Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/18211
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSeco, Daniel Bonatto-
dc.date.accessioned2024-09-20T14:15:01Z-
dc.date.available2024-09-20T14:15:01Z-
dc.date.issued2024-05-06-
dc.identifier.citationSECO, Daniel Bonatto. Viés em geração de linguagem natural na era dos modelos de grande escala sob a perspectiva das humanidades digitais. 2024. 106 f. Dissertação (Mestrado em Humanidades Digitas) - Instituto Multidisciplinar de Nova Iguaçu, Universidade Federal Rural do Rio de Janeiro, Nova Iguaçu, RJ, 2023.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/18211-
dc.description.abstractA presente dissertação investiga o problema do viés em grandes modelos de lin- guagem (LLMs) baseados na arquitetura Transformers e seus impactos na disseminação e reprodução de preconceitos e injustiças. Contextualizado na era da Inteligência Artificial e do Big Data e avaliado sob a luz das humanidades digitais, o trabalho parte de uma revisão histórica dos métodos em processamento de linguagem natural (PLN) e das parti- cularidades dos métodos atuais, explorando a questão da confiabilidade e sua aplicação no meio digital, especialmente nos modelos de linguagem, identificando potenciais problemas associados. É conduzida uma análise em dez modelos multilinguais com alguns treinados exclusivamente em português sobre um possível viés em sua capacidade de gerar continu- ações tóxicas de prompts a partir do gênero identificado. Questões transversais, como a proveniência e gerência de dados, representatividade linguística e cultural, e a importância da iniciativa de código aberto na construção de modelos éticos e transparentes são dis- cutidas, enfatizando a necessidade de abordagens mais inclusivas, justas e transparentes. Por fim, a urgência pela regulação da Inteligência Artificial é destacada, considerando os aspectos éticos, de segurança e de controle dos dados e dos modelos gerados, com uma análise dos principais projetos de lei em tramitação e suas implicações. Assim, a disser- tação contribui para o entendimento dos desafios éticos e técnicos associados aos modelos de linguagem, promovendo uma reflexão sobre a importância de abordagens confiáveis, justas e regulamentadas na construção e aplicação desses sistemas na sociedade.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectProcessamento de linguagem naturalpt_BR
dc.subjectHumanidades Digitaispt_BR
dc.subjectInteligência Artificialpt_BR
dc.subjectArtificial Intelligenceen
dc.subjectDigital Humanitiesen
dc.subjectNatural Language Processingen
dc.titleViés em geração de linguagem natural na era dos modelos de grande escala sob a perspectiva das humanidades digitaispt_BR
dc.title.alternativeBias in natural language processing in the era of large language models from the digital humanities perspectiveen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherThis thesis investigates the problem of bias in large language models (LLMs) based on the Transformers architecture and its impact on the dissemination and reproduction of stigmas and injustice. Contextualized in the era of Artificial Intelligence and Big Data and evaluated in the light of digital humanities, the thesis starts with a historical re- view of natural language processing (NLP) methods and the particularities of current methods, exploring the issue of reliability and its application in the digital environment, especially in language models, identifying potential associated problems. An analysis is conducted on 10 multilingual models or those trained exclusively in Portuguese, regarding a possible bias in their ability to generate toxic continuations of prompts based on the genre presented. Parallel issues such as data provenance and management, linguistic and cultural representativeness, and the importance of the open source initiative in building ethical and transparent models are discussed, emphasizing the need for more inclusive, fair and transparent approaches. Finally, the urgency of regulating Artificial Intelligence is highlighted, considering the ethical, security and control aspects of the data and models generated, with an analysis of the main bills currently being considered and their impli- cations. In this way, the dissertation contributes to an understanding of the ethical and technical challenges associated with language models, promoting a better understanding of these issues.en
dc.contributor.advisor1Alvim, Leandro Guimaraes Marques-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-1611-7559pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3810771931191838pt_BR
dc.contributor.referee1Alvim, Leandro Guimarães Marques-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-1611-7559pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3810771931191838pt_BR
dc.contributor.referee2Pagano, Adriana Silvina-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-3150-3503pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9048531014341931pt_BR
dc.contributor.referee3Mello, Carlos Eduardo Ribeiro de-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-3632-4002pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2417341890473612pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8325397475123191pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto Multidisciplinar de Nova Iguaçupt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação Interdisciplinar em Humanidades Digitaispt_BR
dc.relation.referencesABADI, A., DOYLE, B., GINI, F., et al. “Starlit: Privacy-Preserving Federated Learning to Enhance Financial Fraud Detection”. jan. 2024. Disponível em: <http://arxiv.org/abs/2401.10765>. arXiv:2401.10765 [cs]. ABID, A., FAROOQI, M., ZOU, J. “Large language models associate Muslims with violence”, Nature Machine Intelligence, v. 3, n. 6, pp. 461–463, jun. 2021a. ISSN: 2522-5839. doi: 10.1038/s42256-021-00359-2. Disponível em: <https: //www.nature.com/articles/s42256-021-00359-2>. ABID, A., FAROOQI, M., ZOU, J. “Persistent Anti-Muslim Bias in Large Language Models”. jan. 2021b. Disponível em: <http://arxiv.org/abs/2101.05783>. arXiv:2101.05783 [cs]. ACL ANTHOLOGY. “Annual Meeting of the Association for Computational Linguistics (2023)”. 2023. Disponível em: <https://aclanthology.org/events/ acl-2023/>. AGRAWAL, R., SRIKANT, R., OTHERS. “Fast algorithms for mining association rules”. In: Proc. 20th int. conf. very large data bases, VLDB, v. 1215, pp. 487–499. Santiago, 1994. AGÊNCIA SENADO. “Regulação da inteligência artificial exige cuidado com dados pessoais, aponta debate”. 2023. Disponível em: <https://www12.senado.leg.br/noticias/materias/2023/10/19/ regulacao-da-inteligencia-artificial-exige-cuidado-com-dados-pessoais-aponta-AHN, J., OH, A. “Mitigating Language-Dependent Ethnic Bias in BERT”. set. 2021. Disponível em: <http://arxiv.org/abs/2109.05704>. arXiv:2109.05704 [cs]. AKPANUKO, E. E., ASOGWA, I. E. “Accountability: A Synthesis”, International Journal of Finance and Accounting, v. 2, pp. 164–173, 2013. Disponível em: <https://api.semanticscholar.org/CorpusID:37160901>. 105 ALICEBOT. “Alicebot Technology History”. 2000. Disponível em: <https: //web.archive.org/web/20171230095936/http://www.alicebot.org/ history/technology.html>. ALMEIDA, S. D. C. D. D., SOARES, T. A. “Os impactos da Lei Geral de Proteção de Dados - LGPD no cenário digital”, Perspectivas em Ciência da Informação, v. 27, n. 3, pp. 26–45, set. 2022. ISSN: 1981-5344, 1413-9936. doi: 10.1590/1981-5344/25905. Disponível em: <http://www.scielo.br/scielo. php?script=sci_arttext&pid=S1413-99362022000300026&tlng=pt>. ALMEIDA, V. A. F. Recomendações para o avanço da inteligência artificial no Brasil: GT-IA da Academia Brasileira de Ciências. Rio de Janeiro, RJ, Academia Brasileira de Ciências, out. 2023. ISBN: 9786598176303. AMADEU, S., SOUZA, J., CASSINO, J. F. Colonialismo de dados: como opera a trincheira algorítmica na guerra neoliberal. São Paulo/SP, Autonomia Literária, 2021. ISBN: 978-65-87233-56-7. ANDERSON, M., ANDERSON, S. “Guest Editors’ Introduction: Machine Ethics”, IEEE Intelligent Systems, v. 21, n. 4, pp. 10–11, jul. 2006. ISSN: 1541-1672. doi: 10.1109/MIS.2006.70. Disponível em: <http://ieeexplore.ieee.org/ document/1667946/>. ANDERSON, M., ANDERSON, S. L. “Machine Ethics: Creating an Ethical Intelligent Agent”, AI Magazine, v. 28, n. 4, pp. 15, dez. 2007. doi: 10.1609/aimag. v28i4.2065. Disponível em: <https://ojs.aaai.org/aimagazine/index. php/aimagazine/article/view/2065>. ARNOLD, C. “Gender Bias in AI-Generated Images: A comprehensive study”. 