Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/18242
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastro, Gustavo Nunes de Santana-
dc.date.accessioned2024-09-25T14:20:16Z-
dc.date.available2024-09-25T14:20:16Z-
dc.date.issued2022-02-16-
dc.identifier.citationCASTRO, Gustavo Nunes de Santana. AVALIAÇÃO DA ATIVIDADE ANTI- INFLAMATÓRIA E ANTINOCICEPTIVA DO COMPOSTO SINTÉTICO ((2S,6S)-6-ETIL-TETRAIDRO-2H-PIRANO-2-IL) METANOL EM CAMUNDONGOS. 2022. 86 f. Tese (Doutorado em Medicina Veterinária) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/18242-
dc.description.abstractA dor e a inflamação podem ser geradas por uma infinidade de estímulos, por este motivo analgésicos e anti-inflamatórios são fármacos muito prescritos durante a rotina clínica. O objetivo deste estudo foi avaliar as atividades antinociceptiva e antiinflamatória de um novo composto sintético ((2S,6S)-6-etil-tetraidro-2H-pirano-2-IL) metanol (LS20). A administração do composto foi capaz de induzir atividade antinociceptiva nos modelos de contorções abdominais induzidas por ácido acético, formalina, retirada da cauda e placa quente. O modelo de retirada de cauda foi utilizado com antagonistas opioides, como a naloxona, metilnaltrexona, naltrindol e nor-binaltorfimina, e se observou que em todos os casos, o efeito do LS20 era inibido. Para avaliar a possível participação das vias nitrérgica, colinérgica e serotoninérgica, os animais foram pré- tratados com L-NAME, L-arginina, atropina, mecamilamina, ondansetron e PCPA, não sendo observado redução do efeito antinociceptivo com a administração prévia em nenhum destes testes. O resultado no teste de edema de pata indica efeito antiedematogênico do composto. O composto foi capaz de reduzir a migração leucocitária na inflamação existente na bolsa de ar subcutâneo, e também demonstrou atividade inibitória sobre a produção de TNF-α, IL-1beta e IL-6, porém não demonstrou alteração nos níveis de IL-10. Observou-se ausência de citotoxicidade, e redução das concentrações de TNF-α e IL-6, porém não houve alteração na produção de óxido nítrico. Observou-se a inibição seletiva da enzima COX-2. O composto LS20 demonstrou efeito antinociceptivo central, tendo este último contribuição do sistemas opioide de maneira não seletiva.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectanalgesiapt_BR
dc.subjectinflamaçãopt_BR
dc.subjectdorpt_BR
dc.subjectLS20pt_BR
dc.subjectnocicepçãopt_BR
dc.subjectinflammationpt_BR
dc.subjectpainpt_BR
dc.subjectLS20pt_BR
dc.subjectnociceptionpt_BR
dc.titleAvaliação da Atividade Anti-inflamatória e Antinociceptiva do Composto Sintético ((2s,6s)-6-Etil-Tetraidro-2h-Pirano-2-Il) Metanol em Camundongospt_BR
dc.title.alternativeEvaluation Of The Anti-Inflammatory And Antinociceptive Activity Of The Synthetic Compound ((2s,6s)-6-Ethyl-Tetrahydro- 2h-Pyrane-2-Yl) Methanol In Mice.en
dc.typeTesept_BR
dc.description.abstractOtherPain and inflammation can be generated by a multitude of stimuli, for this reason analgesics and anti-inflammatories are drugs that are often prescribed during the clinical routine. The aim of this study was to evaluate the antinociceptive and anti-inflammatory activities of a new synthetic compound ((2S,6S)-6-ethyl-tetrahydro-2H-pyran-2-IL) methanol (LS20). The administration of the compound was able to induce antinociceptive activity in models of abdominal writhing induced by acetic acid, formalin, tail withdrawal and hot plate. The tail flick model was used with opioid antagonists, such as naloxone, methylnaltrexone, naltrindol and nor-binaltorphimine, and it was