Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/18250
Full metadata record
DC FieldValueLanguage
dc.contributor.authorScribelk, Leilane Souza-
dc.date.accessioned2024-09-26T13:03:17Z-
dc.date.available2024-09-26T13:03:17Z-
dc.date.issued2022-12-22-
dc.identifier.citationSCRIBELK, Leilane Souza. Modelos petrogenéticos e geodinâmicos para o magmatismo da fase pós-rifte da Bacia de Santos. 2022. 104 f. Dissertação (Mestrado em Geociências) - Instituto de Geociências, Programa de Pós-Graduação em Modelagem e Evolução Geológica, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/18250-
dc.description.abstractSeis seções de rochas magmáticas intercaladas com coquinas foram amostradas ao longo da perfuração do poço X na Bacia de Santos. Amostras laterais destas seções magmáticas foram estudadas por meio de uma metodologia dividida em três etapas principais: (1) análise de perfil composto, (2) petrografia e (3) litogeoquímica. As seções magmáticas foram interpretadas como uma sucessão de derrames de basaltos alcalinos miaskíticos, o que implica em contemporaneidade com as coquinas da megasequência pós-rifte da Bacia de Santos. A modelagem geoquímica mostrou que os basaltos das diferentes seções não são cogenéticos por processos de diferenciação, à exceção da seção basal, o que indica que os derrames foram extravasados a partir de diferentes centros emissores. Modelos de fusão parcial em equilíbrio modal mostraram que magmas parentais podem ser gerados a partir de diferentes quantidades de fusão parcial a partir de uma mesma fonte fértil na zona de estabilidade da granada. No entanto, isto só seria possível considerando-se os extremos do espectro de fusão parcial necessário à formação de magmas basálticos alcalinos. Por isso, a derivação, a partir de fontes distintas, deve ser uma possibilidade a ser considerada na petrogênese dos basaltos alcalinos estudados. Modelos de mistura binária mostram que nem o manto litosférico subcontinental nem o manto empobrecido contribuíram para a petrogênese desses basaltos alcalinos, tendo os dados litogeoquímicos indicado um papel fundamental da fusão da cauda da pluma de Tristão da Cunha. Em conjunto, a petrogênese dos basaltos alcalinos permite elaborar um modelo geodinâmico para o magmatismo pós-rifte da Bacia de Santos em que a cauda da pluma de Tristão da Cunha funde sob uma crosta continental muito afinada. Esta crosta não consegue sustentar câmaras magmáticas de longo tempo de residência, tornando improvável a assimilação crustal concomitante à cristalização fracionada dos magmas parentais. Os modelos petrogenéticos e geodinâmico implicam numa Moho elevada e posicionamento da Bacia de Santos sobre um manto anomalamente aquecido durante o Aptiano. Os dados petrofísicos de perfis do poço foram avaliados qualitativamente com o objetivo de associá-los às características petrográficas (composicionais, texturais e estruturais) das rochas amostradas pelo poço. Diferentes valores de raios gama, resistividade, sônico, porosidade de nêutrons e densidade aparente podem estar associadas principalmente às variações estruturais, tais como brechação e tamanhos e quantidades (ou ausência) de amígdalas.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectPetrografiapt_BR
dc.subjectBacia de Santospt_BR
dc.subjectFase pós-riftept_BR
dc.subjectPetrographypt_BR
dc.subjectSantos Basinpt_BR
dc.subjectPost-rift phasept_BR
dc.titleModelos petrogenéticos e geodinâmico para o magmatismo da fase pós-rifte da Bacia de Santospt_BR
