Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/18265
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Mendes, Bruno Henrique de Medeiros | - |
dc.date.accessioned | 2024-09-27T11:50:17Z | - |
dc.date.available | 2024-09-27T11:50:17Z | - |
dc.date.issued | 2023-12-22 | - |
dc.identifier.citation | Mendes, H. M. Bruno. Uma nova abordagem na busca de inibidores de metaloproteases de matriz (mmp): estudos de semicarbazonas e tiossemicarbazonas via modelagem molecular. 2023. 192 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/18265 | - |
dc.description.abstract | Alvos moleculares promissores para a busca de novos fármacos para doenças como dengue hemorrágica, câncer, doenças cardiovasculares e inflamações são as metaloproteases de matriz (MMPs), com destaque para a MMP-9, por esta desempenhar papel central em processos hemorrágicos e inflamatórios e estar frequentemente superexpressa nessas patologias. Como existem diferentes classes de MMPs, uma questão central no desenvolvimento de inibidores dessas enzimas é a busca por seletividade. Este projeto tem como objetivo analisar por métodos teóricos a seletividade de semicarbazonas (SC) e tiossemicarbazonas (TSC), anteriormente planejadas e sintetizadas por nosso grupo, em relação à MMP-9, visando o planejamento de novos candidatos a inibidores seletivos para essa enzima. Além disso, o estudo busca analisar por métodos teóricos as propriedades farmacocinéticas dos compostos mais seletivos para determinar sua potencial viabilidade para administração humana. Estudos de docagem molecular foram feitos com as estruturas da MMP-9 (PDB 6ESM) e da MMP-1 (PDB 1HFC), com a função Goldscore. Os complexos com as melhores poses foram selecionados e submetidos à otimização geométrica via cálculos semiempíricos com o método PM7, adotando a proteína de forma integral e em um meio contínuo representando o solvente, para determinação da entalpia de interação dos compostos. Os resultados evidenciam que os ligantes do grupo TSC, em geral, apresentam um perfil de seletividade teórico promissor com a MMP-9 humana, destacando-se o ligante 23b, que foi usado como base para uma nova série de ligantes mais seletivos. Essa abordagem resultou em dados relevantes sobre o perfil de interação das TSC com os sítios S1’ das enzimas MMP-1 e MMP-9, explorados no planejamento racional visando a seletividade. Os ligantes da série BH mostraram-se potencialmente seletivos, com destaque para a molécula BH02a, que apresentou melhor desempenho de interação e seletividade pela MMP-9 do que 23b. As modificações se mostraram benéficas para as propriedades ADMET previstas. A série BH equilibra solubilidade e penetração de membrana, com melhorias na absorção prevista das TSC, apesar de BH02a e BH02b apresentarem absorção ligeiramente reduzida devido à alta polaridade. Resultados teóricos de biodisponibilidade indicam potencial para fármacos orais, sem alertas PAINS. Com ampla distribuição sistêmica prevista, especialmente os mais lipofílicos da série BH, eles apresentam potencial de particionamento em regiões lipídicas como a matriz extracelular. As TSC foram previstas como inibidoras de CYP1A2, com BH01a também inibindo CYP2C19, mas modificações propostas reduziram o perfil teórico de inibição de CYP3A4. Todos os compostos têm baixo T1/2 e depuração renal previstos, sugerindo administração mais frequente, e não há potencial cardiotoxicidade. A molécula BH01a mostra genotoxicidade prevista, e há uma tendência geral à hepatotoxicidade, sendo 25, BH01 e BH01a previstos como menos hepatotóxicos. As TSC atendem à faixa teórica da dose diária máxima da FDA, indicando administração segura, e compostos 23b, 23c, 25 e série BH têm baixa toxicidade aguda prevista, sendo BH01b, BH02, BH02a e BH02b os menos tóxicos. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | Modelagem Molecular | pt_BR |
dc.subject | MMP-9 | pt_BR |
dc.subject | Farmacodinâmica | pt_BR |
dc.subject | Farmacocinética | pt_BR |
dc.subject | Molecular Modeling | pt_BR |
dc.subject | Pharmacodynamics | pt_BR |
dc.subject | Pharmacokinetics | pt_BR |
dc.title | Uma nova abordagem na busca de inibidores de metaloproteases de matriz (MMP): estudos de semicarbazonas e tiossemicarbazonas via modelagem molecular | pt_BR |
dc.title.alternative | A new approach in the search for matrix metalloproteinase (MMP) inhibitors: studies on semicarbazones and thiosemicarbazones via molecular modeling | en |
dc.type | Dissertação | pt_BR |
dc.description.abstractOther | Promising molecular targets for the search for new drugs for diseases such as dengue hemorrhagic fever, cancer, cardiovascular diseases and inflammation are matrix metalloproteases (MMPs), with emphasis on MMP-9, as it plays a central role in hemorrhagic and inflammatory processes and is frequently overexpressed in these pathologies. As there are different classes of MMPs, a central issue in the development of inhibitors of these enzymes is the search for selectivity. This project aims to analyze, using theoretical methods, the selectivity of semicarbazones (SC) and thiosemicarbazones (TSC), previously designed and synthesized by our group, in relation to MMP-9, aiming to design new candidates for selective inhibitors for this enzyme. Furthermore, the study seeks to analyze the pharmacokinetic properties of the most selective compounds using theoretical methods to determine their potential viability for human administration. Molecular docking studies were carried out with the structures of MMP-9 (PDB 6ESM) and MMP-1 (PDB 1HFC), with the Goldscore function. The complexes with the best poses were selected and subjected to geometric optimization via semi-empirical calculations with the PM7 method, adopting the protein in its entirety and in a continuous medium representing the solvent, to determine the interaction enthalpy of the compounds. The results show that ligands from the TSC group, in general, present a promising