observed that in all cases, the effect of LS20 was inhibited. To evaluate the possible participation of the nitrergic, cholinergic and serotonergic pathways, the animals were pre-treated with L- NAME, L-arginine, atropine, mecamylamine, ondansetron and PCPA, with no reduction in the antinociceptive effect being observed with previous administration in any of these tests. The result of the paw edema test indicates an antiedematogenic effect of the compound. The compound was able to reduce leukocyte migration in existing inflammation in the subcutaneous air pocket, and also demonstrated inhibitory activity on the production of TNF-α, IL-1beta and IL-6, but did not demonstrate alteration in IL- 10 levels. Absence of cytotoxicity and reduction of TNF-α and IL-6 concentrations were observed, but there was no change in nitric oxide production.Selective inhibition of the COX-2 enzyme was observed. The compound LS20 demonstrated a central antinociceptive effect, with the latter contributing to the opioid system in a non-selective manner.en
dc.contributor.advisor1Marinho, Bruno Guimarães-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2685794388394484pt_BR
dc.contributor.referee1Marinho, Bruno Guimarães-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2685794388394484pt_BR
dc.contributor.referee2Medeiros, Magda Alves de-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-7902-419Xpt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6392136073564306pt_BR
dc.contributor.referee3Malvar, David do Carmo-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8466602928745919pt_BR
dc.contributor.referee4Nascimento, Carlos Giovani de Oliveira-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/5296271467659128pt_BR
dc.contributor.referee5Silva, Luis Felipe Souza da-
dc.creator.Latteshttp://lattes.cnpq.br/1683612964910086pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Veterináriapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas)pt_BR
dc.relation.referencesABBAS, A.K.; LICHTMAN, A.H.; PILLAI, S. Basic Immunology: Functions and Disorders of the Immune System. 5.ed. Saint Louis, Missouri: Elsevier, 2016. 335p. ALAM M.B.; RAHMAN M.S.; HASAN M.; KHAN M.M.; NAHAR K.; SULTANA S. Anti-nociceptive and antioxidant activities of the Dillenia indica Bark. International Journal of Pharmacology, v.8, n.4, p. 243–251, 2012. ALVARENGA, F.Q.; MOTA, B.C.F.; LEITE, M.N.; FONSECA, J.M.S.; OLIVEIRA, D.A.; ROYO, V.A.; SILVA, M.L.A.; ESPERANDIM, V.; BORGES, A.; LAURENTIZ, R.S. In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine. Journal of Ethnopharmacology, v.150, p.280–284, 2013. AMARANTE, L.H.; DUARTE, I.D. The kappa-opioid agonist (+/-)-bremazocine elicits peripheral antinociception by activation of the L-arginine/nitric oxide/cyclic GMP pathway. European Journal of Pharmacology, v.454, n.1, p. 19-23, 2002. BANNON, A.; MALMBERG, A.B. Models of Nociception: Hot-Plate, Tail-Flick, and Formalin Tests in Rodents. In: CRAWLEY, J.N. Current Protocols in Neuroscience. John Wiley & Sons, 2007. Capítulo 8, unidade 8.9. BARDIN, L.; LAVARENNE, J.; ESCHALIER, A. Serotonin receptor subtypes involved in the spinal antinociceptive effect of 5-HT in rats. Pain, v.86, n.1-2, p.11-18, 2000. BEN-BASSAT, J.; PERETZ, E.; SULMAN, F.G. Analgesimetry and ranking of analgesic drugs by; the receptacle method. Archives Internationales de Pharmacodynamie et de Therapie, v.122, p.434-447, 1959. CAMARATA, P.J.; YAKSH, T.L. Characterization of the spinal adrenergic receptors mediating the spinal effects produced by the microinjection of morphine into the periaqueductal gray. Brain Research, v.336, n.1, p.133-142, 1985. 