dc.title.alternativePetrogenetic and geodynamic models for the post-rift phase magmatism of the Santos Basinen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherSix magmatic sections interbedded with coquinas were sampled along well X drilled in Santos Basin. Sidewall core samples from these magmatic sections were studied applying a methodology divided in three main steps: analysis of well sections, petrography and lithogeochemistry. The magmatic sections were taken as stacking miaskitic, alkaline basalt flows, being time-related with the coquinas of the post-rift phase of Santos Basin. Geochemical modeling showed that basalts from different magmatic sections are not cogenetic by differentiation processes, except for the bottom section, indicating that the flows were erupted from different vents. Modal batch partial melting models showed that the parental magmas can derive from different amounts of partial melting from the same fertile source within the garnet stability zone. However, this could only happen at extreme values within the wide range of amounts of partial melting required to give rise to alkaline basalts. Therefore, derivation from distinctive mantle sources should be kept in mind as a likely possibility for the petrogenesis of these alkaline basalts. Binary mixing models showed that neither the subcontinental lithospheric mantle nor the depleted mantle contributed to the petrogenesis of the alkaline basalts. The lithogeochemical data indicate a role for the melting of the Tristan da Cunha plume tail. Altogether, the petrogenesis of the alkaline basalts allow to propose a geodynamic model for Santos Basin in which the Tristan plume tail melts beneath a strongly stretched continental crust. This crust was not thick enough to support large magma chambers with long time of residence so that crustal assimilation could take place. The petrogenetic and geodynamic models imply a shallow Moho and location of Santos Basin above an anomalous hot mantle during the Aptian. The petrophysical data of the well profiles were qualitatively evaluated as a means of testing possible correlations with the petrographic data. Different values of gamma-ray, resistivity, sonic, neutron porosity and bulk density may be related mainly with distinctive structures of the basalts, such as brecciation, absence of amygdales and amounts e sizes of the amygdales.pt_BR
dc.contributor.advisor1Valente, Sérgio de Castro-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7467-672Xpt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7049948512331299pt_BR
dc.contributor.referee1Valente, Sergio de Castro-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-7467-672Xpt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7049948512331299pt_BR
dc.contributor.referee2Vieira, Artur Corval-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-5154-2737pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0664780147733826pt_BR
dc.contributor.referee3Santos, Anderson Costa dos-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-2526-8620pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4949133831525911pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-8138-707Xpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7315538820812278pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Geociênciaspt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Modelagem e Evolução Geológicapt_BR
