β-Carotene into Vitamin A. The Journal of Nutrition, 119(1), 105–108. https://doi.org/10.1093/jn/119.1.105 Perez, E., Bahnassey, Y. A., & Breene, W. M. (1993). A Simple Laboratory Scale Method for Isolation of Amaranth Starch. Starch - Stärke, 45(6), 211–214. https://doi.org/doi:10.1002/star.19930450605 Priyadarshani, A. M. B. (2017). A review on factors influencing bioaccessibility and bioefficacy of carotenoids. Critical Reviews in Food Science and Nutrition, 57(8), 1710–1717. https://doi.org/10.1080/10408398.2015.1023431 Quadrado, R. F. N., & Fajardo, A. R. (2020). Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arabian Journal of Chemistry, 13(1), 2183–2194. https://doi.org/10.1016/j.arabjc.2018.04.004 Rutz, J. K., Borges, C. D., Zambiazi, R. C., Crizel-Cardozo, M. M., Kuck, L. S., & Noreña, C. P. Z. (2017). Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, 220, 59–66. https://doi.org/10.1016/j.foodchem.2016.09.194 Santos, M. B., Geraldo de Carvalho, M., & Garcia-Rojas, E. E. (2021). Carboxymethyl tara gum-lactoferrin complex coacervates as carriers for vitamin D3: Encapsulation and controlled release. Food Hydrocolloids, 112, 106347. https://doi.org/10.1016/j.foodhyd.2020.106347 Thakur, D., Jain, A., Ghoshal, G., Shivhare, U. ., & Katare, O. . (2017). Microencapsulation of β-Carotene Based on Casein/Guar Gum Blend Using Zeta Potential-Yield Stress Phenomenon: an Approach to Enhance Photo-stability and Retention of Functionality. AAPS PharmSciTech, 18(5), 1447–1459. https://doi.org/10.1208/s12249-017-0806-1 Timilsena, Y. P., Akanbi, T. O., Khalid, N., Adhikari, B., & Barrow, C. J. (2019). Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, 121, 1276–1286. https://doi.org/10.1016/j.ijbiomac.2018.10.144 Wang, B., Timilsena, Y. P., Blanch, E., & Adhikari, B. (2017). Lactoferrin: Structure, function, denaturation and digestion. Https://Doi- Org.Ez30.Periodicos.Capes.Gov.Br/10.1080/10408398.2017.1381583, 59(4), 580– 596. https://doi.org/10.1080/10408398.2017.1381583 Wang, L., Liu, Z., Jiang, H., & Mao, X. (2021). Biotechnology advances in β-carotene production by microorganisms. Trends in Food Science & Technology, 111, 322–332. https://doi.org/10.1016/J.TIFS.2021.02.077 Xie, L., Shen, M., Wang, Z., & Xie, J. (2021). Structure, function and food applications of carboxymethylated polysaccharides: A comprehensive review. Trends in Food Science & Technology, 118, 539–557. https://doi.org/10.1016/J.TIFS.2021.09.016 137 Yan, C., & Zhang, W. (2014). Coacervation Processes. In A. G. Gaonkar, N. Vasisht, A. R. Khare, & R. Sobel (Eds.), Microencapsulation in the Food Industry (pp. 125–137). Elsevier. https://doi.org/10.1016/B978-0-12-404568-2.00012-1 Zhu, F. (2017). Structures, physicochemical properties, and applications of amaranth starch. Critical Reviews in Food Science and Nutrition, 57(2), 313–325. https://doi.org/10.1080/10408398.2013.862784pt_BR
dc.subject.cnpqCiência e Tecnologia de Alimentospt_BR
Appears in Collections:Doutorado em Ciência e Tecnologia de Alimentos

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Augusto Bene Tomé Constantino.pdf2.62 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.