75 CAPIM, S.L.; CARNEIRO, P.H.P.; CASTRO, P.C.; BARROS, M.R.M.; MARINHO, B.G.; VASCONCELLOS, M.L.A.A. Design, Prins-cyclization reaction promoting diastereoselective synthesis of 10 new tetrahydropyran derivatives and in vivo antinociceptive evaluations. European Journal of Medicinal Chemistry, v.58, p.1-11, 2012. CERRETTI, D.P.; KOZLOSKY, C.J.; MOSLEY, B.; NELSON, N.; NE, K.V.; GREENSTREET, T.A.; MARCH, C.J.; KRONHEIM, S.R.; DRUCK, T.; CANNIZZARO, L.A.; HUEBNER, K.; BLACK, R.A. Molecular cloning of the interleukin-1 beta converting enzyme. Science, v.256, p.97-100, 1992. CLYSDESDALE, G.J.; DANDIE, G.W.; MULLER, H.K. Ultraviolet light induced injury: immunological and inflammatory effects. Immunology and Cell Biology, v.79, p.547-568, 2001. COMMINS, S.P.; BORISH, L.; STEINKE, J.W. Immunologic messenger molecules: Cytokines, interferons, and chemokines. The Journal of Allergy and Clinical Immunology, v.125, n.2, p.53-72, 2010. CURY, Y.; PICOLO, G.; GUTIERREZ, V,P.; FERREIRA, S.H. Nitric Oxide, v.25, p.243-254, 2011. DANI, J.A. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. International Review of Neurobiology, v.124, p.3–19, 2015. DAWSON, J.; SEDGWICK, A. D.; EDWARDS, J. C.; LEES, P. A comparative study of the cellular, exudative and histological responses to carrageenan, dextran and zymosan in the mouse. International Journal of Tissue Reactions, v.13, n.4, p.171-185, 1991. DEL PRETE, G.; DE CARLI, M.; ALMERIGOGNA, F.; GIUDIZI, M.G.; BIAGIOTTI, R.; ROMAGNANI, S. Human IL-10 is produced by both type 1 helper (Th1) and type 2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and cytokine production. The Journal of Immunology, v.150, n.2, p.353-360, 1993. 76 DICKENSON, A.; BESSON, J. M. The Pharmacology of Pain: Handbook of Experimental Pharmacoly. Berlin: Spring Verlag, 1997. 501p. DICKENSON, A.H.; SULLIVAN, A.F. Evidence for a role of the NMDA receptor in the frequency dependent potentiaton of deep rat dorsal horn nociceptive neurones following C fibre stimulation. Neuropharmacology, v.26, n.8, p.1235-1238, 1987. DICKINSON, A.L.; LEACH, M.C.; FLECKNELL, P.A. Influence of early neonatal experience on nociceptive responses and analgesic effects in rats. Laboratory Animals, v.43, p.11-16, 2009. DI ROSA, M.; GIROUD, J. P.; WILLOUGHBY, D. A. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. Journal of Pathology, v.104, n.1, p.15-29, 1971. DOAN, T.; LIEVANO, F.; SWANSON-MUNGERSON, M.; VISELLI, S.M. Lippincott Illustrated Reviews: Immunology. 3ed. Wolters Kluwer Health, 2021. 408p. DUARTE, D.B.; VASKO, M.R.; FEHRENBACHER, J.C. Models of inflammation: carrageenan air pouch. Current protocols in pharmacology, v.56, p.561-568, 2012. DUNHAM, N. W.; MIYA, T. S. A note on a simple apparatus for detecting neurological deficit in rats and mice. Journal of American Pharmacy, v.46, p.208-209, 1957. DZIKITI, T.B.; JOUBERT, K.E.; VENTER, L.J.; DZIKITI, L.N. Comparison of morphine and carprofen administered alone or in combination for analgesia in dogs undergoing ovariohysterectomy. Journal of the South African Veterinary Association, v.77, p.120-126, 2006. EVERS, A.S.; MAZE, M.; KHARASCH, E.D. Anesthetic Pharmacology. 2ed. Cambridge University Press, 2011. 