2024. Disponível em: <https://generativeai.pub/ gender-bias-in-ai-generated-images-a-comprehensive-study-b54be5b3cfde>. AROYO, L., WELTY, C. “Truth Is a Lie: Crowd Truth and the Seven Myths of Human Annotation”, AI Magazine, v. 36, n. 1, pp. 15–24, mar. 2015. ISSN: 0738- 4602, 2371-9621. doi: 10.1609/aimag.v36i1.2564. Disponível em: <https: //onlinelibrary.wiley.com/doi/10.1609/aimag.v36i1.2564>. AUTORIDADE NACIONAL DE PROTEÇÃO DE DADOS. “ANPD publica análise preliminar do Projeto de Lei nž 2338/2023, que dispõe sobre o uso da Inteligência Artificial”. jul. 2023. Disponível em: <https://www.gov.br/anpd/pt-br/assuntos/noticias/ anpd-publica-analise-preliminar-do-projeto-de-lei-no-2338-2023-que-dispoe-106 BAHL, L., BROWN, P., DE SOUZA, P., et al. “A tree-based statistical language model for natural language speech recognition”, IEEE Transactions on Acoustics, Speech, and Signal Processing, v. 37, n. 7, pp. 1001–1008, 1989. doi: 10.1109/29.32278. BANDY, J., VINCENT, N. “Addressing "Documentation Debt"in Machine Learning Research: A Retrospective Datasheet for BookCorpus”. maio 2021. Disponível em: <http://arxiv.org/abs/2105.05241>. arXiv:2105.05241 [cs]. BARIKERI, S., LAUSCHER, A., VULI, I., et al. “RedditBias: A Real-World Resource for Bias Evaluation and Debiasing of Conversational Language Models”. jun. 2021. Disponível em: <http://arxiv.org/abs/2106.03521>. ar- Xiv:2106.03521 [cs]. BAROCAS, S., SELBST, A. D. “Big Data’s Disparate Impact”, SSRN Electronic Journal, 2016. ISSN: 1556-5068. doi: 10.2139/ssrn.2477899. Disponível em: <https://www.ssrn.com/abstract=2477899>. BASSIGNANA, E., BASILE, V., PATTI, V. “Hurtlex: A Multilingual Lexicon of Words to Hurt”. In: Cabrio, E., Mazzei, A., Tamburini, F. (Eds.), Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it 2018, Accademia University Press, pp. 51–56, 2018. ISBN: 978-88-319-7868- 2. doi: 10.4000/books.aaccademia.3085. Disponível em: <http://books. openedition.org/aaccademia/3085>. BATES, M. “Models of natural language understanding.” Proceedings of the National Academy of Sciences, v. 92, n. 22, pp. 9977–9982, 1995. Publisher: National Acad Sciences. BBC NEWS. “Google apologises for Photos app’s racist blunder”. 2015. Disponível em: <https://www.bbc.com/news/technology-33347866>. BELLAMY, R. K. E., DEY, K., HIND, M., et al. “AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias”. out. 2018. Disponível em: <http://arxiv.org/abs/1810.01943>. ar- Xiv:1810.01943 [cs]. BELLMAN, R. E. “Artificial intelligence: can computers think?” (No Title), 1978. BELLMAN, R. Dynamic programming. Princeton, NJ, Princeton Univ. Pr, 1984. ISBN: 978-0-691-07951-6. BENDER, E. M. “On Achieving and Evaluating Language-Independence in NLP”, Linguistic Issues in Language Technology, v. 6, out. 2011. ISSN: 1945-3604. doi: 107 10.33011/lilt.v6i.1239. Disponível em: <https://journals.colorado.edu/ index.php/lilt/article/view/1239>. BENDER, E. M. “The #BenderRule: On Naming the Languages We Study and Why It Matters”. 2019. Disponível em: <https://thegradient.pub/ the-benderrule-on-naming-the-languages-we-study-and-why-it-matters/ #fn3>. BENGIO, Y., DUCHARME, R., VINCENT, P. “A neural probabilistic language model”, Advances in neural information processing systems, v. 13, 2000. BENKLER, Y. “Coase’s Penguin, or, Linux and "The Nature of the Firm"”, The Yale Law Journal, v. 112, n. 3, pp. 369, dez. 2002. ISSN: 00440094. doi: 10. 2307/1562247. Disponível em: <https://www.jstor.org/stable/1562247? origin=crossref>. Blair, A., Duguid, P., Goeing, A.-S., et al. (Eds.). Information: A Historical Companion. “, Princeton University Press, jan. 2021. ISBN: 978-0-691-20974-6 978-0-691- 17954-4. doi: 10.2307/j.ctv1pdrrbs. Disponível em: <http://www.jstor.org/ stable/10.2307/j.ctv1pdrrbs>. BLODGETT, S. L., BAROCAS, S., DAUMÉ III, H., et al. “Language (Technology) is Power: A Critical Survey of Bias in NLP”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5454–5476, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.485. Disponível em: <https://www.aclweb.org/ anthology/2020.acl-main.485>. BOLUKBASI, T., CHANG, K.-W., ZOU, J., et al. “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings”. jul. 2016. Disponível em: <http://arxiv.org/abs/1607.06520>. arXiv:1607.06520 [cs, stat]. BOMMASANI, R., KLYMAN, K., LONGPRE, S., et al. “The Foundation Model Transparency Index”. out. 2023. Disponível em: <http://arxiv.org/abs/2310. 12941>. arXiv:2310.12941 [cs]. BORDIA, S., BOWMAN, S. R. “Identifying and Reducing Gender Bias in Word- Level Language Models”. In: Proceedings of the 2019 Conference of the North, pp. 7–15, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-3002. Disponível em: <http://aclweb.org/ anthology/N19-3002>. BORGMAN, C. L. Big data, little data, no data: Scholarship in the networked world. , MIT press, 2017. 108 BOWKER, G. C. Memory practices in the sciences. , Mit Press, 2008. BOWMAN, S. R. “Eight Things to Know about Large Language Models”. abr. 2023. Disponível em: <http://arxiv.org/abs/2304.00612>. arXiv:2304.00612 [cs]. BOYD, D., CRAWFORD, K. “Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon”, Information, communication & society, v. 15, n. 5, pp. 662–679, 2012. Publisher: Taylor & Francis. BOYLE, J. The public domain: enclosing the commons of the mind. New Haven, Conn., Yale University Press, 2010. ISBN: 978-0-300-15834-2. OCLC: 317471891. BRANTS, T., POPAT, A. C., XU, P., et al. “Large Language Models in Machine Translation”. In: Eisner, J. (Ed.), Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 858–867, Prague, Czech Republic, jun. 2007. Association for Computational Linguistics. Disponível em: <https: //aclanthology.org/D07-1090>. BRASILEIRAS EM PLN. “Análise ACL 2023”. 2023. Disponível em: <https: //github.com/brasileiras-pln/analise-acl-2023/>. BRENDAN BYCROFT. “LLM Visualization”. 2023. Disponível em: <https:// bbycroft.net/llm>. BROWN, T. B., MANN, B., RYDER, N., et al. “Language Models are Few-Shot Learners”. jul. 2020. Disponível em: <http://arxiv.org/abs/2005.14165>. arXiv:2005.14165 [cs]. BROWNLEE, J. “Deep learning for natural language processing”, Machine Learning Mystery, Vermont, Australia, v. 322, 2017. BUNEMAN, P., KHANNA, S., WANG-CHIEW, T. “Why and Where: A Characterization of Data Provenance”. In: Goos, G., Hartmanis, J., Van Leeuwen, J., et al. (Eds.), Database Theory ICDT 2001, v. 1973, Springer Berlin Heidelberg, pp. 316–330, Berlin, Heidelberg, 2001. ISBN: 978-3-540-41456-8 978- 3-540-44503-6. doi: 10.1007/3-540-44503-X_20. Disponível em: <http: //link.springer.com/10.1007/3-540-44503-X_20>. Series Title: Lecture Notes in Computer Science. BUOLAMWINI, J., GEBRU, T. “Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification”. In: FAT, 2018. Disponível em: <https: //api.semanticscholar.org/CorpusID:3298854>. 109 BURTON, E., GOLDSMITH, J., KOENIG, S., et al. “Ethical Considerations in Artificial Intelligence Courses”. jan. 2017. Disponível em: <http://arxiv.org/abs/ 1701.07769>. arXiv:1701.07769 [cs]. CALISKAN, A., BRYSON, J. J., NARAYANAN, A. “Semantics derived automatically from language corpora contain human-like biases”, Science, v. 356, n. 6334, pp. 183–186, abr. 2017. ISSN: 0036-8075, 1095-9203. doi: 10.1126/ science.aal4230. Disponível em: <http://arxiv.org/abs/1608.07187>. ar- Xiv:1608.07187 [cs]. CAO, Y. T., DAUMÉ III, H. “Toward Gender-Inclusive Coreference Resolution”. In: Jurafsky, D., Chai, J., Schluter, N., et al. (Eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 4568–4595, Online, jul. 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.418. Disponível em: <https://aclanthology. org/2020.acl-main.418>. CASTELLS, M., HIMANEN, P. Reconceptualización del desarrollo en la era global de la información. , 2016. CHARNIAK, E., MCDERMOTT, D. V. Introduction to artificial intelligence. Reading, Mass, Addison-Wesley, 1985. ISBN: 978-0-201-11945-9. CHIU, M.-C., WANG, Y., KUO, Y.-J., et al. “DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In Machine-Assisted Skin Disease Detection”. jan. 2024. Disponível em: <http://arxiv.org/abs/2401.13280>. arXiv:2401.13280 [cs]. COLLOBERT, R., WESTON, J., BOTTOU, L., et al. “Natural language processing (almost) from scratch”, Journal of machine learning research, v. 12, n. ARTICLE, pp. 2493–2537, 2011. CONGRESSO NACIONAL. “Lei Geral de Proteção de Dados Pessoais (LGPD)”. 