theoretical selectivity profile with human MMP-9, highlighting ligand 23b, which was used as the basis for a new series of more selective ligands. This approach resulted in relevant data on the interaction profile of TSC with the S1' sites of the MMP-1 and MMP- 9 enzymes, explored in rational planning aiming at selectivity. The BH series ligands proved to be potentially selective, with emphasis on the BH02a molecule, which showed better interaction performance and selectivity for MMP-9 than 23b. The modifications were found to be beneficial for the predicted ADMET properties.The BH series balances solubility and membrane penetration, with improvements in the predicted TSC absorption, although BH02a and BH02b show slightly reduced absorption due to high polarity. Theoretical biodisponibility results indicate potential for oral drugs without PAINS alerts. With broad predicted systemic distribution, especially the more lipophilic compounds in the BH series, they show potential for partitioning into lipid-rich regions such as the extracellular matrix. TSC were predicted as CYP1A2 inhibitors, with BH01a also inhibiting CYP2C19, suggesting potential drug interactions, but proposed modifications reduced the theoretical inhibition profile of CYP3A4. All compounds have low predicted T1/2 and renal clearance, suggesting more frequent administration, and show no potential cardiotoxicity. BH01a exhibits predicted genotoxicity, and there is a general tendency toward hepatotoxicity, with 25, BH01, and BH01a predicted as less hepatotoxic. TSC meet the theoretical range of the FDA's maximum daily dose, indicating safe administration, and compounds 23b, 23c, 25, and the BH series have low predicted acute toxicity, with BH01b, BH02, BH02a, and BH02b being the least toxic. | en |
dc.contributor.advisor1 | Sant'Anna, Carlos Mauricio Rabello de | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-1989-5038 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2087099684752643 | pt_BR |
dc.contributor.referee1 | Sant'Anna, Carlos Mauricio Rabello de | - |
dc.contributor.referee1ID | https://orcid.org/0000-0003-1989-5038 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/2087099684752643 | pt_BR |
dc.contributor.referee2 | Lacerda, Renata Barbosa | - |
dc.contributor.referee2ID | https://orcid.org/0000-0002-6185-3408 | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/2068820144272983 | pt_BR |
dc.contributor.referee3 | Albuquerque, Magaly Girão | - |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/0780841238637304 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/1539771701945764 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Química | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
dc.relation.references | AARDEMA, M. J. The holy grail in genetic toxicology: Follow‐up approaches for positive results in the Ames assay. Environmental and molecular mutagenesis, v. 54, n. 8, p. 617–620, 2013. ADJUTO, D. Mortes por dengue aumentam 50%; casos prováveis sobem 61,5%. 2020. Disponível em: https://www.cnnbrasil.com.br/saude/2020/03/30/mortes-por- dengue-aumentam-50-casos-provaveis-sobem-61-5. Acesso em 12 out. 2020. AHAMMAD, F. et al. Contemporary strategies and current trends in designing antiviral drugs against dengue fever via targeting host-based approaches. Microorganisms, v. 7, n. 9, p. 296, 2019. AITHAL, G. P.; KULKARNI, A. V. Drug-induced liver injury. Medicine (Abingdon, England: UK ed.), v. 51, n. 5, p. 342–346, 2023. ALCÁCER, L. Introdução à química quântica computacional. Rio de Janeiro: IST Press, 2007. ALI, J. et al. Revisiting the general solubility equation: in silico prediction of aqueous solubility incorporating the effect of topographical polar surface area. Journal of chemical information and modeling, v. 52, n. 2, p. 420–428, 2012. ALMEIDA, K. J.; COUTINHO, K.; ALMEIDA, W. B.; ROCHA, W. R.; CANUTO, S. A monte carlo quantum mechanical study of the solvatochromism of pyrimidine in water and in carbon tetrachloride. Physical Chemistry Chemical Physics, n. 3, p. 1583-1587, 2001. ALRAWASHDEH, S.; CHANDRASEKARAN, S.; BARAKAT, K. H. Structural analysis of hERG channel blockers and the implications for drug design. Journal of molecular graphics & modelling, v. 120, n. 108405, p. 108405, 2023. ALVES, V. M. et al. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicology and applied pharmacology, v. 284, n. 2, p. 262–272, 2015. ANAHP. Associação Nacional de Hospitais Privados. Dengue soma 14 mortes no Brasil em 2020 e levanta alerta. 2020. Disponível em: https://www.anahp.com.br/noticias/noticias-do-mercado/dengue-soma-14-mortes-no- brasil-em-2020-e-levanta- alerta/#:~:text=Autoridades%20no%20Brasil%20est%C3%A3o%20em,segundo%20o% 20Minist%C3%A9rio%20da%20Sa%C3%BAde. Acesso em 12 out. 2020. ANDRADE, C. Psychotropic drugs with long half-lives: Implications for drug discontinuation, occasional missed doses, dosing interval, and pregnancy planning. The journal of clinical psychiatry, v. 83, n. 4, 2022a. ANDRADE, C. The practical importance of half-life in psychopharmacology. The journal of clinical psychiatry, v. 83, n. 4, 2022b. 133 ANTUNES, A.; SANTOS, A. S.; SILVA, M. F.; RAGI, R.; BAGNATO, V. S. Método de Hartree-Fock: dois exemplos analiticamente solúveis. Revista Brasileira de Ensino de Física, v. 21, n. 2, 1999. APM. Associação Paulista de Medicina. Brasil se aproxima dos 780 mil casos de dengue em 2020. 2020. Disponível em http://associacaopaulistamedicina.org.br/noticia/brasil-se-aproxima-dos-780-mil-casos- de-dengue-em-2020. Acesso em 12 out. 2020. ASCENZI, P. et al. Clinical relevance of drug binding to plasma proteins. Journal of molecular structure, v. 1077, p. 4–13, 2014. ATKINS, P. W.; PAULA, J. de. Físico-Química. 7 ed., v. 2. Rio de Janeiro: LTC Editora, 2004. 