1207p. 77 FERREIRA, S.H.; VAN ARMAN, C.G. Oedema and increased vascular permeability. In: Vane JR, Van Arman CG, editors. Handbook of experimental pharmacology. New York 7 Springer-Verlag; p.75-91, 1979. FERREIRA, S.H. A classification of peripheral analgesics based upon their mode of action. In: SANDLER, M.; COLLINS, G.M. Migraine: A Spectrum of Ideas. Oxford: Oxford University Press, 1990. FERREIRA, A.A; AMARAL, F.A; DUARTE, I.D.G; OLIVEIRA, P.M; ALVES, R.B; SILVEIRA, D; AZEVEDO, A.O; RASLAN, D.S; CASTRO, M.S.A. Antinociceptive effect from Ipomoea cairica extract. Journal of Ethnopharmacology, v.105, p.148–153, 2006. FISCHER, L.G.; SANTOS, D.; SERAFIN, C.; MALHEIROS, A.; MONACHE, F.D.; MONACHE, G.D.; FILHO, V.C.; SOUZA, M.M. Further Antinociceptive Properties of Extracts and Phenolic Compounds from Plinia glomerata (Myrtaceae) Leaves. Biological and Pharmaceutical Bulletin, v.31, n.2, p.235-239, 2008. FORSTERMANN, U.; SESSA, W.C. Nitric oxide synthases: regulation and function. European Heart Journal, v.33, p.829-837, 2012. FOX, S.M. Pain Management in Small Animal Medicine. 1.ed. CRC Press, 2014. 416p. GONÇALVES, G.M.; CAPIM, S.L.; VASCONCELLOS, M.L.A.A; MARINHO, B.G. Antihyperalgesic effect of [(±)-(2,4,6-cis)-4-chloro-6-(naphthalen-1-yl)-tetrahydro-2H- pyran-2-yl]methanol: participation of the NO/cGMP/KATP pathway and κ-opioid receptor. Behavioural Pharmacology, v.27, n.6, p.506–515, 2016. GONÇALVES G.M.; OLIVEIRA, J.M.; FERNANDES, T.F.C.; CID, G.C.; LAUREANO-MELO, R.; CÔRTES, W.S.; CARVALHO, V.A.N.; CAPIM, S.L.; VASCONCELLOS, M.L.A.A.; MARINHO, B.G. Evaluation of the systemic and spinal antinociceptive effect of a new hybrid NSAID tetrahydropyran derivative. Clinical and Experimental Pharmacology and Physiology, 2021. 78 GOTTSCHALK, A.; SMITH, D.S. New Concepts in Acute Pain Therapy: Preemptive Analgesia. American Family Physician, v.63, n.10, p.1979-1984, 2001. GREEN, L.C.; WAGNER, D.A.; GLOGOWSKI, J.; SKIPPER, P.L.; WISHNOK, J.S.; TANNENBAUM, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, v.126, p.131–138, 1982. HALLEGUA, D.S; WEISMAN, M.H. Potential therapeutic uses of interleukin1receptor antagonists in human diseases. Annals of the Rheumatic Diseases, v.61, p.960-967, 2002. HAN, J.; KIM, N.; KIM, E.; HO, W.K; EARM, Y.E. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. Journal of Biological Chemistry, v.276, n.25, p.22140-22147, 2001. HELLYER, P.; RODAN, I.; BRUNT, J.; DOWNING, R.; HAGEDORN, J.E.; ROBERTSON, S.A. AAHA/AAFP pain management guidelines for dogs and cats. Journal of Feline Medicine and Surgery, v.9, p.466-480, 2007. HESS, S.; PADOANI, C.; SCORTEGANHA, L.C.; HOLZMANN, I.; MALHEIROS, A.; YUNES, R.A.; MONACHE, F.D.; SOUZA, M.M. Assessment of mechanisms involved in antinociception caused by Myrsinoic Acid B. Biological and Pharmaceutical Bulletin, v.33, n.2, p.209-215, 2010. HOSSAIN, M.S.; ALAM M.B.; CHOWDHURY N.S.; ASADUJJAMAN M.; ZAHAN R.; ISLAMET M.M.; MAZUMDER, M.E.H.; HAQUE, M.E.; ISLAM, A. Antioxidant, analgesic and anti-inflammatory activities of the herb Eclipta prostrate. Journal of Pharmacology and Toxicology, v.6, n.5, p.468-480, 2011. HUNSKAAR, S.; HOLE, K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain, v.30, p.103–114, 1987. 79 IMAGAWA, V.H.; FANTONI, D.T.; TATARUNAS, A.C.; MASTROCINQUE, S.; ALMEIDA, T.F.; FERREIRA, F.; POSSO, I.P. The use of different doses of metamizol for post-operative analgesia in dogs. Veterinary Anaesthesia and Analgesia, v.38, p.385-393, 2011. JAIN, M.; PARMAR, H.S. Evaluation of antioxidative and anti-inflammatory potential of hesperidin and naringin on the rat air pouch model of inflammation. Inflammation Research Journal, v.60, p.483-491, 2011. JINSMAA, Y.; MIYAZAKI, A.; FUJITA, Y.; LI, T.; FUJISAWA, Y.; SHIOTANI, K.; TSUDA, Y.; YOKOI, T.; AMBO, A.; SASAKI, Y.; BRYANT, S.D.; LAZARUS, L.H.; OKADA, Y. Oral bioavailability of a new class of micro-opioid receptor