2018. Disponível em: <https://www.planalto.gov.br/ccivil_03/ _ato2015-2018/2018/lei/l13709.htm>. CORTIZ, D. “Computação Afetiva: entre as limitações técnicas e os desafios do colonialismo de dados”, v. 24, 2022. CREVIER, D. AI: the tumultuous history of the search for artificial intelligence. New York, NY, Basic Books, 1993. ISBN: 978-0-465-02997-6. CUDDY, A. J. C., FISKE, S. T., KWAN, V. S. Y., et al. “Stereotype content model across cultures: Towards universal similarities and some differences”, British 110 Journal of Social Psychology, v. 48, n. 1, pp. 1–33, mar. 2009. ISSN: 0144- 6665, 2044-8309. doi: 10.1348/014466608X314935. Disponível em: <https:// bpspsychub.onlinelibrary.wiley.com/doi/10.1348/014466608X314935>. CUSICANQUI, S. R. “Ch’ixinakax utxiwa : A Reflection on the Practices and Discourses of Decolonization”, South Atlantic Quarterly, v. 111, n. 1, pp. 95–109, jan. 2012. ISSN: 0038-2876, 1527-8026. doi: 10.1215/00382876-1472612. Disponível em: <https://read.dukeupress.edu/south-atlantic-quarterly/article/ 111/1/95/3568/Ch-ixinakax-utxiwa-A-Reflection-on-the-Practices>. CÂMARA DOS DEPUTADOS. “Projeto cria marco legal para uso de inteligência artificial no Brasil”. 2020a. Disponível em: <https://www.camara.leg.br/noticias/ 641927-projeto-cria-marco-legal-para-uso-de-inteligencia-artificial-no-brasil/>. CÂMARA DOS DEPUTADOS. “Projeto de Lei nr 21, de 2020”. 2020b. Disponível em: <https://www25.senado.leg.br/web/atividade/materias/-/ materia/151547>. D. WILSON, T. “Human Information Behavior”, Informing Science: The International Journal of an Emerging Transdiscipline, v. 3, pp. 049–056, 2000. ISSN: 1547-9684, 1521-4672. doi: 10.28945/576. Disponível em: <https: //www.informingscience.org/Publications/576>. DANCY, C. L., SAUCIER, P. K. “AI and Blackness: Towards moving beyond bias and representation”, IEEE Transactions on Technology and Society, v. 3, n. 1, pp. 31–40, mar. 2022. ISSN: 2637-6415. doi: 10.1109/TTS.2021.3125998. Disponível em: <http://arxiv.org/abs/2111.03687>. arXiv:2111.03687 [cs]. DEVELOPERS, G. “Types of Bias”. 2023. Disponível em: <https: //developers.google.com/machine-learning/crash-course/fairness/ types-of-bias?hl=pt-br>. DEV, S., SHENG, E., ZHAO, J., et al. “On Measures of Biases and Harms in NLP”. In: He, Y., Ji, H., Li, S., et al. (Eds.), Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, pp. 246–267, Online only, nov. 2022. Association for Computational Linguistics. Disponível em: <https://aclanthology.org/2022.findings-aacl.24>. DEVLIN, J., CHANG, M.-W., LEE, K., et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding”. maio 2019. Disponível em: <http: //arxiv.org/abs/1810.04805>. arXiv:1810.04805 [cs]. 111 DHINGRA, H., JAYASHANKER, P., MOGHE, S., et al. “Queer People are People First: Deconstructing Sexual Identity Stereotypes in Large Language Models”. jun. 2023. Disponível em: <http://arxiv.org/abs/2307.00101>. ar- Xiv:2307.00101 [cs]. DIAKOPOULOS, N. “Accountability in algorithmic decision making”, Communications of the ACM, v. 59, n. 2, pp. 56–62, jan. 2016. ISSN: 0001-0782, 1557-7317. doi: 10.1145/2844110. Disponível em: <https://dl.acm.org/doi/10.1145/ 2844110>. DIETTERICH, T. G., KONG, E. B. “Machine learning bias, statistical bias, and statistical variance of decision tree algorithms”, 1995. Publisher: Citeseer. DINAN, E., FAN, A., WILLIAMS, A., et al. “Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 8173–8188, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.656. Disponível em: <https://www.aclweb. org/anthology/2020.emnlp-main.656>. DODGE, J., SAP, M., MARASOVI, A., et al. “Documenting Large Webtext Corpora: A Case Study on the Colossal Clean Crawled Corpus”. set. 2021. Disponível em: <http://arxiv.org/abs/2104.08758>. arXiv:2104.08758 [cs]. DOLATA, M., FEUERRIEGEL, S., SCHWABE, G. “A sociotechnical view of algorithmic fairness”, Information Systems Journal, v. 32, n. 4, pp. 754–818, jul. 2022. ISSN: 1350-1917, 1365-2575. doi: 10.1111/isj.12370. Disponível em: <https://onlinelibrary.wiley.com/doi/10.1111/isj.12370>. DOMINGOS, P. “A few useful things to know about machine learning”, Communications of the ACM, v. 55, n. 10, pp. 78–87, out. 2012. ISSN: 0001-0782, 1557-7317. doi: 10.1145/2347736.2347755. Disponível em: <https://dl.acm.org/doi/ 10.1145/2347736.2347755>. DONG, Q., LI, L., DAI, D., et al. “A Survey on In-context Learning”. 2023. _eprint: 2301.00234. DUTTA, S., SRIVASTAVA, P., SOLUNKE, V., et al. “Disentangling Societal Inequality from Model Biases: Gender Inequality in Divorce Court Proceedings”. jul. 2023. Disponível em: <http://arxiv.org/abs/2307.10200>. arXiv:2307.10200 [cs]. DZIRI, N., LU, X., SCLAR, M., et al. “Faith and Fate: Limits of Transformers on Compositionality”, 2023. 112 ELLEMERS, N. “Gender Stereotypes”, Annual Review of Psychology, v. 69, pp. 275–298, jan. 2018. ISSN: 1545-2085. doi: 10.1146/annurev-psych-122216-011719. ELO, S., KÄÄRIÄINEN, M., KANSTE, O., et al. “Qualitative Content Analysis: A Focus on Trustworthiness”, SAGE Open, v. 4, n. 1, pp. 215824401452263, jan. 2014. ISSN: 2158-2440, 2158-2440. doi: 10.1177/2158244014522633. Disponível em: <http://journals.sagepub.com/doi/10.1177/2158244014522633>. EUROPEAN PARLIAMENT. “EU AI Act: first regulation on artificial intelligence”. 2023. Disponível em: <https://www. europarl.europa.eu/news/en/headlines/society/20230601STO93804/ eu-ai-act-first-regulation-on-artificial-intelligence>. FEDUS, W., ZOPH, B., SHAZEER, N. “Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity”. jun. 2022. Disponível em: <http://arxiv.org/abs/2101.03961>. arXiv:2101.03961 [cs]. FELKNER, V. K., CHANG, H.-C. H., JANG, E., et al. “Towards WinoQueer: Developing a Benchmark for Anti-Queer Bias in Large Language Models”. jul. 2022. Disponível em: <http://arxiv.org/abs/2206.11484>. arXiv:2206.11484 [cs]. FELKNER, V. K., CHANG, H.-C. H., JANG, E. “WinoQueer: A Community-in-the- Loop Benchmark for Anti-LGBTQ+ Bias in Large Language Models”, 2023. FERNANDES, A., ROONGTA, R., RAPOPORT, G. “The Exploding Generative AI Market”. dez. 2023. Disponível em: <https://www.bain.com/pt-br/ insights/exploding-generative-ai-market-snap-chart/>. FERRARA, E. “Should ChatGPT be Biased? Challenges and Risks of Bias in Large Language Models”. abr. 2023a. Disponível em: <http://arxiv.org/abs/2304. 03738>. arXiv:2304.03738 [cs]. FERRARA, E. “FAIRNESS AND BIAS IN ARTIFICIAL INTELLIGENCE: A BRIEF SURVEY OF SOURCES, IMPACTS, AND MITIGATION STRATEGIES”, 2023b. FINGER, A., WAGNER, M. Bias, Belief, and Conviction in an Age of Fake Facts. 1 ed. London, Routledge, set. 2022. ISBN: 978-1-00-318793-6. doi: 10.4324/ 9781003187936. Disponível em: <https://www.taylorfrancis.com/books/ 9781003187936>. FLORIDI, L. The fourth revolution how the infosphere is reshaping human reality. Oxford, Oxford university press, 2014. ISBN: 978-0-19-960672-6. 113 GALE, W. A., SAMPSON, G. “Goodturing frequency estimation without tears*”, Journal of Quantitative Linguistics, v. 2, n. 3, pp. 217–237, jan. 1995. ISSN: 0929-6174, 1744-5035. doi: 10.1080/09296179508590051. Disponível em: <http://www.tandfonline.com/doi/abs/10.1080/09296179508590051>. GAO, J., LIN, C.-Y. “Introduction to the special issue on statistical language modeling”, ACM Transactions on Asian Language Information Processing, v. 3, n. 2, pp. 87–93, jun. 2004. ISSN: 1530-0226, 1558-3430. doi: 10.1145/1034780. 1034781. Disponível em: <https://dl.acm.org/doi/10.1145/1034780. 1034781>. GARRIDO-MUÑOZ, I., MARTÍNEZ-SANTIAGO, F., MONTEJO-RÁEZ, A. MarIA and BETO are sexist: evaluating gender bias in large language models for Spanish. preprint, In Review, nov. 2022. Disponível em: <https: //www.researchsquare.com/article/rs-2256074/v1>. GEHMAN, S., GURURANGAN, S., SAP, M., et al. “RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models”. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 3356–3369, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020. findings-emnlp.301. Disponível em: <https://www.aclweb.org/anthology/ 2020.findings-emnlp.301>. GHAVAMI, N., PEPLAU, L. A. “An Intersectional Analysis of Gender and Ethnic Stereotypes: Testing Three Hypotheses”, Psychology of Women Quarterly, v. 37, n. 1, pp. 113–127, mar. 2013. ISSN: 0361-6843, 1471-6402. doi: 10.1177/0361684312464203. Disponível em: <http://journals.sagepub. com/doi/10.1177/0361684312464203>. GILOVICH, T., GRIFFIN, D., KAHNEMAN, D. Heuristics and biases: the psychology of intuitive judgement. Cambridge, U.K. New York, Cambridge University Press, 2002. ISBN: 978-0-521-79260-8 978-0-521-79679-8. GOODFELLOW, I., BENGIO, Y., COURVILLE, A. Deep learning. , MIT press, 2016. GORDON, J., VAN DURME, B. “Reporting bias and knowledge acquisition”. In: Proceedings of the 2013 workshop on Automated knowledge base construction, pp. 25–30, San Francisco California USA, out. 2013. ACM. ISBN: 978-1-4503-2411- 3. doi: 10.1145/2509558.2509563. Disponível em: <https://dl.acm.org/doi/ 10.1145/2509558.2509563>. GRAMLING, D. The Invention of Multilingualism. 