dc.relation.referencesADRIANO, M.S.; FIGUEIREDO, J.P.; COELHO, P.H.G.; BORGHI, L. 2022. Tectonic and stratigraphic evolution of the Santos Basin rift phase: New insights from seismic interpretation on Tupi oil field area. Journal of South American Earth Sciences 116, 103842. DOI: 10.1016/j.jsames.2022.103842. AIGNER-TORRES, M.; BLUNDY, J.; ULMER, P. & PETTKE, T. 2007. Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contributions to Mineralogy and Petrology, v. 153, p. 647–667. ANDERSON, D.L. 2005. Scoring hotspots: the plume and plate paradigms, in Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L., eds., Plates, Plumes and Paradigms: Geological Society of America Special Paper, v. 388, p. 31–54. ANDERSON, D.L. & NATLAND, J.H. 2005. A brief history of the plume hypothesis and its competitors: concept and controversy, in Foulger, G.R., Natland, J.H., Presnall, D.C., Anderson, D.L., eds., Plates, Plumes and Paradigms: Geological Society of America Special Paper, v. 388, p. 119–145. ARTH, J.G. 1976. Behaviour of trace elements during magmatic processes – a summary of theoretical models and their applications. Res. U.S. Geol. Surv., v. 4, p. 41-47. ASLANIAN, D.; MOULIN, M.; OLIVET, J-L.; UNTERNEHR, P.; MATIAS, L.; BACHE, F.; RABINEAU, M.; NOUZÉ, H.; KLINGELHEOFER, F.; CONTRUCCI, I.; LABAILS, C. 2009. Brazilian and African passive margins of the Central Segment of the South Atlantic Ocean: Kinematic constraints. Tectonophysics, v. 468, n. 1-4, p. 98–112. ASLANIAN, D.; GALLAISA, F.; AFILHADO, A.; SCHNURLEA, P.; MOULIN, M.; EVAIN, M.; DIAS, N.; SOARES, J.; FUCK, R.; PESSOA NETO, O.C.; VIANA, A.; 68 MORVAN, L.; MAZÉ, J.P.; PIERRE, D.; ROUDAUT-PITE, M.; RIO ALVES, D.; BARROS JÚNIOR, P.; BIARI, Y.; CORELA, C.; CROZON DUARTE, J.L.; DUCATEL, C.; FALCÃO, C.; FERNAGU, P.; LIMA, M.V.A.G.; LEPIVER, D.; MOKEDDEM, Z.; PELLEAU, P.; RIGOTI, C.; ROEST, W.; ROUDAUT, M. 2021. Deep structure of the Pará-Maranhão/Barreirinhas passive margin in the equatorial Atlantic (NE Brazil). Journal of South American Earth Sciences 110, 103322. DOI: 10.1016/j.jsames.2021.103322. BAILEY, D.K. 1976. Applications of experiments to alkaline rocks, in Bailey, D.K. and Macdonald, R., eds., The evolution of the crystalline rocks, Academic Press, New York, p. 419-469. BERGMAN, S.C. 1987. Lamproites and other potassium-rich igneous rocks: a review of their occurrence, mineralogy and geochemistry, in Fitton J.G., Upton B.G.J., eds., Alkaline igneous rocks. Blackwell, Oxford, p. 103–190. BESWICK, A.E. & SOUCIE, G. 1978. A correction procedure for metasomatism in an Archean greenstone belt. Precambrian Research, v. 6, p. 235-248. BUCKLEY, J.P.; BOSENCE, D. & ELDERS, C. 2015. Tectonic setting and stratigraphic architecture of an early cretaceous lacustrine carbonate platform, sugar Loaf high, Santos basin, Brazil. Geol. Soc. London, Spec. Publ. 418 (1), 175–191. CARLOTTO, M.A.; SILVA, R.C.B.; YAMATO, A.A.; TRINDADE, W.L.; MOREIRA, J.L.P.; FERNANDES, R.A.R.; RIBEIRO, O.J.S. 2017. Libra: a newborn giant in the Brazilian Presalt Province, in Merrill, R.K., and Sternbach, C.A., eds., Giant Fields of the Decade 2000–2010: American Association of Petroleum Geologists, v. 113, p. 165– 176. CHANG, H.K., KOWSMANN, R.O., FIGUEIREDO, A.M.F. & BENDER, A. 1992. Tectonics and stratigraphy of the East Brazil Rift system: an overview. Tectonophysics 213 (1–2), 97–138. DOI: 10.1016/0040-1951(92)90253-3. CHINELATTO, F., BELILA, A.M.P.; BASSO, M. SOUZA, J.P.P. & VIDAL, A.C. 2020. A taphofacies interpretation of shell concentrations and their relationship with petrophysics: A case study of Barremian-Aptian coquina in the Itapema Formation, Santos Basin-Brazil. Marine and Petroleum Geology, 116, 104317. DOI: 10.1016/j.marpetgeo.2020.104317. DANI, A. P. O.; REMUS, M. V. D.; DANI, N. & LIMA, E. F. 2017. Magmatismo basáltico do Andar Alagoas (Bacia de Campos). Geol. USP, Ser. Cient., v. 17, n. 2, p. 269-287. DOI: 10.11606/issn.2316-9095.v17-373. DELPINO, D.H. & BERMÚDEZ, A.M. 2009. Petroleum systems including unconventional reservoirs in intrusive igneous rocks (sills and laccoliths). The Leading Edge, v. 28, p. 804–811. DOI: 10.1190/1.3167782. DICKSON, W.; SCHIEFELBEIN, C. & ODEGARD, M. 2019. Defining a supergiant petroleum system in Brazil’s Santos Basin with multi-disciplinary methods: one template for exploration success. Interpretation, v. 7, p. 133–152. DOI: 10.1190/INT-2018-0204.1. DRAKE, M.J. & WEILL, D.F. 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim. Cosmochim. Acta, v. 39, p. 689-712. EDGAR, A.D. 1987. The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies. Geol. Soc. London, Spec. Publ. v. 30, p. 29-52. DOI: 10.1144/GSL.SP.1987.030.01.04. 69 EPIN, M.E.; MANATSCHAL, G.; SAPIN, F. & ROWAN, M.G. 2021. The tectono-magmatic and subsidence evolution during lithospheric breakup in a salt-rich rifted margin: insights from a 3D seismic survey from southern Gabon. Mar. Petrol. Geol. 128, 105005. EVAIN, M.; AFILHADO, A.; RIGOTTI, C.; LOUREIRO, A.; ALVES, D.; KLINGELHOEFER, F.; SCHNÜRLE, P.: FELD, A.; FUCK, R.; SOARES, J.; VINICIUS DE LIMA, M.; CORELA, C.: MATIAS, L.; BENABDELLOUAHED, M.; BALTZER, A.; RABINEAU, M.; VIANA, A.; MOULIN, M.; ASLANIAN, D. 2015. Deep structure of the Santos basin – São Paulo Plateau system, SE Brazil. J. Geophy. Res.: Solid Earth. 120(8): 5401-5431. DOI: 10.1002/2014JB011561. FLORISBAL, L.M.; JANASI, V.A.; BITENCOURT, M.F.; NARDI, L.V.S. & MARTELETO, N.S. 2018. Geological, geochemical and isotope diversity of ~ 134 Ma dykes from the Florianópolis Dyke Swarm, Paraná Magmatic Province: Geodynamic controls on petrogenesis. Journal of Volcanology and Geothermal Research, v. 355, p. 181–203. DOI: 10.1016/j.jvolgeores.2017.08.002. FODOR, R.V.& VETTER, S.K. 1984. Rift-zone magmatism: petrology of basaltic rocks transitional from CFB to MORB, Southeastern Brazil margin. Contributions to Mineralogy and Petrology, v. 88, p. 307-321. FRANKE, D. 2013. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Marine and Petroleum Geology, p.25. GAMBOA, L. A. P.; MACHADO, M. A. P.; SILVEIRA, D. P.; FREITAS, J. T. R.; SILVA, S. R. P. 2008. Evaporitos estratificados no Atlântico Sul: interpretação sísmica e controle tectono-estratigráfico na Bacia de Santos, in Mohriak, W. U.; Szatmari, P.; Anjos, S. M. C. Sal: Geologia e Tectônica. Exemplos nas Bacias Brasileiras. São Paulo: Beca Edições, p. 91-163. GARDA, G.M. 1995. Os diques básicos e ultrabásicos da região costeira entre as cidades de São Sebastião e Ubatuba, Estado de São Paulo [Tese de Doutorado]: São Paulo, Instituto de Geociências da USP, 2v, 156 p. GIBSON, S.A.; THOMPSON, R.N.; DAY, J.A.; HUMPHRIS, S.E. & DICKIN, A.P. 2005. Melt-generation processes associated with the Tristan mantle plume: constraints on the origin of EM-1. Earth and Planetary Science Letters, v. 237, p. 744-767. DOI: 10.1016/j.epsl.2005.06.015. GOMES, J.P.; BUNEVICH, R.B.; TEDESCHI, L.R.; TUCKER, M.E. & WHITAKERA, F.F. 2019. Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-salt. Marine and Petroleum Geology, 113, 104176. DOI: 10.1016/j.marpetgeo.2019.104176. GOMES, A.S. & VASCONCELOS, P.M. 2021. Geochronology of the Paraná-Etendeka large igneous province. Earth-Science Rev. 220, 103716. DOI: 10.1016/j.earscirev.2021.103716. GREEN, D.H. 1969. The origin of basaltic and nephelinitic magmas in the earth´s mantle. Tectonophysics, v. 7, p. 409-422. GREEN, D.H. 1973. Experimental melting studies on a model upper mantle composition at high pressures under water-saturated and water-undersaturated conditions. Earth Planet Sci. Lett. v. 19, p. 37–53. 70 GREEN, D.H. 2015. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth’s upper mantle. Phys Chem Minerals, v. 42, p. 95-122. DOI: 10.1007/s00269-014-0729-2. GUEDES, E., HEILBRON, M., DE MORISSON VALERIANO, C., DE ALMEIDA, J.C.H. & SZATMARI, P. 2016. Evidence of Gondwana early rifting process recorded by Resende-Ilha Grande Dike Swarm, southern Rio de Janeiro, Brazil. Journal of South American Earth Sciences, v. 67, p. 11–24. DOI: 10.1016/j.jsames.2016.01.004. HORN, I.; FOLEY, S.F.; JACKSON, S.E. & JENNER, G.A. 1994. Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt. Chemical Geology 117: 193-218. DOI: 10.1016/0009-2541(94)90128-7. HUISMANS, R. & BEAUMONT, C. 2011. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins. Nature, [S.I.], v. 473, n. 7345, p. 74–78. HUMPHRIES, E.R. & NIU, Y. 2009. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos v. 112, p. 118-136. DOI:10.1016/j.lithos.2009.04.038. HUPPERT, H. E. & SPARKS, R. S. J. 1985. Komatiites I: Eruption and flow. J. Petro. v. 26, p. 694–725. IRVINE, T.N. & BARAGAR, W.R.A. 1971. A guide to the chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences, Canada, v. 8, p. 523-547. IRVING A.J. & FREY F.A. 1978. Distribution of trace elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Ceochim. Cosmochim. Acta, v. 42, p. 771-787. JULIAN, B.R., 2005. What can seismology say about hotspots?, in FOULGER, G.R., NATLAND, J.H., PRESNALL, D.C., ANDERSON, D.L., eds., Plates, Plumes and Paradigms: Geological Society of America Special Paper, v. 388, p. 155–170. KARNER, G. D. & DRISCOLL, N. W. 1999. Tectonic and stratigraphic development of the West African and eastern Brazilian Margins: insights from quantitative basin modelling, in CAMERON, N. R., BATE, R. H. & CLURE, V. S., eds, The Oil & Gas Habitats of the South Atlantic. Geol. Soc. London, Spec. Publ. v. 153, p. 11–40. KERR, A. C.; KEMPTON, P. D. & THOMPSON, R. N. 1995. Crustal assimilation during turbulent magma ascent (ATA); new isotopic evidence from the Mull Tertiary lava succession, NW Scotland. Contributions to Mineralogy and Petrology, 119(2), 142-154. LAVIER, L. L. & MANATSCHAL, G. 2006. A mechanism to thin the continental lithosphere at magma-poor margins. Nature, [S.I.], v. 440, n. 7082, p. 324–8. LE BAS, M.J.; LE MAITRE, R.N.; STRECKEISEN, A. & ZANETTIN, B. 1986. A chemical classification of volcanic rock based on total silica diagram. J. Petrol. 27 (3), 745–750. LEITE, C.O.N.; SILVA, C.M.A.S. & ROS, L.F. 2020. Depositional and diagenetic processes in the pre-salt rift section of a Santos Basin area, SE Brazil. Journal of Sedimentary Research, v. 90, p. 584–608. DOI: 10.2110/jsr.2020.27. LE MAITRE, R. W. 2002. Igneous Rocks: a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge: Cambridge University Press, 236 p. 71 LE ROEX, A.P., CLIFF, R.A. & ADAIR, B.J.I. 1990. Tristan da Cunha, South Atlantic: geochemistry and petrogenesis of a basanite-phonolite lava series. Journal of Petrology, Oxford, v. 31, p. 779-812. LOBO, J.T. 