620 p. ATUN, R. et al. Sustainable care for children with cancer: a Lancet Oncology Commission. The lancet oncology, v. 21, n. 4, p. e185–e224, 2020. BAELL, J. B.; HOLLOWAY, G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of medicinal chemistry, v. 53, n. 7, p. 2719–2740, 2010. BAELL, J. et al. Ask the Experts: Past, present and future of the rule of five. Future medicinal chemistry, v. 5, n. 7, p. 745–752, 2013. BANERJEE, S. et al. Exploration of structural alerts and fingerprints for novel anticancer therapeutics: a robust classification-QSAR dependent structural analysis of drug-like MMP-9 inhibitors. SAR and QSAR in environmental research, v. 34, n. 4, p. 299–319, 2023. BANSAL, D. L.; DHIMAN, D. A. Chronicity of Hepatotoxicity: A Review. EAS Journal of Medicine and Surgery, v. 4, n. 1, p. 6–14, 2022. BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal - 3.ed.: As bases moleculares da ação dos fármacos. Artmed Editora, 2014 BAXTER, C. A. et al. Flexible docking using Tabu search and an empirical estimate of binding affinity. Proteins: Structure, Function, and Bioinformatics, v. 33, n. 3, p. 367-382, 1998. BAYONA-SERRANO, J. D. et al. Replacement and parallel simplification of nonhomologous proteinases maintain venom phenotypes in rear-fanged snakes. Molecular biology and evolution, v. 37, n. 12, p. 3563–3575, 2020. BERALDO, H. Semicarbazonas e tiossemicarbazonas: o amplo perfil farmacológico e usos clínicos. Quimica nova, v. 27, n. 3, p. 461–471, 2004. BEZERRA, C. Glioma: o que é, graus, sintomas, causas e tratamento. Disponível em: <https://www.tuasaude.com/glioma/>. Acesso em: 8 dez. 2023. BLUNDELL, T. L. Metalloproteinase super–families and drug design. Nature Structural & Molecular Biology v. 1, n. 2, p. 73–75, fev. 1994. 134 BODE, W. et al. The Metzincin-Superfamily of Zinc-Peptidases. In: Intracellular Protein Catabolism. Boston, MA: Springer US, 1996. p. 1–11. BOETTIGER, D. C. et al. Cardiovascular disease among people living with HIV in Brazil. Tropical medicine & international health: TM & IH, v. 25, n. 7, p. 886–896, 2020. BRAILLON, A. Psychological symptoms and survival in patients with metastatic lung cancer: Smoking must be the first concern! Psycho-oncology, v. 29, n. 10, p. 1506–1506, 2020. BRASIL. Ministério da Saúde. Departamento de Informática do Sistema Único de Saúde do Brasil (DATASUS). Dengue - Notificações registradas no sistema de informação de agravos de notificação - Brasil. 2019. Disponível em: http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/denguebbr.def. Acesso em 12 out. 2020. BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Coordenação-geral de Desenvolvimento da Epidemiologia em Serviços. Guia de Vigilância em Saúde: volume 2. 1 ed. Brasília: Ministério da Saúde, 2017. 222 p. BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Caderno 9: Dengue Febre Amarela Febre do Nilo Ocidental. In: Guia de vigilância epidemiológica. 7 ed., Brasília: Ministério da Saúde, 2009. p. 1- 48. BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Diretoria Técnica de Gestão. Dengue: Diagnóstico e manejo clínico - Adulto e criança. 3 ed., Brasília: Ministério da Saúde, 2007. 28 p. BRITO, C. A. A. DE et al. A multicentre study of the clinical and epidemiological profile of inflammatory bowel disease in northeast Brazil. Clinical and experimental gastroenterology, v. 16, p. 87–99, 2023. BROWN, G. E.; KHETANI, S. R. Microfabrication of liver and heart tissues for drug development. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 373, n. 1750, p. 20170225, 2018. BRUNO, C. D. et al. Effect of lipophilicity on drug distribution and elimination: Influence of obesity. British journal of clinical pharmacology, v. 87, n. 8, p. 3197– 3205, 2021. BUENO, J. ADMETox: Bringing nanotechnology closer to Lipinski’s rule of five. In: Nanotechnology in the Life Sciences. Cham: Springer International Publishing, 2020. p. 61–74. CACHO-DÍAZ, B. et al. Vertigo in patients with cancer: Red flag symptoms. Journal of clinical neuroscience: official journal of the Neurosurgical Society of Australasia, v. 69, p. 175–178, 2019. CAO, D.-S. et al. In silico toxicity prediction of chemicals from EPA toxicity database by kernel fusion-based support vector machines. Chemometrics and intelligent 135 laboratory systems: an international journal sponsored by the Chemometrics Society, v. 146, p. 494–502, 2015. CARLSON, H. A. Protein flexibility and drug design: how to hit a moving target. Current Opinion in Chemical Biology, v. 6, n. 4, p. 447-452, 2002. CARLSON, H. A.; MCCAMMON, J. A. Accommodating protein flexibility in computational drug design. Molecular Pharmacology, v. 57, n. 2, p. 213-218, 2000. CARRILLO NORTE, J. A. Pharmacokinetic process: does the site of drug action? Excretion of drugs. Revista de enfermeria (Barcelona, Spain), v. 34, n. 9, p. 24–31, 2011. CARVALHO, I. et al. Introdução a Modelagem Molecular de Fármacos no Curso Experimental de Química Farmacêutica. Química Nova, v. 26, n. 3, p. 428-438, 2003. CASELLI, C. et al. Association of serum MMP9 with adverse features of plaque progression in patients with chronic coronary syndrome (CCS). European heart journal, v. 43, n. Supplement_2, 2022. CASSIDY, J. et al. Pharmacokinetics of high molecular weight agents. Cancer surveys, v. 17, p. 315–341, 1993. CASSOL, O. S. et al. Epidemiology of inflammatory bowel diseases in the state of Rio Grande do Sul, Brazil. World journal of gastroenterology: WJG, v. 28, n. 30, p. 4174–4181, 2022. CASTANEDA, M. et al. Mechanisms of cancer metastasis. Seminars in cancer biology, v. 87, p. 17–31, 2022 CAVALCANTI, F. S. Management of rheumatoid diseases: the Brazilian perspective. Rheumatology (Oxford, England), v. 49, n. 12, p. 2231–2232, 2010. CERNY, M. A.; SPRACKLIN, D. K.; OBACH, R. S. Human absorption, distribution, metabolism, and excretion studies: Origins, innovations, and importance. Drug metabolism and disposition: the biological fate of chemicals, v. 51, n. 6, p. 647–656, 2023. CHAE, S. et al. Longitudinal subgrouping of patients with cancer based on symptom experiences: An integrative review. Oncology Nursing Forum, 2022. CHALKHA, M. et al. Synthesis, characterization, DFT mechanistic study, antimicrobial activity, molecular modeling, and ADMET properties of novel pyrazole-isoxazoline hybrids. ACS omega, v. 7, n. 50, p. 46731–46744, 2022. CHATURVEDI, U. C. et al. Cytokine cascade in dengue hemorrhagic fever: implications for pathogenesis. FEMS Immunology & Medical Microbiology, v. 28, n. 3, p. 183-188, 2000. CHEN, T. Q. I. et al. Adverse drug reaction prediction and feature importance mining based on SIDER dataset. (F. Zhou, S. Ba, Eds.) Third International Conference on Machine Learning and Computer Application (ICMLCA 2022). Anais...SPIE, 2023. 