agonists containing 3,6-bis[Dmt-NH(CH(2))(n)]-2(1H)-pyrazinone with central-mediated analgesia. Journal of Medicinal Chemistry, v.47, n.2, p.2599-2610, 2004. JOHNSON, C. Research Tools for the Measurement of Pain and Nociception. Animals, v.6, n.71, p.1-10, 2016. JULIUS, D.; BASBAUM, A.I. Molecular mechanisms of nociception. Nature, v.413, p.203-210, 2001. KEITA, H.; GEACHAN, N.; DAHMANI, S.; COUDERC, E.; ARMAND, C.; QUAZZA, M.; MANTZ, J.; DESMONTS, J.M. Comparison between patient-controlled analgesia and subcutaneous morphine in elderly patients after total hip replacement. British Journal of Anaesthesia, v.90, p.53–57, 2003. KHALID, S.; TUBBS, R. Neuroanatomy and Neuropsychology of Pain. Cureus, v.9, n.10, p.1-14, 2017. KOCH, C. Consciousness: confessions of a romantic reductionist. 1ed. Massachusetts: The MIT press, 2012. 200p. KONGARA, K. Pharmacogenetics of opioid analgesics in dogs. Journal of Veterinary Pharmacology and Therapeutics, v.41, p.195-204, 2018. 80 KOPF, A.; PATEL, N.B. Guide to Pain Management in Low-Resource Settings. 1. ed. International Association for the Study of Pain, 2010. 372p. KOSTER, R; ANDERSON, M; DE BEER, EJ. Acetic acid for analgesic screening. Federation Proceedings, v.18, p.412-417, 1959. LAINE, L. Gastrointestinal effects of NSAIDs and coxibs. Journal of Pain and Symptom Management, v.25, p.32-40, 2003. LANGERMAN, L. et al. Hot plate versus tail flick: evaluation of acute tolerance to continuous morphine infusion in the rat model. Journal of Pharmacological and Toxicological Methods, v.34, n.1, p.23–27, 1995. LAW, B.K.; WALTNER-LAW, M.E; ENTINGH, A.J.; CHYTIL, A; AAKRE, M.E.; NØRGAARD, P.; MOSES, H.L. Salicylate-induced growth arrest is associated with inhibition of p70s6K and down-regulation of c-myc, cyclin D1, cyclin A, and proliferating cell nuclear antigen. Journal of Biological Chemistry, v.275, n.49, p.38261-38267, 2000. LE BARS, D.; GOZARIU, M.; CADDEN, S. Animal models of nociception. Pharmacological Reviews, v.53, p.628-651, 2001. LOMAS, A.L.; GRAUER, G.F. The Renal Effects of NSAIDs in Dogs. Journal of the American Animal Hospital Association, v. 51, p.197-203, 2015. LORKE D. A new approach to practical acute toxicity testing. Archives of Toxicology, v.54, p.275-287, 1983. LOVE, E.J.; MURRELL, J.; WHAY, H.R. Thermal and mechanical nociceptive threshold testing in horses: A review. Veterinary Anaesthesia and Analgesia, v.38, n.1, p.3–14, 2011. 81 MAJNO, G. Cells, Tissues, and Disease: Principles of General Pathology. 2ed. Oxford University Press, 2004. 1040p. MALE, D.; BROSTOFF, J.; ROTH, D.B.; ROITT, I.M. Imunologia. 5ed. GEN Guanabara Koogan, 2020. 435p. MANTOVANI, A.; SICA, A.; SOZZANI, S.; ALLAVENA, P.; VECCHI, A.; LOCATI, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, v.25, n.12, p.677–686, 2004. MARINHO B.G.; MIRANDA L.S.M.; GOMES N.M.; MATHEUS M.E.; LEITÃO S.G.; VASCONCELLOS M.L.A.A.; FERNANDES P.D. Antinociceptive action of (±)-cis-(6- ethyl-tetrahydropyran-2-yl)-formic acid in mice. European Journal of Pharmacology, v.550, p.47-53, 2006. MARINHO, B.G.; MIRANDA, L.S.M.; COSTA, J.S.; LEITÃO, S.G.; VASCONCELLOS, M.L.A.A.; PEREIRA, V.L.P.; FERNANDES, P.D. The antinociceptive properties of the novel compound (±)-trans-4-hydroxy-6-propyl-1- oxocyclohexan-2-one in acute pain in mice. Behavioural Pharmacology, v.24, n.1, p.10- 19, 2013. MATSUDA, M.; HUH, Y.; JI, R. Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. Journal of Anesthesia, v.33, p.131-139, 2019. MATSUMOTO, M.; XIE, W.; INOUE, M.; UEDA, H. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Molecular Pain, v.3, n.41, p.1-11, 2007. McDOUGALL, J.J. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Research and Therapy, v.8, p.220-226, 2006. McMAHON A.D. Observation and experiment with the efficacy of drugs: A warning example from a cohort of nonsteroidal antiinflammatory and ulcer-healing drug users. American Journal of Epidemiology, v.154, p.557-562, 2001. 82 McNAMARA, C.R.; MANDEL-BREHM, J.; BAUTISTA, D.M.; SIEMENS, J.; DERANIAN, K.L.; ZHAO, M.; HAYWARD, N.J.; CHONG, J.A.; JULIUS, D.; MORAN, M.M.; FANGER, C.M. TRPA1 mediates formalin-induced pain. Proceedings of the National Academy of Sciences of the United States of America, v.104, p.1352- 3530, 2007. MEDZHITOV, R. Origin and physiological roles of inflammation. Nature, v.454, p.428- 435 2008. MENEGAZZI, M; DI PAOLA, R; MAZZON, E; GENOVESE, T; CRISAFULLI, C; DAL BOSCO, M; ZOU, Z; SUZAKI, H; CUZZOCREA S. Glycyrrhizin attenuates the development of carrageenan-induced lung injury in mice. Pharmacological Research, v.58, p.22-31, 2008. MELZACK, R.; WALL, P.D. Pain Mechanisms: A new theory. Science, v.150, n.3699, p.971-979, 1965. MILANO, J; OLIVEIRA, S.M; ROSSATO, M.F; SAUZEM, P.D; MACHADO, P; BECK, P; ZANATTA, N; MARTINS, M.A.P; MELLO, C.F; RUBIN, M.A; FERREIRA, J; BONACORSO, H.G. Antinociceptive effect of novel trihalomethyl-substituted pyrazoline methyl esters in formalin and hot-plate tests in mice. European Journal of Pharmacology, v.581, p.86-96, 2008. MIRANDA, L.S.M.; MARINHO, B.G.; LEITÃO, S.G.; MATHEUS, M.E.; FERNANDES, P.D.; VASCONCELLOS, M.L.A.A. (+)-cis-(6-Ethyl-tetrahydropyran-2- yl)-formic acid: a novel substance with antinociceptive properties. Bioorganic & Medicinal Chemistry Letters, v.14, p.1573-1575, 2004. MOGIL, J. S.; ADHIKARI, S. M. Hot and cold nociception are genetically correlated. Journal of Neuroscience, v.19, n.13, p.21-25, 1999. MOHAMAD, A. S.; AKHTAR, M. N.; ZAKARIA, Z. A.; PERIMAL, E.K.; KHALID, S.; MOHD, P. A.; KHALID, M. H.; ISRAF, D. A.; LAJIS, N. H.; SULAIMAN, M. R. 83 Antinociceptive activity of a synthetic chalcone, flavokawin B on chemical and thermal models of nociception in mice. European Journal of Pharmacology, v.647, n.1-3, p.103-109, 2010. MOSMANN, T. Rapid Colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Journal of Immunological Methods, v.65, p.55– 63, 1983. MURPHY, K. Imunologia de Janeway. 8 ed. Artmed, 2014. 888p. NASER, P.V.; KUNER, R. Molecular, Cellular and Circuit Basis of Cholinergic Modulation of Pain. Neuroscience, v.387, p.135-148, 2018. NESS, T.J., GEBHART, G.F. Visceral pain: a review of experimental studies. Pain, v.41, p.167-234, 1990. NICHOLSON, B. Responsible prescribing of opioid for the management of chronic pain. Drugs, v.63, n.1, p.13–32, 2003. NUGTEREN, D.H; HAZELHOF, E. Isolation and properties of intermediates in prostaglandin biosynthesis. Biochimica et Biophysica Acta, v.326, p.448-461, 1973. OBATA, H. Analgesic Mechanisms of Antidepressants for Neuropathic Pain. International Journal of Molecular Sciences, v.18, n.11, p.2483-2494, 2017. OCANA, M; CENDRAN, C.M; COBOS, E.J; ENTRENA, J.M; BAEYENS, J.M. Potassium channels and pain: present realities and future opportunities. European Journal of Pharmacology, v.500, p.203–219, 2004. OGA, S.; SIQUEIRA, M.E.P.B. Introdução à toxicologia. In: OGA, S. Fundamentos de Toxicologia. 2ed. São Paulo: Atheneu, 2003. PAN, Z.Z; TERSHNER, S.A; FIELDS, H.L. Cellular mechanism for anti-analgesic action of agonists of the kappa-opioid receptor. Nature, v.389, p.382–385, 1997. 84 PARADA, C.A; TAMBELI, C.H; CUNHA, F.Q; FERREIRA, S.H. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience, v.102, p.937-944, 2001. PAREDES, S.; CANTILLO, S.; CANDIDO, K.D.; KNEZEVIC, N.N. An Association of Serotonin with Pain Disorders and Its Modulation by Estrogens. International Journal of Molecular Sciences, v.20, p.5729-5749, 2019. PARVEEN, Z.; DENG, Y.; SAEED, M.K.; DAI, R.; AHAMAD, W.; YU, Y.H. Antiinflammatory and analgesic activities of Thesium chinese Turcz extracts and its major flavonoids, kaampferol and kaempferol-3-O-glucoside. Yakugaku Zasshi, v.127, p.1275-1279, 2007. PATRONO, C. Cardiovascular Effects of Nonsteroidal Anti-inflammatory Drugs. Current Cardiology Reports, v.18, p.1-8, 2016. PINHO-RIBEIRO, F.A.; VERRI Jr., W.A.; CHIU, I.M. Nociceptor Sensory Neuron– Immune Interactions in Pain and Inflammation. Trends in Immunology, v.38, n.1, p.5- 19, 2017. POSSO, I.P.; GROSSMANN, E.; DA FONSECA, P.R.B.; PERISSINOTTI, D.M.N.; OLIVEIRA JUNIOR, J.O.; DE SOUZA, J.B.; SERRANO, S.C.; VALL, J. Tratado de Dor. 1ed. Atheneu, 2017. 2596p. PUNT, J.; STRANFORD, S.; JONES, P.; OWEN, J.A. Kuby Immunology. 8ed. W.H.Freeman & Co Ltd, 2018. 944p. RAJA, S.N.; CARR, D.B.; COHEN, M.; FINNERUP, N.B.; FLOR, H.; GIBSON, S.; KEEFE, F.; MOGIL, J.S.; RINGKAMP, M.; SLUKA, K.A.; SONG, X.; STEVENS, B.; SULLIVAN, M.; TUTELMAN, P.; USHIDA, T.; VADER, K. The Revised IASP definition of pain: concepts, challenges, and compromises. Pain, v.161, n.9, p.1976-1982, 2020. 85 RAMANA, K.V.; TAMMALI, R.; REDDY, A.B.M.; BHATNAGAR, A.; SRIVASTAVA, S.K. Aldose Reductase-Regulated Tumor Necrosis Factor- α Production Is Essential for High Glucose-Induced Vascular Smooth Muscle Cell Growth. Endocrinology, v.148, n. 9, p.4371-4384, 2007. RIZKI, T.M.; RIZKI, R.M. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Developmental & Comparative Immunology, v.16, p.103-110, 1992. RONCHETTI, S.; MIGLIORATI, G.; DELFINO, D.V. Association of inflammatory mediators with pain perception. Biomedicine & Pharmacotherapy, v.96, p.1145-1152, 2017 ROSAS-BALLINA, M.; OLOFSSON, P.S.; OCHANI, M.; VALDES-FERRER, S.I.; LEVINE, Y.A.; REARDON, C.; TUSCHE, M.W.; PAVLOV, V.A.; ANDERSSON, U.; CHAVAN, S.; MAK, T.W.; TRACEY, K.J. Acethylcoline-synthesizing T cells relay neural signals in a vagus nerve circuit. Science, v.334, n.6052, p.98-101, 2011. SACHS, D.; CUNHA, F.Q.; FERREIRA, S.H. Peripheral analgesic blockade of hypernociception: activation of arginine/NO/cGMP/protein kinase G/ATP-sensitive K+ channel pathway. Proceedings of the National Academy of Sciences of the United States of America, v.101, n.10, p.3680-3685, 2004. SAHLEY, T. L.; BERNTSON, G. G. Antinociceptive effects of central and systemic administration of nicotine in the rat. Psychopharmacology, v.65, p.279-283, 1979. SANTOS, G.C.M.; FERNANDES, R.D.; BARROS, T.R.; ABREU, H.S.; SUZART L.R.; CARVALHO, M.G.; BRAZ FILHO, R.; MARINHO B.G. Antinociceptive and Anti- inflammatory Activities of the Methanolic Extract from the Stem Bark of Lophanthera lactescens. Planta Medica, v.81, p.1688–1696, 2015. SIMS, J.E.; GAYLE, M.A.; SLACK, J.L.; ALDERSON, M.R.; BIRD, T.A.; GIRI, J.G.; COLOTTA, F.; RE, F.; MANTOVANI, A.; SHANEBECK, K.; GRABSTEIN, K.H.; DOWER, S.K. Interleukin 1 signaling occurs exclusively via the type I receptor. 