1 ed. , Cambridge University Press, jun. 2021. ISBN: 978-1-108-78066-7 978-1-108-49030-6 978-1-108-74838- 114 4. doi: 10.1017/9781108780667. Disponível em: <https://www.cambridge. org/core/product/identifier/9781108780667/type/book>. GRGI-HLAA, N., ZAFAR, M. B., GUMMADI, K. P., et al. “Beyond Distributive Fairness in Algorithmic Decision Making: Feature Selection for Procedurally Fair Learning”, Proceedings of the AAAI Conference on Artificial Intelligence, v. 32, n. 1, abr. 2018. ISSN: 2374-3468, 2159-5399. doi: 10.1609/aaai.v32i1.11296. Disponível em: <https://ojs.aaai.org/index.php/AAAI/article/view/ 11296>. GROENWOLD, S., OU, L., PAREKH, A., et al. “Investigating African-American Vernacular English in Transformer-Based Text Generation”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5877–5883, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.473. Disponível em: <https: //www.aclweb.org/anthology/2020.emnlp-main.473>. GROSFOGUEL, R. “World-Systems Analysis in the Context of Transmodernity, Border Thinking, and Global Coloniality”, Review (Fernand Braudel Center), v. 29, n. 2, pp. 167–187, 2006. ISSN: 01479032, 2327445X. Disponível em: <http://www.jstor.org/stable/40241659>. Publisher: Research Foundation of SUNY. HAAN, K. “24 Top AI Statistics And Trends In 2024”. 2023. Disponível em: <https: //www.forbes.com/advisor/business/ai-statistics/>. HARRIS, Z. S. “Distributional structure”, Word, v. 10, n. 2-3, pp. 146–162, 1954. Publisher: Taylor & Francis. HAUGELAND, J. Artificial intelligence: The very idea. , MIT press, 1989. HOCHHEISER, H., LAZAR, J. “HCI and Societal Issues: A Framework for Engagement”, International Journal of Human-Computer Interaction, v. 23, n. 3, pp. 339–374, dez. 2007. ISSN: 1044-7318, 1532-7590. doi: 10.1080/ 10447310701702717. Disponível em: <http://www.tandfonline.com/doi/ abs/10.1080/10447310701702717>. HOFFMANN, J., BORGEAUD, S., MENSCH, A., et al. “Training Compute-Optimal Large Language Models”. mar. 2022. Disponível em: <http://arxiv.org/ abs/2203.15556>. arXiv:2203.15556 [cs]. HOVY, D., SPRUIT, S. L. “The Social Impact of Natural Language Processing”. In: Proceedings of the 54th Annual Meeting of the Association for Computational 115 Linguistics (Volume 2: Short Papers), pp. 591–598, Berlin, Germany, 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-2096. Disponível em: <http://aclweb.org/anthology/P16-2096>. HOWE, J. “Artificial Intelligence at Edinburgh University : a Perspective”, ago. 2007. Disponível em: <https://www.inf.ed.ac.uk/about/AIhistory.html>. HUANG, P.-S., ZHANG, H., JIANG, R., et al. “Reducing Sentiment Bias in Language Models via Counterfactual Evaluation”. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 65–83, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.7. Disponível em: <https://www.aclweb.org/anthology/2020.findings-emnlp. 7>. IBM. “Open source large language models: Benefits, risks and types”. 2023. Disponível em: <https://www.ibm.com/blog/ open-source-large-language-models-benefits-risks-and-types/>. INUWA-DUTSE, I. “FATE in AI: Towards Algorithmic Inclusivity and Accessibility”, 2023. doi: 10.48550/ARXIV.2301.01590. Disponível em: <https://arxiv. org/abs/2301.01590>. Publisher: arXiv Version Number: 2. JACOBS, A. Z., WALLACH, H. “Measurement and Fairness”. In: Fairness, Accountability, and Transparency (FAccT 21). ACM, mar. 2021. Disponível em: <https://www.microsoft.com/en-us/research/publication/ measurement-and-fairness/>. JANNAT, F.-E., GHOLAMI, S., ALAM, M. N., et al. “OCT-SelfNet: A Self-Supervised Framework with Multi-Modal Datasets for Generalized and Robust Retinal Disease Detection”. jan. 2024. Disponível em: <http://arxiv.org/abs/2401. 12344>. arXiv:2401.12344 [cs]. JELINEK, F. STATISTICAL METHODS FOR SPEECH RECOGNITION. S.l., MIT PRESS, 2022. ISBN: 978-0-262-54660-7. OCLC: 1346213809. JIGSAW, G. “Attributes & Languages”. 2024. Disponível em: <https://developers. perspectiveapi.com/s/about-the-api-attributes-and-languages? language=en_US>. JOSHI, P., SANTY, S., BUDHIRAJA, A., et al. “The State and Fate of Linguistic Diversity and Inclusion in the NLP World”. jan. 2021. Disponível em: <http: //arxiv.org/abs/2004.09095>. arXiv:2004.09095 [cs]. 116 JURAFSKY, D., MARTIN, J. H. Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition. Prentice Hall series in artificial intelligence. 2nd ed ed. Upper Saddle River, N.J, Pearson Prentice Hall, 2009. ISBN: 978-0-13-187321-6. OCLC: 213375806. KADAN, A., P., D., BHADRA, S., et al. “Blacks is to Anger as Whites is to Joy? Understanding Latent Affective Bias in Large Pre-trained Neural Language Models”. jan. 2023. Disponível em: <http://arxiv.org/abs/2301.09003>. arXiv:2301.09003 [cs]. KADDOUR, J., HARRIS, J., MOZES, M., et al. “Challenges and Applications of Large Language Models”. jul. 2023. Disponível em: <http://arxiv.org/abs/2307. 10169>. arXiv:2307.10169 [cs]. KAPLAN, J., MCCANDLISH, S., HENIGHAN, T., et al. “Scaling Laws for Neural Language Models”. jan. 2020. Disponível em: <http://arxiv.org/abs/2001. 08361>. arXiv:2001.08361 [cs, stat]. KARVE, S., UNGAR, L., SEDOC, J. “Conceptor Debiasing of Word Representations Evaluated on WEAT”. In: Proceedings of the First Workshop on Gender Bias in Natural Language Processing, pp. 40–48, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/W19-3806. Disponível em: <https://www.aclweb.org/anthology/W19-3806>. KASINIDOU, M., KLEANTHOUS, S., ORPHANOU, K., et al. “Educating Computer Science Students about Algorithmic Fairness, Accountability, Transparency and Ethics”. In: Proceedings of the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1, pp. 484–490, Virtual Event Germany, jun. 2021a. ACM. ISBN: 978-1-4503-8214-4. doi: 10.1145/3430665.3456311. Disponível em: <https://dl.acm.org/doi/10. 1145/3430665.3456311>. KASINIDOU, M., KLEANTHOUS, S., BARLAS, P., et al. “I agree with the decision, but they didn’t deserve this: Future Developers’ Perception of Fairness in Algorithmic Decisions”. In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 690–700, Virtual Event Canada, mar. 2021b. ACM. ISBN: 978-1-4503-8309-7. doi: 10.1145/3442188.3445931. Disponível em: <https://dl.acm.org/doi/10.1145/3442188.3445931>. KATE CRAWFORD. “The trouble with bias.” 2017. Disponível em: <https://www. youtube.com/watch?v=fMym_BKWQzk>. 117 KATZ, S. “Estimation of probabilities from sparse data for the language model component of a speech recognizer”, IEEE Transactions on Acoustics, Speech, and Signal Processing, v. 35, n. 3, pp. 400–401, 1987. doi: 10.1109/TASSP.1987. 1165125. KAUTZ, H. “The Third AI Summer: AAAI Robert S. Engelmore Memorial Lecture”, AI Magazine, v. 43, n. 1, pp. 93–104, mar. 2022. ISSN: 2371-9621, 0738-4602. doi: 10.1609/aimag.v43i1.19122. Disponível em: <http://ojs.aaai.org/index. php/aimagazine/article/view/19122>. KELLY, T. Bias: A Philosophical Study. 1 ed. , Oxford University PressOxford, nov. 2022. ISBN: 978-0-19-284295-4 978-0-19-192556-6. doi: 10.1093/ oso/9780192842954.001.0001. Disponível em: <https://academic.oup.com/ book/44693>. KIM, S., SHIN, J., CHO, Y., et al. “Prometheus: Inducing Fine-grained Evaluation Capability in Language Models”. out. 2023. Disponível em: <http://arxiv. org/abs/2310.08491>. arXiv:2310.08491 [cs]. KITCHIN, R. “Big Data, new epistemologies and paradigm shifts”, Big data & society, v. 1, n. 1, pp. 2053951714528481, 2014. Publisher: SAGE Publications Sage UK: London, England. KLEANTHOUS, S., KASINIDOU, M., BARLAS, P., et al. “Perception of fairness in algorithmic decisions: Future developers’ perspective”, Patterns, v. 3, n. 1, pp. 100380, jan. 2022. ISSN: 26663899. doi: 10.1016/j.patter.2021. 100380. Disponível em: <https://linkinghub.elsevier.com/retrieve/ pii/S2666389921002476>. KOH, N. H., PLATA, J., CHAI, J. “BAD: BiAs Detection for Large Language Models in the context of candidate screening”. maio 2023. Disponível em: <http: //arxiv.org/abs/2305.10407>. arXiv:2305.10407 [cs]. KOMBRINK, S., MIKOLOV, T., KARAFIÁT, M., et al. “Recurrent Neural Network Based Language Modeling in Meeting Recognition.” In: Interspeech, v. 11, pp. 2877–2880, 2011. KOO, R., LEE, M., RAHEJA, V., et al. “Benchmarking Cognitive Biases in Large Language Models as Evaluators”. set. 2023. Disponível em: <http://arxiv. org/abs/2309.17012>. arXiv:2309.17012 [cs]. KOTEK, H., DOCKUM, R., SUN, D. Q. “Gender bias and stereotypes in Large Language Models”. In: Proceedings of The ACM Collective Intelligence Confe- 118 rence, pp. 12–24, nov. 2023. doi: 10.1145/3582269.3615599. Disponível em: <http://arxiv.org/abs/2308.14921>. arXiv:2308.14921 [cs]. KURZWEIL, R., RICHTER, R., KURZWEIL, R., et al. The age of intelligent machines, v. 580. , MIT press Cambridge, 1990. LARMORE, C. E. Patterns of moral complexity. Cambridge, Cambridge University Press, 1987. ISBN: 978-0-511-62510-7. OCLC: 818783658. LASKAR, M. T. R., FU, X.-Y., CHEN, C., et al. “Building Real-World Meeting Summarization Systems using Large Language Models: A Practical Perspective”. 