136 CHENG, T. et al. Computation of Octanol−Water partition coefficients by guiding an additive model with knowledge. Journal of chemical information and modeling, v. 47, n. 6, p. 2140–2148, 2007. COATES-PARK, S. et al. Abstract 2354: Regulation of TIMPs through MMP dependent cleavage in breast cancer. Cancer research, v. 83, n. 7_Supplement, p. 2354–2354, 2023. CONTRERA, J. F. et al. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose. Regulatory toxicology and pharmacology: RTP, v. 40, n. 3, p. 185–206, 2004. CORTES-PACHECO, A. et al. Synthesis, antiinflammatory activity, and molecular docking studies of bisphosphonic esters as potential MMP-8 and MMP-9 inhibitors. Beilstein Journal of Organic Chemistry, v. 16, n. 1, p. 1277-1287, 2020. COUSSENS, L. M.; FINGLETON, B.; MATRISIAN, L. M. Matrix metalloproteinase inhibitors and cancer—trials and tribulations. Science (New York, N.Y.), v. 295, n. 5564, p. 2387–2392, 2002. CUNIASSE, P. et al. Future challenges facing the development of specific active-site- directed synthetic inhibitors of MMPs. Biochimie, v. 87, n. 3–4, p. 393–402, 2005. DA COSTA FILHO, P. A.; POPPI, R. J. Algoritmo genético em química. Química Nova, v. 22, n. 3, p. 405, 1999. DA COSTA, L. et al. VP1 crystal structure-guided exploration and optimization of 4,5- dimethoxybenzene-based inhibitors of rhinovirus 14 infection. European journal of medicinal chemistry, v. 115, p. 453–462, 2016. DA SILVA, C. P. M. et al. In silico prediction of ADMET/drug-likeness properties of bioactive phloroglucinols from Hypericum genus. Medicinal chemistry (Shariqah (United Arab Emirates)), v. 19, n. 10, p. 1002–1017, 2023. DA SILVA, P. G. B. et al. Exploratory study of the prevalence of high risk for coronary events in the brazilian population: evidence from two population-based surveys. Contribuciones a Las Ciencias Sociales, v. 16, n. 6, p. 4528–4549, 2023b. DAINA, A.; MICHIELIN, O.; ZOETE, V. ILOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of chemical information and modeling, v. 54, n. 12, p. 3284–3301, 2014. DAINA, A.; MICHIELIN, O.; ZOETE, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, v. 7, n. 1, 2017. DAINA, A.; ZOETE, V. A BOILED‐Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, v. 11, n. 11, p. 1117–1121, 2016. 137 DARABAN BOCANETI, F. et al. Expression of matrix metalloproteinases (MMPs)−2/-7/-9/-14 and tissue inhibitors of MMPs (TIMPs)−1/-2 in bovine cutaneous fibropapillomas associated with BPV-2 infection. Frontiers in veterinary science, v. 9, 2022. DAS, N. et al. The pharmacological TAILS of matrix metalloproteinases and their inhibitors. Pharmaceuticals (Basel, Switzerland), v. 14, n. 1, p. 31, 2020. DAS, N. R. et al. Machine-learning technique, QSAR and molecular dynamics for hERG–drug interactions. Journal of biomolecular structure & dynamics, p. 1–26, 2023. DE ARAÚJO FONSECA, L. G.; LIMA, I. N. D. F.; GUALDI, L. P. Characterization of Brazilian hospital admissions due to cardiovascular diseases: a longitudinal study. BMC cardiovascular disorders, v. 20, n. 1, 2020. de SOUZA et al. Dengue. In: BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Vigilância em saúde no Brasil 2003|2019: da criação da Secretaria de Vigilância em Saúde aos dias atuais. Boletim Epidemiológico. 2019. p. 12. Disponível em: https://portalarquivos2.saude.gov.br/images/pdf/2019/setembro/25/boletim- especial-21ago19-web.pdf. Acesso em 12 out. 2020. de SOUZA et al. Monitoramento dos casos de arboviroses urbanas transmitidas pelo Aedes aegypti (dengue, chikungunya e zika), semanas epidemiológicas 1 a 36, 2020. In: BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Boletim Epidemiológico, v.51, n. 38, 2020. p.14. Disponível em: https://portalarquivos2.saude.gov.br/images/pdf/2019/setembro/25/boletim-especial- 21ago19-web.pdf. Acesso em 12 out. 2020. DELANEY, J. S. ESOL: Estimating aqueous solubility directly from molecular structure. Journal of chemical information and computer sciences, v. 44, n. 3, p. 1000– 1005, 2004. DENARDO, G. L. et al. Effects of protein mass on the pharmacokinetics of monoclonal antibodies (MoAb). Clinical nuclear medicine, v. 9, n. 9, p. 37, 1984. DESESSO, J. M.; JACOBSON, C. F.; WILLIAMS, A. L. Anatomical and physiological parameters that influence gastrointestinal absorption. Encyclopedia of Drug Metabolism and Interactions. Wiley, 2012. DEWAR, M. J. S. et al. Development and use of quantum mechanical molecular model.76.AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, v. 107, n. 13, p. 3902–3909, 1985. DEWAR, M. J. S.; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Society of Chemistry, v. 99, n. 15, p. 4899–4907, 1977. DEWITTE, R. S.; SHAKHNOVICH, E. I. SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. Journal of the American Chemical Society, v. 118, n. 47, p. 11733-11744, 1996. 138 DI, L.; KERNS, E. H. Metabolic Stability. In: Drug-Like Properties. [s.l.] Elsevier, 2016. p. 161–194. DIEHL, H. P. et al. Organization of the intestinal mucosa and barriers to oral drug delivery. In: Nanotechnology for Oral Drug Delivery. [s.l.] Elsevier, 2020. p. 7–25. Discovery Studio 3.5, Accelrys Inc.: San Diego, CA, USA, 2012. Schrödinger Release 2024-1: Glide, Schrödinger, LLC, New York, NY, 2024. DJAKOVIĆ SEKULIĆ, T. et al. Chromatographic and in silico assessment of logP measures for new spirohydantoin derivatives with anticancer activity. Journal of chemometrics, v. 32, n. 4, 2018. DONG, J. et al. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of cheminformatics, v. 10, n. 1, 2018. ECE, A. Computer-aided drug design. BMC chemistry, v. 17, n. 1, 2023. ECKHARD, U. et al. Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14. Data in brief, v. 7, p. 299– 310, 2016. EGAN, W. J.; MERZ, K. M.; BALDWIN, J. J. Prediction of drug absorption using multivariate statistics. Journal of medicinal chemistry, v. 43, n. 21, p. 3867–3877, 2000. ELDRIDGE, M. D. et al. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, n. 5, p. 425-445, 1997. EL-SAYED, N. et al. The relation between the severity of pain and common symptoms in patients with metastatic cancer. Research in Oncology, v. 0, n. 0, p. 1–4, 2017. ERTL, P.; ROHDE, B.; SELZER, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of medicinal chemistry, v. 43, n. 20, p. 3714–3717, 2000. FABRE, B.; RAMOS, A.; DE PASCUAL-TERESA, B. Targeting matrix metalloproteinases: Exploring the dynamics of the S1′ pocket in the design of selective, small molecule inhibitors: Miniperspective. Journal of medicinal chemistry, v. 57, n. 24, p. 10205–10219, 2014. FALZONE, L. et al. MMP-9 overexpression is associated with intragenic hypermethylation of MMP9 gene in melanoma. Aging, v. 8, n. 5, p. 933–944, 2016. FARZANEH, E.; MOSTAFAZADEH, B.; SHAFAEEI, Y. Evaluation of clinical symptoms and associated factors in the drug-induced toxicity in patients referred to hospital: A cross- sectional study. Journal of physiology and pharmacology advances, v. 5, n. 1, p. 530, 2015. 139 FERNANDES, V. et al. Use of biological therapies in rheumatoid arthritis management: a comparison between the main worldwide and brazilian recommendations. Revista brasileira de reumatologia, v. 51, n. 3, p. 220–230, 2011. FERREIRA, F. et al. Structure-Based Discovery of Thiosemicarbazone Metalloproteinase Inhibitors for Hemorrhage Treatment in Snakebites. ACS Medicinal Chemistry Letters, v. 8, n. 11, p. 1136-1141, 2017. FINE, N. M. Insuficiência cardíaca (IC) (Insuficiência cardíaca congestiva). Manuais MSD. 2022. Disponível em: < https://www.msdmanuals.com/pt- br/casa/dist%C3%BArbios-do-cora%C3%A7%C3%A3o-e-dos-vasos- sangu%C3%ADneos/insufici%C3%AAncia-card%C3%ADaca/insufici%C3%AAncia- card%C3%ADaca-ic>. Acesso: 16 jul. 2023. FINI, M. E. et al. Regulation of matrix metalloproteinase gene expression. In: PARKS, W. C.; MECHAM, R. P. Matrix Metalloproteinases. New York: Academic, 1998. p 299–356. FURTADO, A. N. R. et al. Dengue e seus avanços. Revista Brasileira de Análises Clínicas, v. 51, n. 3, p. 196-201, 2019. Disponível em http://www.rbac.org.br/wp- content/uploads/2019/12/RBAC-vol-51-3-2019-ref-723.pdf. Acesso: 25 out. 2020. GALHARDI GASPARINI, R.; SASSAKI, L. Y.; SAAD-HOSSNE, R. Inflammatory bowel disease epidemiology in São Paulo State, Brazil. Clinical and experimental gastroenterology, v. 11, p. 423–429, 2018. GERONIKAKI, A. et al. Computer-aided drug design: An overview. In: Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development. [s.l.] Elsevier, 2023. p. 39–68. GHOSE, A. K.; VISWANADHAN, V. N.; WENDOLOSKI, J. J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of combinatorial chemistry, v. 1, n. 1, p. 55–68, 1999. GIALELI, C.; THEOCHARIS, A. D.; KARAMANOS, N. K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS Journal, v. 278, n. 1, p. 16-27, 2011. GILSON, M. K.; HONIG, B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins: Structure, Function, and Bioinformatics. v. 4, p. 7−18, 2004. GOHLKE, H.; HENDLICH, M.; KLEBE, G. Knowledge-based scoring function to predict protein-ligand interactions. Journal of Molecular Biology, v. 295, n. 2, p. 337- 356, 2000. GOMES, A. J. M. et al. Avaliação da qualidade da informação disponível sobre a dengue em portais brasileiros da rede mundial de computadores. Educação & Tecnologia, v. 18, n. 3, 2015. 140 GOPINATH, A.; WILSON, M. Factors affecting drug absorption and distribution. Anaesthesia & intensive care medicine, v. 21, n. 5, p. 223–228, 2020. GUEDES, I. A. et al. New machine learning and physics-based scoring functions for drug discovery. Scientific reports, v. 11, n. 1, 2021. GUERVILLE, F. et al. Does inflammation contribute to cancer incidence and mortality during aging? A conceptual review. Cancers, v. 14, n. 7, p. 1622, 2022. GUEX, N.; PEITSCH, M. C. SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. Electrophoresis, v. 18, n. 15, p. 2714- 2723, 1997. GUIDO, R.V.C.; ANDRICOPULO, A. D.; OLIVA, G. Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas. Estudos Avançados, v. 24, n. 70, p. 81-98, 2010. GUZMÁN, M. G. et al. Clinical and serologic study of Cuban children with dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Bulletin of the Pan American Health Organization (PAHO), v. 21, n. 3, p. 270-279, 1987. HALADE, G. V.; JIN, Y.-F.; LINDSEY, M. L. Matrix metalloproteinase (MMP)-9: A proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacology & therapeutics, v. 139, n. 1, p. 32–40, 2013. HAMMUD, K. K. ADMET and Druglikeness Calculations of Sarin, Soman, and Their Hypothetical Derivatives. Iraqi Journal of Industrial Research, v. 9, n. 3, p. 89–102, 2022. HANUMEGOWDA, U. M.; DAVIS, C. The Role of Drug Metabolism in Toxicity. Drug Metabolism Handbook: Concepts and Applications in Cancer Research, v. 2, p. 605-676, 2022. HAYAKAWA, T.; YAMASHITA, K. Structures and functions of tissue inhibitors of metalloproteinases. In: Extracellular Matrix and the Liver. [s.l.] Elsevier, 2003. p. 309–329. HAYUN, Hezi et al. Utilizing genetic code expansion to modify N-TIMP2 specificity towards MMP-2, MMP-9, and MMP-14. Scientific reports, v. 13, n. 1, p. 5186, 2023. HE, B. et al. A review of current in silico methods for repositioning drugs and chemical compounds. Frontiers in oncology, v. 11, 2021. HER, Z. et al. Severity of plasma leakage is associated with high levels of interferon gamma-inducible protein 10, hepatocyte growth factor, matrix metalloproteinase 2 (MMP-2), and MMP-9 during dengue virus infection. Journal of Infectious Diseases, v. 215, n. 1, p. 42-51, 2017. HIDALGO, M.; ECKHARDT, S. G. Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute, v. 93, n. 3, p. 178-193, 2001. 141 HOUSECROFT, C. E.; SHARPE, A. G. Inorganic Chemistry. 4. ed. London, England: Pearson Education, 2012. HU, J. et al. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nature reviews. Drug discovery, v. 6, n. 6, p. 480–498, 2007. IDA, Y. et al. Synthesis of quinolinomorphinan-4-ol derivatives as δ opioid receptor agonists. Bioorganic & medicinal chemistry, v. 20, n. 2, p. 949–961, 2012. IMAD, H. A. et al. Cytokine Expression in Dengue Fever and Dengue Hemorrhagic Fever Patients with Bleeding and Severe Hepatitis. The American Journal of Tropical Medicine and Hygiene, v. 102, n. 5, p. 943-950, 2020. INCERTI, M. et al. 4-Thiazolidinone derivatives as MMP inhibitors in tissue damage: synthesis, biological evaluation and docking studies. Molecules, v. 23, n. 2, p. 415, 2018. IZDEBSKA, M. et al. Downregulation of MMP-9 enhances the anti-migratory effect of cyclophosphamide in MDA-MB-231 and MCF-7 breast cancer cell lines. International journal of molecular sciences, v. 22, n. 23, p. 12783, 2021. JAIN, A. N. Scoring functions for protein-ligand docking. Current Protein and Peptide Science, v. 7, n. 5, p. 407-420, 2006. JENSEN, F. Introduction to Computational Chemistry. West Sussex: John Wiley & Sons, 1999, 429 p. JI W. et al. Antihypertensive effect and pharmacokinetics of low molecular mass potassium alginate. Journal of Sichuan University, v. 40, n. 4, p. 694–6, 703, 2009. JOHANSSON, N.; AHONEN, M.; KÄHÄRI, V.-M. Matrix metalloproteinases in tumor invasion. Cellular and Molecular Life Sciences, v. 57, n. 1, p. 5-15, 2000. JONES, G. et al. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, v. 267, n. 3, p. 727-748, 1997. KAMBERAJ, H. Molecular dynamics methods in simulations of macromolecules. In: Molecular Dynamics Simulations in Statistical Physics: Theory and Applications. Cham: Springer International Publishing, 2020. p. 189–280. KATZ, B. A. et al. Dissecting and designing inhibitor selectivity determinants at the S1 site using an artificial Ala190 protease (Ala190 uPA). Journal of molecular biology, v. 344, n. 2, p. 527–547, 2004. KAZANCIOĞLU, E. A. et al. Simple methanesulfonates are hydrolyzed by the sulfatase carbonic anhydrase activity. Journal of enzyme inhibition and medicinal chemistry, v. 27, n. 6, p. 880–885, 2012. KENNY, P. W. Hydrogen-bond donors in drug design. Journal of medicinal chemistry, v. 65, n. 21, p. 14261–14275, 2022. 142 KERNS, E. H.; DI, L. Drug-like properties: Concepts, structure design and methods: From ADME to toxicity optimization. San Diego, CA: Academic Press, 2008. KICMAN, A. et al. The utility of metalloprotienase 9 (MMP-9) in diagnostics of ovarian cancer. Diagnostyka Laboratoryjna, v. 57, n. 3, p. 179–187, 2022. KITCHEN, D. B. et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, v. 3, n. 11, p. 935-949, 2004. KLAMT, A.; SCHÜÜRMANN, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, v. 2, n. 5, p. 799–805, 1993. KOŁODZIEJCZYK, J.; PONCZEK, M. B. Reviews The role of fibrinogen, fibrin and fibrin(ogen) degradation products (FDPs) in tumor progression. Contemporary oncology (Poznan, Poland), v. 2, p. 113–119, 2013. KORB, O.; STUTZLE, T.; EXNER, T. E. Empirical scoring functions for advanced protein− ligand docking with PLANTS. Journal of Chemical Information and Modeling, v. 49, n. 1, p. 84-96, 2009. KUBELKA, C. F. et al. Metalloproteinases are produced during dengue fever and MMP9 is associated with severity. Journal of Infection, v. 61, n. 6, p. 501-505, 2010. KUNTZ, I. D. et al. A geometric approach to macromolecule-ligand interactions. Journal of molecular biology, v. 161, n. 2, p. 269-288, 1982. KURUCOVÁ, R. et al. Occurrence of annoying symptoms of patients with cancer. Central European Journal of Nursing and Midwifery, v. 6, n. 1, p. 185–190, 2015. KUURANNE, T. Phase-II metabolism of androgens and its relevance for doping control analysis. In: Handbook of Experimental Pharmacology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. p. 65–75. LAMBERT, E. et al. TIMPs as multifacial proteins. Critical reviews in oncology/hematology, v. 49, n. 3, p. 187–198, 2004. LAZAROFF, C. et al. Abstract 3837: The physiological relevance of TIMP dimer formation. Cancer research, v. 82, n. 12, p. 3837–3837, 2022. LEACH, A. R. Molecular Modeling: Principles and Applications. 2 ed. New Jersey: Prentice Hall, 2001. 744 p. LEI, T. et al. ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. Journal of cheminformatics, v. 8, n. 1, 2016. LENSKAYA, K. et al. Drug development by in silico methods. Georgian medical news, n. 332, p. 103–108, 2022. 143 LEVI, M.; VAN DER POLL, T. Two-way interactions between inflammation and coagulation. Trends in Cardiovascular Medicine, v. 15, n. 7, p. 254-259, 2005. LEVINE, I. N. Quantum chemistry: United States edition. 7. ed., Upper Saddle River, NJ: Pearson, 2013. LI, G. et al. DENV NS1 and MMP-9 cooperate to induce vascular leakage by altering endothelial cell adhesion and tight junction. bioRxiv, 2020. Disponível em: https://www.biorxiv.org/content/10.1101/2020.05.13.094136v1.abstract. Acesso em 26 out. 2020. LI, L. et al. On the Dielectric “Constant” of Proteins: Smooth Dielectric Function for Macromolecular Modeling and Its Implementation in DelPhi. Journal of Chemical Theory Computation, v. 9, p. 2126−2136, 2013. LIPINSKI, C. A. et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, v. 23, n. 1–3, p. 3–25, 1997. LISKOVA, A. et al. Implications of flavonoids as potential modulators of cancer neovascularity. Journal of cancer research and clinical oncology, v. 146, n. 12, p. 3079–3096, 2020. LIU, Y. et al. Increased serum matrix metalloproteinase-9 levels are associated with anti-Jo1 but not anti-MDA5 in myositis patients. Aging and disease, v. 10, n. 4, p. 746, 2019. LOPES, N.; NOZAWA, C.; LINHARES, R. E. C. Características gerais e epidemiologia dos arbovírus emergentes no Brasil. Revista Pan-Amazônica de Saúde, v. 5, n. 3, p. 10-10, 2014. LUPLERDLOP, N. et al. Dengue‐virus‐infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO reports, v. 7, n. 11, p. 1176-1181, 2006. LUPLERTLOP, N.; MISSÉ, D. MMP cellular responses to dengue virus infection- induced vascular leakage. Japanese Journal of Infectious Diseases, v. 61, n. 4, p. 298- 301, 2008. MAGNASCO, V. Elementary molecular quantum mechanics: Mathematical methods and applications. 