2007. Petrogênese de rochas basálticas do Eocretáceo das Bacias de Campos e Pelotas e implicações na geodinâmica de rifteamento do Gondwana Ocidental [Tese de Doutorado]: FGEL-UERJ, 250 p. LOUREIRO, A., SCHNÜRLE, P., KLINGELHÖFER, F., AFILHADO, A., PINHEIRO, J., EVAIN, M., GALLAIS, F., DIAS, N.A., RABINEAU, M., BALTZER, A., BENABDELLOUAHED, M., SOARES, J., FUCK, R., CUPERTINO, J.A., VIANA, A., MATIAS, L., MOULIN, M., ASLANIAN, D., THE SALSA TEAM, MORVAN, L., MAZÉ, J.P., PIERRE, D., ROUDAUT-PITEL, M., RIO, I., ALVES, D., BARROS JUNIOR, P., BIARI, Y., CORELA, C., CROZON, J., DUARTE, J.L., DUCATEL, C., FALCÃO, C., FERNAGU, P., VINICIUS APARECIDO GOMES DE LIMA, M., LE PIVER, D., MOKEDDEM, Z., PELLEAU, P., RIGOTI, C., ROEST, W., ROUDAUT, M. 2018. Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil. Journal of South American Earth Sciences v. 84, p. 351-372. DOI: 10.1016/j.jsames.2018.01.009. MACKENZIE, W.S., DONALDSON, C.H. & GUILFORD, C. 1982. Atlas of igneous rocks and their textures. Longman, London, 148 p. MAGALHÃES, J.T.R. 2012. Petrogênese das rochas máficas alcalinas do litoral entre São Sebastião (SP) e Parati (RJ) [Dissertação de Mestrado]: Universidade do Estado do Rio de Janeiro, p. 237. MANATSCHAL, G. 2004. New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps. International Journal of Earth Sciences, [S.I.], v. 93, p.432-466. MANN, J. & RIGG, J.W.D. 2012. New Geological Insights Into the Santos Basin. Geo ExPro, 9(1): 38-40. MATOS, R.M.D. 2021. Magmatism and hospot trails during and after continental break-up in the South Atlantic. Marine and Petroleum Geology, 129, 105077. DOI: 10.1016/j.marpetgeo.2021.105077. MCDONOUGH, W.F. & SUN, S.S. 1995. The composition of the Earth. Chem. Geol. v. 20, p. 223–253. MCKENZIE, D. & O'NIONS, R.K. 1991. Partial melt distributions from inversion of rare Earth element concentrations. Journal of Petrology v. 32, p. 1021-1091. MCPHIE, J.; DOYLE, M. & ALLEN, R. 1993. Volcanic Textures: a Guide to the Interpretation of Textures in Volcanic Rocks. University of Tasmania Centre for Ore Deposit and Exploration Studies, Hobart. 198 p. MELLO, M.R.; BENDER, A.A.; AZAMBUJA FILHO, N.C. & DE MIO, E. 2011. Giant Sub-Salt Hydrocarbon Province of the Greater Campos Basin, Brazil. OTC Brasil, OTC-22818-MS. DOI: 10.4043/22818-MS. MINZONI, M.; CANTELLI, A.; THORNTON, J. & WIGNALL, B. 2021. Seismic-scale geometries and sequence-stratigraphic architecture of Early Cretaceous sun-post rift carbonate systems, presalt section, Brazil. Geol. Soc. London, Spec. Publ. SP509-2019-78. DOI: 10.1144/SP509-2019-78. 72 MIZUSAKI, A. M. P.; PETRÍNI, P.; BELLIENI, G.; COMIN-CHIRAMONTI, P.; DIAS, J. L.; MIM, A.; PICCIRILLO, E. M. 1992. Basalt magmatism along The passive continental margin of SE Brazil (Campos Basin). Contributions to Mineralogy and Petrology, v. 111, p. 143-160. MOHRIAK, W.U. 2003. Bacias Sedimentares da Margem Continental Brasileira, in L.A. Bizzi, C. Schobbenhaus, R.M. Vidotti, J.H. Gonçalves, eds., Geologia, Tectônica e Recursos Minerais do Brasil. Serviço Geológico do Brasil – CPRM, p. 87-165. MOHRIAK, W. U. 2012. Bacias de Santos, Campos e Espírito Santo, in Hasui, Y.; Carneiro, C. D. R.; Almeida, F. F. M.; Bartorelli, A. (Orgs.). Geologia do Brasil, São Paulo: Beca Edições, p. 481-496. MOORBATH, S., & THOMPSON, R. N. 1980. Strontium isotope geochemistry and petrogenesis of the Early Tertiary lava pile of the Isle of Skye, Scotland, and other basic rocks of the British Tertiary Province: an example of magma-crust