2023. _eprint: 2310.19233. LECUN, Y. “A Path Towards Autonomous Machine Intelligence Version 0.9.2, 2022-06- 27”, 2022. LEES, A., TRAN, V. Q., TAY, Y., et al. “A New Generation of Perspective API: Efficient Multilingual Character-level Transformers”. fev. 2022. Disponível em: <http://arxiv.org/abs/2202.11176>. arXiv:2202.11176 [cs]. LESSIG, L. Free culture: how big media uses technology and the law to lock down culture and control creativity. New York, Penguin Press, 2004. ISBN: 978-1-59420-006- 9. LEWICKI, K., LEE, M. S. A., COBBE, J., et al. “Out of Context: Investigating the Bias and Fairness Concerns of Artificial Intelligence as a Service”. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pp. 1–17, Hamburg Germany, abr. 2023. ACM. ISBN: 978-1-4503-9421-5. doi: 10. 1145/3544548.3581463. Disponível em: <https://dl.acm.org/doi/10.1145/ 3544548.3581463>. LEWIS, M., LIU, Y., GOYAL, N., et al. “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension”. out. 2019. Disponível em: <http://arxiv.org/abs/1910.13461>. ar- Xiv:1910.13461 [cs, stat]. LIANG, P. P., LI, I. M., ZHENG, E., et al. “Towards Debiasing Sentence Representations”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 5502–5515, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.488. Disponível em: <https://www.aclweb.org/anthology/2020.acl-main.488>. 119 LIANG, X., ZHANG, N., CHENG, S., et al. “Contrastive Demonstration Tuning for Pre-trained Language Models”. set. 2023. Disponível em: <http://arxiv. org/abs/2204.04392>. arXiv:2204.04392 [cs]. LI, Y., BUBECK, S., ELDAN, R., et al. “Textbooks Are All You Need II: phi-1.5 technical report”. set. 2023. Disponível em: <http://arxiv.org/abs/2309. 05463>. arXiv:2309.05463 null. LINCOLN, Y. S., GUBA, E. G., PILOTTA, J. J. “Naturalistic inquiry”, International Journal of Intercultural Relations, v. 9, n. 4, pp. 438–439, jan. 1985. ISSN: 01471767. doi: 10.1016/0147-1767(85)90062-8. Disponível em: <https:// linkinghub.elsevier.com/retrieve/pii/0147176785900628>. LINDBERG, S. I. “Mapping accountability: core concept and subtypes”, International Review of Administrative Sciences, v. 79, n. 2, pp. 202–226, jun. 2013. ISSN: 0020-8523, 1461-7226. doi: 10.1177/0020852313477761. Disponível em: <http: //journals.sagepub.com/doi/10.1177/0020852313477761>. LINELL, P. The Written Language Bias in Linguistics. 0 ed. , Routledge, ago. 2004. ISBN: 978-1-134-27052-1. doi: 10.4324/9780203342763. Disponível em: <https://www.taylorfrancis.com/books/9781134270521>. LITSCHKO, R., MÜLLER-EBERSTEIN, M., VAN DER GOOT, R., et al. “Establishing Trustworthiness: Rethinking Tasks and Model Evaluation”. out. 2023. Disponível em: <http://arxiv.org/abs/2310.05442>. arXiv:2310.05442 [cs]. LIU, X., CROFT, W. B. “Statistical language modeling for information retrieval.” Annu. Rev. Inf. Sci. Technol., v. 39, n. 1, pp. 1–31, 2005. LIU, Y., OTT, M., GOYAL, N., et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. jul. 2019. Disponível em: <http://arxiv.org/abs/ 1907.11692>. arXiv:1907.11692 [cs]. LIU, Y., YAO, Y., TON, J.-F., et al. “Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models’ Alignment”. ago. 2023a. Disponível em: <http://arxiv.org/abs/2308.05374>. arXiv:2308.05374 [cs]. LIU, Z., QIAO, A., NEISWANGER, W., et al. “LLM360: Towards Fully Transparent Open-Source LLMs”. dez. 2023b. Disponível em: <http://arxiv.org/abs/ 2312.06550>. arXiv:2312.06550 [cs]. LOCKE, J. Ensaio sobre o entendimento humano. São Paulo, Martins Fontes, 2012. ISBN: 978-85-8063-026-8. OCLC: 940082685. 120 LONGPRE, S., MAHARI, R., CHEN, A., et al. “The Data Provenance Initiative: A Large Scale Audit of Dataset Licensing & Attribution in AI”. nov. 2023. Disponível em: <http://arxiv.org/abs/2310.16787>. arXiv:2310.16787 [cs]. LOVATO, J., ZIMMERMAN, J., SMITH, I., et al. “Foregrounding Artist Opinions: A Survey Study on Transparency, Ownership, and Fairness in AI Generative Art”. fev. 2024. Disponível em: <http://arxiv.org/abs/2401.15497>. ar- Xiv:2401.15497 [cs]. LUGONES, M. “Heterosexualism and the Colonial / Modern Gender System”, Hypatia, v. 22, n. 1, pp. 186–209, 2007. ISSN: 08875367, 15272001. Disponível em: <http://www.jstor.org/stable/4640051>. Publisher: [Hypatia, Inc., Wiley]. LUK, R. W. P. “Why is Information Retrieval a Scientific Discipline?” Foundations of Science, v. 27, n. 2, pp. 427–453, jun. 2022. ISSN: 1233-1821, 1572-8471. doi: 10.1007/s10699-020-09685-x. Disponível em: <https://link.springer.com/ 10.1007/s10699-020-09685-x>. LUNDBERG, S. M., LEE, S.-I. “A Unified Approach to Interpreting Model Predictions”. In: Guyon, I., Luxburg, U. V., Bengio, S., et al. (Eds.), Advances in Neural Information Processing Systems 30, Curran Associates, Inc., pp. 4765–4774, 2017. Disponível em: <http://papers.nips.cc/paper/ 7062-a-unified-approach-to-interpreting-model-predictions.pdf>. MADAIO, M., EGEDE, L., SUBRAMONYAM, H., et al. “Assessing the Fairness of AI Systems: AI Practitioners Processes, Challenges, and Needs for Support”. In: 25th ACM Conference on Computer-Supported Cooperative Work and Social Computing (CSCW 2022), fev. 2022. Disponível em: <https://www.microsoft.com/en-us/research/publication/ assessing-the-fairness-of-ai-systems-ai-practitioners-processes-challenges-MAHOWALD, K., IVANOVA, A. A., BLANK, I. A., et al. “Dissociating language and thought in large language models: a cognitive perspective”. jan. 2023. Disponível em: <http://arxiv.org/abs/2301.06627>. arXiv:2301.06627 [cs]. MAISON, L., ESTÈVE, Y. “Some voices are too common: Building fair speech recognition systems using the Common Voice dataset”. jun. 2023. Disponível em: <http://arxiv.org/abs/2306.03773>. arXiv:2306.03773 [cs, eess]. MANZINI, T., YAO CHONG, L., BLACK, A. W., et al. “Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings”. In: Proceedings of the 2019 Conference of the North, pp. 615–621, 121 Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1062. Disponível em: <http://aclweb.org/anthology/ N19-1062>. MARIA MACENA DE LIMA, T., DE FÁTIMA FREIRE DE SÁ, M. “Inteligência artificial e Lei Geral de Proteção de Dados Pessoais: o direito à explicação nas decisões automatizadas”, Revista Brasileira de Direito Civil, v. 26, n. 04, 2020. ISSN: 25944932, 23586974. doi: 10.33242/rbdc.2020.04.011. Disponível em: <https://rbdcivil.ibdcivil.org.br/rbdc/index>. MARKL, N. “Language variation and algorithmic bias: understanding algorithmic bias in British English automatic speech recognition”. In: 2022 ACM Conference on Fairness, Accountability, and Transparency, pp. 521–534, Seoul Republic of Korea, jun. 2022. ACM. ISBN: 978-1-4503-9352-2. doi: 10.1145/3531146.3533117. Disponível em: <https://dl.acm.org/doi/10.1145/3531146.3533117>. MARSHALL, I. J., KUIPER, J., WALLACE, B. C. “Automating Risk of Bias Assessment for Clinical Trials”, IEEE Journal of Biomedical and Health Informatics, v. 19, n. 4, pp. 1406–1412, jul. 2015. ISSN: 2168-2194, 2168- 2208. doi: 10.1109/JBHI.2015.2431314. Disponível em: <http://ieeexplore. ieee.org/document/7104094/>. MASLEJ, N., FATTORINI, L., PERRAULT, R., et al. The AI Index 2024 Annual Report. Relatório técnico, AI Index Steering Committee, Institute for Human- Centered AI, Stanford University, Stanford, CA, abr. 2024. MAY, C., WANG, A., BORDIA, S., et al. “On Measuring Social Biases in Sentence Encoders”. In: Proceedings of the 2019 Conference of the North, pp. 622–628, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1063. Disponível em: <http://aclweb.org/anthology/ N19-1063>. MAYER, R. C., DAVIS, J. H., SCHOORMAN, F. D. “An Integrative Model of Organizational Trust”, The Academy of Management Review, v. 20, n. 3, pp. 709, jul. 1995. ISSN: 03637425. doi: 10.2307/258792. Disponível em: <http://www.jstor.org/stable/258792?origin=crossref>. MCDERMOTT, M. L. “Religious Stereotyping and Voter Support for Evangelical Candidates”, Political Research Quarterly, v. 62, n. 2, pp. 340–354, 2009. ISSN: 10659129. Disponível em: <http://www.jstor.org/stable/27759872>. Publisher: [University of Utah, Sage Publications, Inc.]. 122 MCKINSEY & COMPANY. “The state of AI in 2023: Generative AIs breakout year”. 2023. Disponível em: <https:// www.mckinsey.com/capabilities/quantumblack/our-insights/ the-state-of-ai-in-2023-generative-AIs-breakout-year>. MCTI. “Estratégia Brasileira de Inteligência Artificial - EBIA”. jun. 2021. MEADE, N., POOLE-DAYAN, E., REDDY, S. “An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models”. abr. 2022. Disponível em: <http://arxiv.org/abs/2110.08527>. arXiv:2110.08527 [cs]. MELIOU, A., GATTERBAUER, W., MOORE, K. F., et al. “Why so? or Why no? Functional Causality for Explaining Query Answers”. dez. 2009. Disponível em: <http://arxiv.org/abs/0912.5340>. arXiv:0912.5340 [cs]. MELIOU, A., GATTERBAUER, W., NATH, S., et al. “Tracing data errors with viewconditioned causality”. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of data, pp. 505–516, Athens Greece, jun. 2011. ACM. ISBN: 978-1-4503-0661-4. doi: 10.1145/1989323.1989376. Disponível em: <https://dl.acm.org/doi/10.1145/1989323.1989376>. MEMARIAN, B., DOLECK, T. “Fairness, Accountability, Transparency, and Ethics (FATE) in Artificial Intelligence (AI) and higher education: A systematic review”, Computers and Education: Artificial Intelligence, v. 5, pp. 100152, 2023. ISSN: 2666920X. doi: 10.1016/j.caeai.2023.100152. Disponível em: <https: //linkinghub.elsevier.com/retrieve/pii/S2666920X23000310>. MERRIAM-WEBSTER. “Merriam-webster dictionary”. 2024. Disponível em: <https: //www.merriam-webster.com/dictionary/fairness>. MIALON, G., DESSÌ, R., LOMELI, M., et al. “Augmented Language Models: a Survey”. fev. 2023. Disponível em: <http://arxiv.org/abs/2302.07842>. ar- Xiv:2302.07842 [cs]. MICROSOFT RESEARCH. “FATE: Fairness, accountability, transparency, and ethics in AI”. 2023. Disponível em: <https://www.microsoft.com/en-us/research/ theme/fate/>. MIGNOLO, W. D. “INTRODUCTION: Coloniality of power and de-colonial thinking”, Cultural Studies, v. 21, n. 2-3, pp. 155–167, mar. 2007. ISSN: 0950- 2386, 1466-4348. doi: 10.1080/09502380601162498. Disponível em: <https: //www.tandfonline.com/doi/full/10.1080/09502380601162498>. 123 MIKOLOV, T., KARAFIÁT, M., BURGET, L., et al. “Recurrent neural network based language model.” In: Interspeech, v. 2, pp. 1045–1048. Makuhari, 2010. Issue: 3. MIKOLOV, T., SUTSKEVER, I., CHEN, K., et al. “Distributed representations of words and phrases and their compositionality”, Advances in neural information processing systems, v. 26, 2013a. MIKOLOV, T., CHEN, K., CORRADO, G., et al. “Efficient estimation of word representations in vector space”, arXiv preprint arXiv:1301.3781, 2013b. MILIOS, A., BEHNAMGHADER, P. “An Analysis of Social Biases Present in BERT Variants Across Multiple Languages”. nov. 2022. Disponível em: <http:// arxiv.org/abs/2211.14402>. arXiv:2211.14402 [cs]. MILLS, K. A. “What are the threats and potentials of big data for qualitative research?” Qualitative Research, v. 18, n. 6, pp. 591–603, 2018. Publisher: Sage Publications Sage UK: London, England. MITCHELL, T. M. “The Need for Biases in Learning Generalizations”, 1980. MITCHELL, M. Artificial intelligence: a guide for thinking humans. New York, Farrar, Straus and Giroux, 2019. ISBN: 978-0-374-25783-5. MOROZOV, E. The net delusion: the dark side of internet freedom. 1st ed ed. New York, Public Affairs, 2011. ISBN: 978-1-58648-874-1. OCLC: ocn515438457. MOSCO, V. Becoming digital: towards a post-Internet society. SocietyNow. First edition ed. United Kingdom, Emerald Publishing Limited, 2017. ISBN: 978-1-78743- 296-3. OCLC: on1002112912. MULGAN, R. “Accountability: An EverExpanding Concept?” Public Administration, v. 78, n. 3, pp. 555–573, jan. 2000. ISSN: 0033-3298, 1467-9299. doi: 10.1111/ 1467-9299.00218. Disponível em: <https://onlinelibrary.wiley.com/doi/ 10.1111/1467-9299.00218>. MUMFORD, D. “Data colonialism: compelling and useful, but whither epistemes?” Information, Communication & Society, v. 25, n. 10, pp. 1511–1516, jul. 2022. ISSN: 1369-118X, 1468-4462. doi: 10.1080/1369118X.2021.1986103. Disponível em: <https://www.tandfonline.com/doi/full/10.1080/1369118X. 2021.1986103>. NADEEM, M., BETHKE, A., REDDY, S. “StereoSet: Measuring stereotypical bias in pretrained language models”. In: Proceedings of the 59th Annual Meeting 124 of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 5356–5371, Online, 2021. Association for Computational Linguistics. doi: 10. 18653/v1/2021.acl-long.416. Disponível em: <https://aclanthology.org/ 2021.acl-long.416>. NANDAKUMAR, V., MI, P., LIU, T. “Why can neural language models solve next-word prediction? A mathematical perspective”. jun. 2023. Disponível em: <http: //arxiv.org/abs/2306.17184>. arXiv:2306.17184 [cs]. NANGIA, N., VANIA, C., BHALERAO, R., et al. “CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models”. set. 2020. Disponível em: <http://arxiv.org/abs/2010.00133>. arXiv:2010.00133 [cs]. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. “Artificial intelligence risk management framework (ai rmf 1.0)”. 2023. Disponível em: <https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.100-1.pdf>. NIETZSCHE, F., SOUZA, P. C. D., NIETZSCHE, F. Humano, demasiado humano: um livro para espíritos livres. Companhia de Bolso. 1. ed., 3. reimpr ed. São Paulo, Companhia das Letras, 2005. ISBN: 978-85-359-0762-9. NILSSON, N. J. Artificial intelligence: a new synthesis. , Morgan Kaufmann, 1998. NORVIG, P. Inteligência Artificial. 4 ed. Rio de Janeiro, RJ, Grupo Gen, nov. 2022. ISBN: 978-85-951588-7-0. NOZZA, D., BIANCHI, F., HOVY, D. “"HONEST: Measuring Hurtful Sentence Completion in Language Models"”. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2398–2406, Online, jun. 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.191. Disponível em: <https://aclanthology.org/2021.naacl-main.191>. NOZZA, D., BIANCHI, F., HOVY, D. “Pipelines for Social Bias Testing of Large Language Models”. In: Proceedings of BigScience Episode #5 – Workshop on Challenges & Perspectives in Creating Large Language Models, pp. 68–74, virtual+ Dublin, 2022a. Association for Computational Linguistics. doi: 10.18653/ v1/2022.bigscience-1.6. Disponível em: <https://aclanthology.org/2022. bigscience-1.6>. NOZZA, D., BIANCHI, F., LAUSCHER, A., et al. “Measuring Harmful Sentence Completion in Language Models for LGBTQIA+ Individuals”. In: Chakravarthi, B. R., Bharathi, B., McCrae, J. P., et al. (Eds.), Proceedings of the 125 Second Workshop on Language Technology for Equality, Diversity and Inclusion, pp. 26–34, Dublin, Ireland, maio 2022b. Association for Computational Linguistics. doi: 10.18653/v1/2022.ltedi-1.4. Disponível em: <https: //aclanthology.org/2022.ltedi-1.4>. ODEGAARD, T., EFRAIMSSON, M. “Grafana - The open-source platform for monitoring and observability”. 2023. Disponível em: <https://github.com/ grafana/grafana>. O’NEIL, C. Weapons of math destruction: how big data increases inequality and threatens democracy. First edition ed. New York, Crown, 2016. ISBN: 978-0-553-41881-1 978-0-553-41883-5. O’NEIL, C. “Algoritmos de Destruição em Massa”, 2020. OPENAI. “Introducing ChatGPT”. 2022a. Disponível em: <https://openai.com/ blog/chatgpt>. OPENAI. “New and improved content moderation tooling”. 2022b. Disponível em: <https://openai.com/blog/ new-and-improved-content-moderation-tooling>. OSI. “About the Open Source Initiative”. 1998. Disponível em: <https://opensource. org/about/>. OUYANG, L., WU, J., JIANG, X., et al. “Training language models to follow instructions with human feedback”. mar. 2022. Disponível em: <http://arxiv.org/ abs/2203.02155>. arXiv:2203.02155 [cs]. PAL, R., GARG, H., PATEL, S., et al. Bias Amplification in Intersectional Subpopulations for Clinical Phenotyping by Large Language Models. preprint, Medical Ethics, mar. 2023. Disponível em: <http://medrxiv.org/lookup/doi/10. 1101/2023.03.22.23287585>. PETERS, M. E., NEUMANN, M., IYYER, M., et al. “Deep contextualized word representations”. mar. 2018. Disponível em: <http://arxiv.org/abs/1802. 05365>. arXiv:1802.05365 [cs]. PINTO, R. A. “Digital sovereignty or digital colonialism?” 2018. Disponível em: <https://sur.conectas.org/en/ digital-sovereignty-or-digital-colonialism/>. PITMAN, T., TAYLOR, C. “Wheres the ML in DH? And wheres the DH in ML? The relationship between Modern Languages and Digital Humanities, and an argument for a critical DHML”, Digital Humanities Quarterly, out. 2016. 126 POOLE, D. I., GOEBEL, R. G., MACKWORTH, A. K. Computational intelligence, v. 1. , Oxford University Press Oxford, 1998. RADFORD, A., NARASIMHAN, K. “Improving Language Understanding by Generative Pre-Training”. 2018. Disponível em: <https://api.semanticscholar. org/CorpusID:49313245>. RADFORD, A., WU, J., CHILD, R., et al. “Language models are unsupervised multitask learners”, OpenAI blog, v. 1, n. 8, pp. 9, 2019. RAVFOGEL, S., ELAZAR, Y., GONEN, H., et al. “Null It Out: Guarding Protected Attributes by Iterative Nullspace Projection”. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7237–7256, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.647. Disponível em: <https://www.aclweb.org/ anthology/2020.acl-main.647>. RAYMOND, E. S. The cathedral and the bazaar: musings on Linux and Open Source by an accidental revolutionary. Rev. ed ed. Beijing ; Cambridge, Mass, O’Reilly, 2001. ISBN: 978-0-596-00131-5 978-0-596-00108-7. RICH, E., KNIGHT, K. Artificial intelligence. 2. ed ed. New York, McGraw-Hill, 1991. ISBN: 978-0-07-100894-5 978-0-07-052263-3. ROGERS, A. “Changing the World by Changing the Data”. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 2182–2194, Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.170. Disponível em: <https:// aclanthology.org/2021.acl-long.170>. ROITBLAT, H. L. Algorithms are not enough: creating general artificial intelligence. Cambridge, Massachusetts, The MIT Press, 2020. ISBN: 978-0-262-04412-7. ROSENFELD, R. “Two decades of statistical language modeling: where do we go from here?” Proceedings of the IEEE, v. 88, n. 8, pp. 1270–1278, 2000. doi: 10.1109/ 5.880083. RUMELHART, D. E., SMOLENSKY, P., MCCLELLAND, J. L., et al. “Schemata and sequential thought processes in PDP models”. In: Parallel Distributed Processing: Explorations in the Microstructure, Vol. 2: Psychological and Biological Models, MIT Press, pp. 7–57, Cambridge, MA, USA, 1986a. ISBN: 0-262-63110- 5. 127 RUMELHART, D. E., HINTON, G. E., WILLIAMS, R. J. “Learning representations by back-propagating errors”, Nature, v. 323, n. 6088, pp. 533–536, out. 1986b. ISSN: 0028-0836, 1476-4687. doi: 10.1038/323533a0. Disponível em: <https: //www.nature.com/articles/323533a0>. SADOWSKI, J. “When data is capital: Datafication, accumulation, and extraction”, Big Data & Society, v. 6, n. 1, pp. 205395171882054, jan. 2019. ISSN: 2053- 9517, 2053-9517. doi: 10.1177/2053951718820549. Disponível em: <http: //journals.sagepub.com/doi/10.1177/2053951718820549>. SALAZAR, J. F. “Activismo indígena en América Latina: estrategias para una construcciín cultural de las tecnologías de información y comunlcaClon”, Journal of Iberian and Latin American Research, v. 8, n. 2, pp. 61–80, dez. 2002. ISSN: 1326-0219, 2151-9668. doi: 10.1080/13260219.2002.10431783. Disponível em: <http://www.tandfonline.com/doi/abs/10.1080/13260219.2002. 10431783>. SALOMÃO, L. F. Marco Legal da Inteligência Artificial: Nota Técnica sobre o Projeto de Lei 21/2020. Rio de Janeiro, RJ, Editora FGV, set. 2021. ISBN: 9786586289176. SAMUEL, A. L. “Some Studies in Machine Learning Using the Game of Checkers”, IBM Journal of Research and Development, v. 3, n. 3, pp. 210–229, 1959. doi: 10.1147/rd.33.0210. SANH, V., WEBSON, A., RAFFEL, C., et al. “Multitask Prompted Training Enables Zero-Shot Task Generalization”. mar. 2022. Disponível em: <http://arxiv. org/abs/2110.08207>. arXiv:2110.08207 [cs]. SANTOS, D. “O projecto Processamento Computacional do Português: Balanço e perspectivas”, 2000. Publisher: ICMC/USP. SAVOLDI, B., GAIDO, M., BENTIVOGLI, L., et al. “Gender Bias in Machine Translation”, Transactions of the Association for Computational Linguistics, v. 9, pp. 845–874, 2021. doi: 10.1162/tacl_a_00401. Disponível em: <https: //aclanthology.org/2021.tacl-1.51>. Place: Cambridge, MA Publisher: MIT Press. SCHICK, T., SCHÜTZE, H. “Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference”. jan. 2021. Disponível em: <http: //arxiv.org/abs/2001.07676>. arXiv:2001.07676 [cs]. SCHICK, T., UDUPA, S., SCHÜTZE, H. “Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP”, Transactions 128 of the Association for Computational Linguistics, v. 9, pp. 1408–1424, dez. 2021. ISSN: 2307-387X. doi: 10.1162/tacl_a_00434. Disponível em: <https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_ 00434/108865/Self-Diagnosis-and-Self-Debiasing-A-Proposal-for>. SEARLE, J. R. “Minds, brains, and programs”, Behavioral and Brain Sciences, v. 3, n. 3, pp. 417–424, set. 1980. ISSN: 0140-525X, 1469-1825. doi: 10.1017/ S0140525X00005756. Disponível em: <https://www.cambridge.org/core/ product/identifier/S0140525X00005756/type/journal_article>. SEMAAN, P. “Natural language generation: an overview”, J Comput Sci Res, v. 1, n. 3, pp. 50–57, 2012. SENADO FEDERAL. “Projeto de Lei nr 2338, de 2023”. 2023. SHANAHAN, M. “Talking About Large Language Models”. fev. 2023. Disponível em: <http://arxiv.org/abs/2212.03551>. arXiv:2212.03551 [cs]. Shavlik, J. W., Dietterich, T. G. (Eds.). Readings in machine learning. The Morgan Kaufmann series in machine learning. 2. [nachdr.] ed. San Mateo, Calif, Morgan Kaufmann, 1991. ISBN: 978-1-55860-143-7. SHENG, E., CHANG, K.-W., NATARAJAN, P., et al. “The Woman Worked as a Babysitter: On Biases in Language Generation”. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLPIJCNLP), pp. 3405–3410, Hong Kong, China, 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1339. Disponível em: <https: //www.aclweb.org/anthology/D19-1339>. SHENG, E., CHANG, K.-W., NATARAJAN, P., et al. “Societal Biases in Language Generation: Progress and Challenges”. jun. 2021. Disponível em: <http:// arxiv.org/abs/2105.04054>. arXiv:2105.04054 [cs]. SHNEIDERMAN, B. Human-centered AI. Oxford, Oxford University Press, 2022. ISBN: 978-0-19-284529-0. OCLC: on1258219484. SHWARTZ, V., RUDINGER, R., TAFJORD, O. “You are grounded!: Latent Name Artifacts in Pre-trained Language Models”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6850–6861, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.556. Disponível em: <https://www.aclweb. org/anthology/2020.emnlp-main.556>. 129 SIAU, K., WANG, W. “Building Trust in Artificial Intelligence, Machine Learning, and Robotics”, Cutter Business Technology Journal, v. 31, pp. 47–53, 2018. SILVA, A., TAMBWEKAR, P., GOMBOLAY, M. “Towards a Comprehensive Understanding and Accurate Evaluation of Societal Biases in Pre-Trained Transformers”. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 2383–2389, Online, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.189. Disponível em: <https: //aclanthology.org/2021.naacl-main.189>. SKITKA, L. J. “Moral convictions and moral courage: Common denominators of good and evil.” In: Mikulincer, M., Shaver, P. R. (Eds.), The social psychology of morality: Exploring the causes of good and evil., American Psychological Association, pp. 349–365, Washington, 2012. ISBN: 978-1-4338-1011-4. doi: 10.1037/ 13091-019. Disponível em: <http://content.apa.org/books/13091-019>. SKITKA, L. J., HANSON, B. E., MORGAN, G. S., et al. “The Psychology of Moral Conviction”, Annual Review of Psychology, v. 72, n. 1, pp. 347–366, jan. 2021. ISSN: 0066-4308, 1545-2085. doi: 10.1146/annurev-psych-063020-030612. Disponível em: <https://www. annualreviews.org/doi/10.1146/annurev-psych-063020-030612>. SMITH, J. E. H. Irrationality: a history of the dark side of reason. Princeton, Princeton University Press, 2019. ISBN: 978-0-691-17867-7. OCLC: on1051133820. SMITH, G., KOHLI, N., RUSTAGI, I. “What does fairness mean for machine learning systems?” 2020. Disponível em: <https://haas.berkeley.edu/wp-content/ uploads/What-is-fairness_-EGAL2.pdf>. SOLAIMAN, I., BRUNDAGE, M., CLARK, J., et al. “Release Strategies and the Social Impacts of Language Models”. nov. 2019. Disponível em: <http://arxiv. org/abs/1908.09203>. arXiv:1908.09203 [cs]. SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Journal of Machine Learning Research, v. 15, n. 56, pp. 1929–1958, 2014. Disponível em: <http://jmlr. org/papers/v15/srivastava14a.html>. STARKE, C., BALEIS, J., KELLER, B., et al. “Fairness perceptions of algorithmic decision-making: A systematic review of the empirical literature”, Big Data 130 & Society, v. 9, n. 2, pp. 205395172211151, jul. 2022. ISSN: 2053-9517, 2053- 9517. doi: 10.1177/20539517221115189. Disponível em: <http://journals. sagepub.com/doi/10.1177/20539517221115189>. STATISTA. “Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from 2021 to 2025”. 2023. Disponível em: <https://www.statista.com/statistics/871513/ worldwide-data-created/>. STOLCKE, A. “SRILM - an extensible language modeling toolkit”. In: 7th International Conference on Spoken Language Processing (ICSLP 2002), pp. 901–904. ISCA, set. 2002. doi: 10.21437/ICSLP.2002-303. Disponível em: <https://www. isca-archive.org/icslp_2002/stolcke02_icslp.html>. SUN, T., GAUT, A., TANG, S., et al. “Mitigating Gender Bias in Natural Language Processing: Literature Review”. In: Korhonen, A., Traum, D., Màrquez, L. (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1630–1640, Florence, Italy, jul. 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1159. Disponível em: <https://aclanthology.org/P19-1159>. SUN, L., HUANG, Y., WANG, H., et al. “TrustLLM: Trustworthiness in Large Language Models”. jan. 2024. Disponível em: <http://arxiv.org/abs/2401.05561>. arXiv:2401.05561 [cs]. THEDE, S. M., HARPER, M. P. “A second-order Hidden Markov Model for partof- speech tagging”. In: Proceedings of the 37th annual meeting of the Association for Computational Linguistics on Computational Linguistics -, pp. 175–182, College Park, Maryland, 1999. Association for Computational Linguistics. doi: 10.3115/1034678.1034712. Disponível em: <http://portal. acm.org/citation.cfm?doid=1034678.1034712>. THYNNE, I., GOLDRING, J. Accountability and control: government officials and the exercise of power. North Ryde, Law Book Comp. Ltd, 1987. ISBN: 978-0-455- 20728-5. TIAN, J.