86 Proceedings of the National Academy of Sciences of the United States of America, v.90, p.6155-6159, 1993. SOARES, A.C.; DUARTE, I.D. Dibutyryl-cyclic GMP induces peripheral antinociception via activation of ATP-sensitive K+ channels in the rat PGE2-induced hyperalgesic paw. British Journal of Pharmacology, v.134, p.127-131, 2001. SOJA, P. J.; TAEPAVARAPRUK, N.; PANG, W.; CAIRNS, B. E.; MCERLANE, S. A.; FRAGOSO, M. C. Transmission through the dorsal spinocerebellar and spinoreticular tracts: wakefulness versus thiopental anesthesia. Anesthesiology, v.97, n.5, p.1178-88, 2002. SOMMER, C. Serotonin in Pain and Analgesia - Actions in the Periphery. Molecular Neurobiology, v.30, p.117-125, 2004. STEFANO, G.B.; SCHARRER, B.; SMITH, E.M.; HUGHES, T.K.J.; MAGAZINE, H.I.; BILFINGER, T.V.; HARTMAN, A. R.; FRICCHIONE, G.I.; LIU, Y.; MAKMAN, M.H. Opioid and opiate immunoregulatory processes. Critical ReviewsTM in Immunology, v.37, n.2-6, p.231-270, 2017. SU, X.; JOSHI, S.K.; KARDOS, S.; GEBHART, G.F. Sodium channel blocking actions of the kappaopioid receptor agonist U50,488 contribute to its visceral antinociceptive effects. Journal of Neurophysiology, v.87, p.1271–1279, 2002. SU, X.; CASTLE, N.A.; ANTONIO, B.; ROELOFFS, R.; THOMAS, J.B.; KRAFTE, D.S.; CHAPMAN, L.M. The effect of kappa-opioid receptor agonists on tetrodotoxin- resistant sodium channels in primary sensory neurons. Anesthesia & Analgesia, v.109, p.632–640, 2009. TEIXEIRA, M.J.; FIGUEIRÓ, J. A. B. Dor - epidemiologia e evolução histórica da dor. São Paulo: Moreira Jr, 2001. THOMAZZI, S. M.; SILVA, C. B.; SILVEIRA, D. C. R.; VASCONCELLOS, C. L. C.; LIRA, A. F.; CAMBUI, E. V. F.; ESTEVAM, C. S.; ANTONIOLLI, A. R. 87 Antinociceptive and anti-inflammatory activities of Bowdichia virgilioides (sucupira). Journal of Ethnopharmacology, v.127, p.451-456, 2010. TORNOS, M.P.; SÁENZ, M.T.; GARCIA, M.D.; FERNÁNDEZ, M.A. Antinociceptive effects of the tubercles of Anredera leptostachys. Journal of Ethnopharmacology, v.68, p.229-234, 1999. VERRI, W.A; CUNHA, T.M; PARADA, C.A; POOLE, S; CUNHA, F.Q; FERREIRA, S.H. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacology & Therapeutics, v.112, n.1, p.116-38, 2006. VIGIL, S.V.G.; DE LIZ, R.; MEDEIROS, Y.S.; FRÖDE, T.S. Efficacy of tacrolimus in inhibiting inflammation caused by carrageenan in a murine model of air pouch. Transplant Immunology, v.19, p.25-29, 2008. WESS, J.; EGLEN, R.M.; GAUTAM, D. Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nature Reviews Drug Discovery, v.6, n.9, p.721–733, 2007. WINTER, C. A.; RISLEY, E. A.; NUSS, G. W. Carrageenin-induced edema in hind paw of the ratas an assay for anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine, v.111, p.544-547, 1962. YAKSH, T. L.; RUDY, T. A. Studies on direct spinal action of narcotic in the production of analgesia in the rat. Journal of Pharmacology and Experimental Therapeutics, v.202, p.411-428, 1977. ZHANG, M.J.; SU, H.; YAN, J.Y.; LI, N.; SONG, Z.Y.; WANG, H.J.; HUO, L.G.; WANG, F.; JI, W.S.; QU, X.J.; QU, M.H. Chemopreventive effect of Myricetin, a natural occurring compound, on colonic chronic inflammation and inflammation-driven tumorigenesis in mice. Biomedicine & Pharmacotherapy, v.97, p.1131-1137, 2018. ZHU, Z. Z.; MA, K. J.; RAN, X.; ZHANG, H.; ZHENG, C. J.; HAN, T.; ZHANG, Q. Y.; QIN, L. P. Analgesic, anti-inflammatory and antipyretic activities of the petroleum ether 88 fraction from the ethanol extract of Desmodium podocarpum. Journal of Ethnopharmacology. v.133, n.3, p.1126-1131, 2011. ZHUO, M.; GEBHART, G.F. Tonic cholinergic inhibition of spinal mechanical transmission. Pain, v.46, n.2 p.211-222, 1991.pt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
dc.subject.cnpqMedicina Veterináriapt_BR
Appears in Collections:Doutorado em Medicina Veterinária (Patologia e Ciências Clínicas)

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - GUSTAVO NUNES DE SANTANA CASTRO.pdf1.8 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.