interaction. Journal of Petrology, 21(2), 295–321. DOI:10.1093/petrology/21.2.295. MOREIRA, J. L. P., MADEIRA, C. V., GIL, J. A. & MACHADO, M. A. P. 2007. Bacia de Santos. Boletim de Geociências da Petrobras, 15(2):531-549. MOULIN, M., ASLANIAN, D., RABENEAU, M., PATRIAT, M. & MATIAS, L. 2013. Kinematic keys of the Santos–Namibe basins. Geol. Soc., Lond., Spec. Publ. v. 369, p. 91–107. PEARCE, J.A. 1996. A User’s Guide to Basalt Discrimination Diagrams, in Wyman, D.A., ed., Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration, Geological Association of Canada, Short Course Notes, v. 12, p. 79-113. PEATE, D.W. 1997. The Paraná-Etendeka province. Geophysical Monograph Series v. 100, p. 217–245. DOI: 10.1029/GM100p0217. PEREIRA, M. J. & FEIJÓ, F. J. 1994. Bacia de Santos. Boletim de Geociências da Petrobras, Rio de Janeiro, v. 8, 219-234. PERON-PINVIDIC, G.; MANATSCHAL, G. & OSMUNDSEN, P. T. 2013. Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts. Marine and Petroleum Geology, v. 43, p. 21-47. PERON-PINVIDIC, G. & MANATSCHAL, G. 2019. Rifted Margins: State of the Art and Future Challanges. Front. Earth Sci. 7:218. DOI: 10.3389/feart.2019.00218. REGELOUS, M. 1993. Geochemistry of dolerites from the Paraná flood basalt province, Southern Brazil [PhD Thesis]: Open University, Milton Keynes, England, 256 p. REN, K.; ZHAO, J.; LIU, Q. & ZHAO, J. 2020. Hydrocarbons in igneous rock of Brazil: a review. Petroleum Research, v. 5, p. 265-275. DOI: 10.1016/j.ptlrs.2020.06.001. RICCOMINI, C.; SANT’ANNA, L.G. & TASSINARI, C.C.G. 2012. Pré-sal: geologia e exploração. Revista USP, v. 95, p. 33-42. DOI: 10.11606/issn.2316-9036.v0i95p33-42. RIGOTI, C.A. 2015. Evolução tectônica da Bacia de Santos com ênfase na geometria crustal: Interpretação integrada de dados de sísmica de reflexão e refração, gravimetria e magnetometria [Dissertação de Mestrado]: Programa de Pós-Graduação em Análise de Bacias e Faixas Móveis, Universidade do Estado do Rio de Janeiro, p. 135. 73 ROCK, N.M.S. 1991. Lamprophyres. Blackie and Son, London, U.K., 284 p. ROEDER, P.L. & EMSLIE, R.F. 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, v. 29, p. 275-289. DOI: 10.1007/BF00371276. ROLLINSON, H. 1993. Using geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical, 352 p. SALTERS, V.J.M. & STRACKE, A. 2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems. 5(5): 1-27. DOI: 10.1029/2003GC000597. SCHATTNER, U. & MAHIQUES, M.M. 2020. Post-rift regional volcanism in southern Santos Basin and the uplift of the adjacent South American coastal range. Journal of South American Earth Sciences, 104, 102855. DOI: 10.1016/j.jsames.2020.102855. SCHNETZLER, C.C. & PHILPOTTS, J.A. 1970. Partition coefficients of rare earth elements between igneous matrix material and rock-forming mineral phenocrysts - II. Ceochim. Cosmochim. Acta, v. 34, p. 331-340. SCHUTTER, S.R. 2003. Occurrences of hydrocarbons in and around igneous rocks. Geol. Soc. London Spec. Publ., v. 214, p. 35-68. SHAND, S.J. 1943. The eruptive rocks: 2nd edition, John Wiley, New York, 444 p. SØRENSEN, H. 1997. The agpaitic rocks – an overview. Mineralogical Magazine, v. 61, p. 485-498. STANTON, N. PONTE-NETO, C.; BIJANI, R.; MASINI, E.; FONTES, S. & FLEXOR, J.M. 2014. A Geophysical view of the southeastern brazilian margin at Santos Basin: insights into rifting evolution. Journal of South American Earth Sciences, v. 55, p. 141-154. DOI: 10.1016/j.jsames.2014.07.003. STICA, J. M.; ZALÁN, P. V. & FERRARI, A. L. 2014. The