-J., EMERSON, D., MIYANDOAB, S. Z., et al. “Soft-prompt Tuning for Large Language Models to Evaluate Bias”. jun. 2023. Disponível em: <http: //arxiv.org/abs/2306.04735>. arXiv:2306.04735 [cs]. TOMLINSON, J. Cultural imperialism: A critical introduction. , A&C Black, 2001. ISBN: 0-8264-5013-X. 131 TONETTO, L. M., KALIL, L. L., MELO, W. V., et al. “O papel das heurísticas no julgamento e na tomada de decisão sob incerteza”, Estudos de Psicologia (Campinas), v. 23, n. 2, pp. 181–189, jun. 2006. ISSN: 0103-166X. doi: 10.1590/S0103-166X2006000200008. Disponível em: <http://www.scielo.br/scielo.php?script=sci_arttext&pid= S0103-166X2006000200008&lng=pt&tlng=pt>. TONMOY, S. M. T. I., ZAMAN, S. M. M., JAIN, V., et al. “A Comprehensive Survey of Hallucination Mitigation Techniques in Large Language Models”. jan. 2024. Disponível em: <http://arxiv.org/abs/2401.01313>. arXiv:2401.01313 [cs]. TURING, A. M. “On Computable Numbers, with an Application to the Entscheidungsproblem”, Proceedings of the London Mathematical Society, v. s2-42, n. 1, pp. 230–265, 1937. ISSN: 00246115. doi: 10.1112/plms/s2-42.1.230. Disponível em: <http://doi.wiley.com/10.1112/plms/s2-42.1.230>. TURING, A. M. “I.COMPUTING MACHINERY AND INTELLIGENCE”, Mind, v. LIX, n. 236, pp. 433–460, out. 1950. ISSN: 1460-2113, 0026-4423. doi: 10.1093/mind/LIX.236.433. Disponível em: <https://academic.oup.com/ mind/article/LIX/236/433/986238>. VALMEEKAM, K., OLMO, A., SREEDHARAN, S., et al. “Large Language Models Still Can’t Plan (A Benchmark for LLMs on Planning and Reasoning about Change)”. abr. 2023a. Disponível em: <http://arxiv.org/abs/2206. 10498>. arXiv:2206.10498 [cs]. VALMEEKAM, K., SREEDHARAN, S., MARQUEZ, M., et al. “On the Planning Abilities of Large Language Models (A Critical Investigation with a Proposed Benchmark)”, 2023b. doi: 10.48550/ARXIV.2302.06706. Disponível em: <https://arxiv.org/abs/2302.06706>. Publisher: arXiv Version Number: 1. VASWANI, A., SHAZEER, N., PARMAR, N., et al. “Attention Is All You Need”. dez. 2017. Disponível em: <http://arxiv.org/abs/1706.03762>. ar- Xiv:1706.03762 [cs]. VENKIT, P. N., GAUTAM, S., PANCHANADIKAR, R., et al. “Nationality Bias in Text Generation”. fev. 2023. Disponível em: <http://arxiv.org/abs/2302. 02463>. arXiv:2302.02463 [cs]. VIDGEN, B., DERCZYNSKI, L. “Directions in Abusive Language Training Data: Garbage In, Garbage Out”, PLOS ONE, v. 15, n. 12, pp. e0243300, dez. 132 2020. ISSN: 1932-6203. doi: 10.1371/journal.pone.0243300. Disponível em: <http://arxiv.org/abs/2004.01670>. arXiv:2004.01670 [cs]. VIDGEN, B., THRUSH, T., WASEEM, Z., et al. “Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate Detection”. jun. 2021. Disponível em: <http://arxiv.org/abs/2012.15761>. arXiv:2012.15761 [cs]. VIG, J. “A Multiscale Visualization of Attention in the Transformer Model”. jun. 2019. Disponível em: <http://arxiv.org/abs/1906.05714>. arXiv:1906.05714 [cs]. VIG, J., GEHRMANN, S., BELINKOV, Y., et al. “Investigating Gender Bias in Language Models Using Causal Mediation Analysis”, 2020. WAND, Y., WANG, R. Y. “Anchoring data quality dimensions in ontological foundations”, Communications of the ACM, v. 39, n. 11, pp. 86–95, nov. 1996. ISSN: 0001-0782, 1557-7317. doi: 10.1145/240455.240479. Disponível em: <https://dl.acm.org/doi/10.1145/240455.240479>. WANG, R., STOREY, V., FIRTH, C. “A framework for analysis of data quality research”, IEEE Transactions on Knowledge and Data Engineering, v. 7, n. 4, pp. 623–640, ago. 1995. ISSN: 10414347. doi: 10.1109/69.404034. Disponível em: <http://ieeexplore.ieee.org/document/404034/>. WANG, T., ROBERTS, A., HESSLOW, D., et al. “What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?” abr. 2022. Disponível em: <http://arxiv.org/abs/2204.05832>. arXiv:2204.05832 [cs, stat]. WANG, Z., ZHONG, W., WANG, Y., et al. “Data Management For Large Language Models: A Survey”. dez. 2023a. Disponível em: <http://arxiv.org/abs/ 2312.01700>. arXiv:2312.01700 [cs]. WANG, B., CHEN, W., PEI, H., et al. “DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models”. jun. 2023b. Disponível em: <http:// arxiv.org/abs/2306.11698>. arXiv:2306.11698 [cs]. WANG, L., SONG, M., REZAPOUR, R., et al. “People’s Perceptions Toward Bias and Related Concepts in Large Language Models: A Systematic Review”. set. 2023c. Disponível em: <http://arxiv.org/abs/2309.14504>. arXiv:2309.14504 [cs]. 133 WEBSTER, K., WANG, X., TENNEY, I., et al. “Measuring and Reducing Gendered Correlations in Pre-trained Models”. mar. 2021. Disponível em: <http:// arxiv.org/abs/2010.06032>. arXiv:2010.06032 [cs]. WEI, J., TAY, Y., BOMMASANI, R., et al. “Emergent Abilities of Large Language Models”, Transactions on Machine Learning Research, 2022. ISSN: 2835-8856. Disponível em: <https://openreview.net/forum?id=yzkSU5zdwD>. WEI, J., WANG, X., SCHUURMANS, D., et al. “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”. jan. 2023a. Disponível em: <http: //arxiv.org/abs/2201.11903>. arXiv:2201.11903 [cs]. WEI, J., HUANG, D., LU, Y., et al. “Simple synthetic data reduces sycophancy in large language models”. ago. 2023b. Disponível em: <http://arxiv.org/abs/2308. 03958>. arXiv:2308.03958 [cs]. WEIZENBAUM, J. “ELIZAa computer program for the study of natural language communication between man and machine”, Communications of the ACM, v. 9, n. 1, pp. 36–45, jan. 1966. ISSN: 0001-0782, 1557-7317. doi: 10.1145/365153.365168. Disponível em: <https://dl.acm.org/doi/10.1145/365153.365168>. WHYLABS.AI. “LangKit”. 2023. Disponível em: <github.com/whylabs/langkit>. WINOGRAD, T. “Procedures as a representation for data in a computer program for understanding natural language”, 1971. WINSTON, P. H. Artificial intelligence. 3rd ed ed. Reading, Mass, Addison-Wesley Pub. Co, 1992. ISBN: 978-0-201-53377-4. WOOLF, B. “Introduction to IJAIED Special Issue, FATE in AIED”, International Journal of Artificial Intelligence in Education, v. 32, n. 3, pp. 501–503, set. 2022. ISSN: 1560-4292, 1560-4306. doi: 10.1007/s40593-022-00299-x. Disponível em: <https://link.springer.com/10.1007/s40593-022-00299-x>. YADLOWSKY, S., DOSHI, L., TRIPURANENI, N. “Pretraining Data Mixtures Enable Narrow Model Selection Capabilities in Transformer Models”. nov. 2023. Disponível em: <http://arxiv.org/abs/2311.00871>. arXiv:2311.00871 [cs, stat]. ZHAI, C. Statistical Language Models for Information Retrieval. Synthesis Lectures on Human Language Technologies. Cham, Springer International Publishing, 2009. ISBN: 978-3-031-01002-6 978-3-031-02130-5. doi: 10.1007/ 978-3-031-02130-5. Disponível em: <https://link.springer.com/10.1007/ 978-3-031-02130-5>. 134 ZHANG, H., GUO, Z., ZHU, H., et al. “On the Safety of Open-Sourced Large Language Models: Does Alignment Really Prevent Them From Being Misused?” out. 2023. Disponível em: <http://arxiv.org/abs/2310.01581>. ar- Xiv:2310.01581 [cs]. ZHAO, J., WANG, T., YATSKAR, M., et al. “Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods”, 2018. doi: 10.48550/ARXIV.1804.06876. Disponível em: <https://arxiv.org/abs/1804.06876>. Publisher: arXiv Version Number: 1. ZHAO, W. X., ZHOU, K., LI, J., et al. “A Survey of Large Language Models”. set. 2023a. Disponível em: <http://arxiv.org/abs/2303.18223>. arXiv:2303.18223 [cs]. ZHAO, H., CHEN, H., YANG, F., et al. “Explainability for Large Language Models: A Survey”. set. 2023b. Disponível em: <http://arxiv.org/abs/2309.01029>. arXiv:2309.01029 [cs]. ZLIOBAITE, I. “A survey on measuring indirect discrimination in machine learning”. out. 2015. Disponível em: <http://arxiv.org/abs/1511.00148>. ar- Xiv:1511.00148 [cs, stat]. ZLIOBAIT, I. “Measuring discrimination in algorithmic decision making”, Data Mining and Knowledge Discovery, v. 31, n. 4, pp. 1060–1089, jul. 2017. ISSN: 1384- 5810, 1573-756X. doi: 10.1007/s10618-017-0506-1. Disponível em: <http: //link.springer.com/10.1007/s10618-017-0506-1>. ZMIGROD, R., MIELKE, S. J., WALLACH, H., et al. “Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology”. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1651–1661, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1161. Disponível em: <https://www.aclweb.org/anthology/P19-1161>. ZUBOFF, S. The age of surveillance capitalism: the fight for a human future at the new frontier of power. First trade paperback edition ed. New York, PublicAffairs, 2020. ISBN: 978-1-5417-5800-1.pt_BR
dc.subject.cnpqMultidisciplinarpt_BR
Appears in Collections:Mestrado em Humanidades Digitais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2024 - DANIEL BONATTO SECO.pdf12.97 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.