evolution of rifting on the volcanic margin of the Pelotas Basin and the contextualization of the Paraná–Etendeka LIP in the separation of Gondwana in the South Atlantic. Mar. Pet. Geol. v. 50, p. 1-21. DOI: 10.1016/j.marpetgeo.2013.10.015. STRACKE, A.; HOFMANN, A. W. & HART, S. R. 2005. FOZO, HIMU, and the rest of the mantle zoo, Geochem. Geophys. Geosyst., 6, Q05007. DOI: 10.1029/2004GC000824. STRUGALE, M. & CARTWRIGHT, J. 2022. Tectono-stratigraphic evolution of the rift and post-rift systems in the Northern Campos Basin, offshore Brazil. Basin Research, 00: 1-33. DOI: 10.1111/bre.12674. SUN, S.S. & MCDONOUGH, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, in Saunders A.D. and Norry M.J., eds., Magmatism in ocean basins. Geol. Soc. London. Spec. Publ. v. 42, p. 313-345. SUTRA, E. & MANATSCHAL, G. 2012. How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology, [S.I.], v. 40, n. 2, p. 139–142. THOMPSON, R.N. 1982. British Tertiary Volcanic Province. Scott. J. Ceol., v. 18, p. 49-107. THOMPSON, D.L., STILWELL, J.D. & HALL, M. 2015. Lacustrine carbonate reservoirs from Early Cretaceous rift lakes of Western Gondwana: Pre-Salt coquina of Brazil and West Africa. Gondwana Research, v. 28, p. 26-51. DOI: 10.1016/j.gr.2014.12.005. 74 TORSVIK, T.H.; ROUSSE, S.; LABAILS, C. & SMETHURST, M.A. 2009. A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys. J. Int. v. 177, p. 1315-1333. TOUMINEN, H.W. 1964. The trends of differentiation in percentage diagrams. J. Geol., v. 72, p. 855-860. TUGEND, J.; GILLARD, M.; MANATSCHAL, G.; NIRRENGARTEN, M.; HARKIN, C.; EPIN, M.; SAUTER, D.; AUTIN, J.; KUSZNIR, N.; MCDERMOTT, K. 2020. Reappraisal of the magma-rich versus magma-poor rifted margin archetypes. Geol. Soc. London, Spec. Publ. 476, 23. DOI: 10.1144/SP476.9. UNTERNEHR, P.; PERON-PINVIDIC, G.; MANATSCHAL, G. & SUTRA, E. 2010. Hyper-extended crust in the South Atlantic: in search of a model. Petroleum Geoscience, v. 16, p. 207-215. VALENTE, S.C. 1997. Geochemical and isotopic constraints on the petrogenesis of the Cretaceous dykes of Rio de Janeiro, Brazil [PhD Thesis]: The Queen’s University of Belfast, 366 p. VILLEMANT, B.; JAFFREZIC, H.; JORON, J.L. & TREUIL, M. 1981. Distribution coefficients of major and trace-elements – fractional crystallization in the alkali basalt series of Chaine-Des-Puys (Massif Central, France). Geochimica et Cosmochimica Acta 45(11): 1997-2016. DOI: 10.1016/0016-7037(81)90055-7. WINCHESTER, J.A. & FLOYD, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, v. 20, p. 325-343. WOOD, B.J. & FRASER, D.G. 1976. Elementary thermodynamics for geologists. Oxford University Press, Oxford, 303 p. YODER, H.S. & KUSHIRO, I. 1972. Composition of residual liquids in the nepheline-diopside system. Yearb. Carnegie Inst. Washington, v. 71, p. 413-416. ZALÁN, P. V.; SEVERINO, M.C.G.; RIGOTI, C.A.; MAGNAVITA, L.P.; OLIVEIRA, J.A.B. & VIANNA, A.R. 2011. An Entirely New 3D-View of the Crustal and Mantle Structure of a South Atlantic Passive Margin – Santos, Campos and Espírito Santo Basins, Brazil, in AAPG Annual Convention and Exhibition, Expanded abstract, Houston, Texas, USA: [S.n.], p. 12. ZINDLER, A. & HART, S.R. 1986. Chemical geodynamics. Ann. Rev. Earth Planet. Sci., v. 14, p. 493-571.pt_BR
dc.subject.cnpqGeografiapt_BR
Appears in Collections:Mestrado em Modelagem e Evolução Geológica

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - LEILANE SOUZA SCRIBELK.pdf6.82 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.