2. ed. London, England: Elsevier Science, 2013. MANOJLOVIĆ, Z. et al. Changes in plasma proteins and drug distribution in kidney and liver diseases. Lijecnicki vjesnik, v. 115, n. 11–12, p. 366–369, 1993. MARTÍNEZ-SENA, T. et al. Metabolomics-based strategy to assess drug hepatotoxicity and uncover the mechanisms of hepatotoxicity involved. Archives of toxicology, v. 97, n. 6, p. 1723–1738, 2023. MASKOS, K. et al. Flexibility and variability of TIMP binding: X-ray structure of the complex between collagenase-3/MMP-13 and TIMP-2. Worldwide Protein Data 144 Bank, 13 Mar. 2007. Disponível em: <http://dx.doi.org/10.2210/pdb2e2d/pdb>. Acesso: 16 jul. 2023. MAZZINI, F.; NETSCHER, T.; SALVADORI, P. Efficient synthesis of vitamin E amines. European journal of organic chemistry, v. 2009, n. 13, p. 2063–2068, 2009. MCGEEHAN, G. et al. Sequencing and characterization of the soybean leaf metalloproteinase: Structural and functional similarity to the matrix metalloproteinase family. Plant physiology, v. 99, n. 3, p. 1179–1183, 1992. MEI, K. et al. The role of intestinal immune cells and matrix metalloproteinases in inflammatory bowel disease. Frontiers in immunology, v. 13, 2023. MEKKANTI, M. R.; RINKU, M. A review on computer aided drug design (caad) and it’s implications in drug discovery and development process. International Journal of Health Care and Biological Sciences, v. 1, n. 1, p. 27–33, 2020. MOOIJ, W. T. M.; VERDONK, M. L. General and targeted statistical potentials for protein-ligand interactions. Proteins: Structure, Function, and Bioinformatics v. 61, n. 2, p. 272–287, 2005. MORGON, N. H.; COUTINHO, K. Métodos de química teórica e modelagem molecular. 1. ed. São Paulo: Editora e Livraria da Física, 2007. MORIGUCHI, I. et al. Comparison of reliability of log P values for drugs calculated by several methods. Chemical & pharmaceutical bulletin, v. 42, n. 4, p. 976–978, 1994. MORIGUCHI, I. et al. Simple method of calculating octanol/water partition coefficient. Chemical & pharmaceutical bulletin, v. 40, n. 1, p. 127–130, 1992. MOURÃO-JÚNIOR, C. A.; SOUZA, L.S. Fisiopatologia do Choque. HU Revista - Juiz de Fora, v. 40, n. 1 e 2, p. 75-80, 2014. MUEGGE, I.; MARTIN, Y. C. A general and fast scoring function for protein− ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, v. 42, n. 5, p. 791-804, 1999. MULLINER, D. et al. Computational models for human and animal hepatotoxicity with a global application scope. Chemical research in toxicology, v. 29, n. 5, p. 757–767, 2016. NAEEM, S. et al. In-silico determination of pKa and logp values of some isoniazid synthetic analogues using Marvin software. Pakistan journal of pharmaceutical sciences, v. 33, n. 2, p. 715–719, 2020. NAFEA, A. A.; OMAR, N.; AL-QFAIL, Z. M. Artificial neural network and latent semantic analysis for adverse drug reaction detection. Baghdad Science Journal, 2023. NAGARAJAN, D. et al. A simple method to determine the elimination half-life of drugs displaying noncumulative toxicity. bioRxiv, p. 761585, 2019. doi: https://doi.org/10.1101/761585. 145 NAGASE, H. et al. Engineering of selective TIMPs. Annals of the New York Academy of Sciences, v. 878, n. 1, p. 1–11, 1999. NAGASE, H.; MURPHY, G. Tailoring TIMPs for Selective Metalloproteinase Inhibition. In: The Cancer Degradome. New York, NY: Springer New York, 2008. p. 787–810. NAGASE, H.; VISSE, R.; MURPHY, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, v. 69, n. 3, p. 562-573, 2006. NASSAR, A. F. Chemical Structural Alert and Reactive Metabolite Concept as Applied in Medicinal Chemistry to Minimize the Toxicity of Drug Candidates. Drug Metabolism Handbook: Concepts and Applications in Cancer Research, v. 1, p. 345-372, 2022. NGUYEN, H. N.; HUANG, X.; BUCHWALD, S. L. The first general palladium catalyst for the Suzuki−Miyaura and carbonyl enolate coupling of aryl arenesulfonates. Journal of the American Chemical Society, v. 125, n. 39, p. 11818– 11819, 2003. NOCHEBUENA, J.; NASEEM-KHAN, S.; CISNEROS, G. A. Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials. Wiley interdisciplinary reviews. Computational molecular science, v. 11, n. 4, 2021. NUTI, E. et al. Crystal structure of MMP9 in complex with inhibitor BE4. Worldwide Protein Data Bank, 16 May 2018. Disponível em: http://dx.doi.org/10.2210/pdb6esm/pdb. Acesso: 23 nov. 2023. OLIVEIRA, F. G. Estudo do perfil de interação de fosfodiesterase 4 com seus inibidores. 2005. Dissertação (Mestrado) – Instituto de Química, Universidade Federal do Rio de Janeiro, 2005. OLIVEIRA, R. A. S. et al. Serum cytokine/chemokine profiles in patients with dengue fever (DF) and dengue hemorrhagic fever (FHD) by using protein array. Journal of Clinical Virology, v. 89, p. 39-45, 2017. OMRAN, Z.; RAUCH, C. Acid-mediated Lipinski’s second rule: application to drug design and targeting in cancer. European biophysics journal: EBJ, v. 43, n. 4–5, p. 199–206, 2014. OPAS/OMS. Organização Pan-Americana da Saúde. Brasil. Dengue. 2020. Disponível em: https://www.paho.org/bra/index.php?option=com_joomlabook&view=topic&id=1. Acesso em 12 out. 2020. ORVOSH, D.; DAVIS, L. Using a genetic algorithm to optimize problems with feasibility constraints. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence. IEEE, 1994. p. 548-553. 146 PANYAM, J.; PATIL, Y. Distribution: Movement of drugs through the body. Pharmaceutical Sciences Encyclopedia. Wiley, 2010. PDB101. Disponível em: <https://pdb101.rcsb.org/>. Acesso em: 17 nov. 2022. PESARO, A. E.; D’AMICO, E.; ARANHA, L. F. C. Dengue: manifestações cardíacas e implicações na terapêutica antitrombótica. Arquivos Brasileiros de Cardiologia, v. 89, n. 2, p. e12-e15, 2007. PILLERON, S. et al. Estimated global cancer incidence in the oldest adults in 2018 and projections to 2050. International journal of cancer. Journal international du cancer, v. 148, n. 3, p. 601–608, 2021. PLIUSHCHEUSKAYA, P.; KÜNZE, G. Recent advances in computer-aided structure- based drug design on ion channels. International journal of molecular sciences, v. 24, n. 11, p. 9226, 2023. PODLOGAR, B.; MUEGGE, I. “Holistic” In silico methods to estimate the systemic and CNS bioavail-abilities of potential chemotherapeutic agents. Current topics in medicinal chemistry, v. 1, n. 4, p. 257–275, 2001. PRAKASH, C. et al. Nuclear receptors in drug metabolism, drug response and drug interactions. Nuclear receptor research, v. 2, 2015. QUARESMA, A. B.; KAPLAN, G. G.; KOTZE, P. G. The globalization of inflammatory bowel disease: The incidence and prevalence of inflammatory bowel disease in Brazil. Current opinion in gastroenterology, v. 35, n. 4, p. 259–264, 2019. RAMELLA, M. et al. Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA). American journal of translational research, v. 9, n. 12, p. 5485–5495, 2017. RANG, H. P. et al. Rang & Dale’s Pharmacology. 8. ed. London, England: Churchill Livingstone, 2015. RAUT, S. et al. Lipoproteins for therapeutic delivery: recent advances and future opportunities. Therapeutic delivery, v. 9, n. 4, p. 257–268, 2018. REEVES, C. R. Modern Heuristic Techniques for Combinatorial Problems. London: Mc Graw-Hill, 1995. RIVERA-LUNA, R. Where are we Standing with Childhood Cancer in Middle- and Low-Income Countries? Open Access Journal of Biomedical Science, v. 3, n. 2, 2020. ROCHA, G. B. et al. RM1: a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. Journal of Computational Chemistry, v. 27, n. 10, p. 1101-1111, 2006. ROGERS, D. W. Computational Chemistry Using the PC. 3 ed. Hoboken, NJ: John Wiley & Sons Inc., 2003. 349p. 147 ROHDE, L. E. P.; HENNEKENS, C. H.; RIDKER, P. M. Survey of C-reactive protein and cardiovascular risk factors in apparently healthy men. The American journal of cardiology, v. 84, n. 9, p. 1018–1022, 1999. ROHINI; AKBAR, R.; KANUNGO, B. K. Molecular mechanics approach for design and conformational studies of macrocyclic ligands. AIP Conference Proceedings. Anais...AIP Publishing LLC, 2015. ROWSELL, S. et al. Crystal structure of human MMP9 in complex with a reverse hydroxamate inhibitor. Journal of Molecular Biology, v. 319, n. 1, p. 173-181, 2002. SANGUINETTI, M. C.; MITCHESON, J. S. Predicting drug–hERG channel interactions that cause acquired long QT syndrome. Trends in pharmacological sciences, v. 26, n. 3, p. 119–124, 2005. SANT’ANNA, C. M. R. Métodos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdução. Revista Virtual de Química, v. 1, n. 1, p. 49- 57, 2009. SANT’ANNA, C. M. R. Uma introdução a modelagem molecular aplicada à química medicinal. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: As bases moleculares da ação dos fármacos. 3 ed., Artmed:Porto Alegre, 2015. cap. 5. SANT'ANNA, C. M. R. Glossário de termos usados no planejamento de fármacos (recomendações da IUPAC para 1997). Química Nova, v. 25, n. 3, p. 505-512, 2002. SAYLE, R.; BISSELL, A. RasMol: A program for fast realistic rendering of molecular structures with shadows. In: Proceedings of the 10th Eurographics UK. 1992. p. 7-9. SCANNEVIN, R. H. et al. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation. Journal of Biological Chemistry, v. 292, n. 43, p. 17963-17974, 2017. SCOTTI, L. et al. Modelagem molecular aplicada ao desenvolvimento de moléculas com atividade antioxidante visando ao uso cosmético. Revista Brasileira de Ciências Farmacêuticas, v. 43, n. 2, p. 153-166, 2007. SECRETARIA DA SAÚDE DO ESTADO DO PARANÁ. Câncer. Disponível em: <https://www.saude.pr.gov.br/Pagina/Cancer>. Acesso em: 23 nov. 2023. SHAIK, S. et al. P-Glycoprotein Inhibitors: A Review. International journal of pharmaceutical sciences review and research, p. 86–101, 2022. SHCHULKIN, A. V. et al. Cells of the Caco-2 line as a model for studying the absorption of medicinal substances. Experimental & clinical gastroenterology, n. 10, p. 63–69, 2023. SHIPLEY, J. M. et al. The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases role of the fibronectin type II-like repeats. Journal of Biological Chemistry, v. 271, n. 8, p. 4335-4341, 1996. SILICOS-It. Disponível em: <https://www.silicos-it.be/>. Acesso em: 17 nov. 2023. 148 SILVA, G. R. Estudo da reativação da acetilcolinesterase inibida por organofosforados: análise conformacional da molécula de HI-6 e simulação da reação de desfosforilação. 2005. Dissertação (Mestrado), Instituto Militar de Engenharia, 2005. SINGH, D. et al. Multifaceted role of matrix metalloproteinases (MMPs). Frontiers in Molecular Biosciences, v. 2, p. 19, 2015. SKILES, J. W.; GONNELLA, N. C.; JENG, A. Y. The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Current Medicinal Chemistry, v. 11, n. 22, p. 2911-2977, 2004. SMITH, D. A. et al. Relevance of half-life in drug design: Miniperspective. Journal of medicinal chemistry, v. 61, n. 10, p. 4273–4282, 2018. SOLEIMANI, M. A. et al. Predictors of quality of life in patients with heart disease. Journal of religion and health, v. 59, n. 4, p. 2135–2148, 2020. SOLES, A. et al. Extracellular matrix regulation in physiology and in brain disease. International journal of molecular sciences, v. 24, n. 8, p. 7049, 2023. SONNENSCHEIN, C.; SOTO, A. M. Cancer metastases: So close and so far. Journal of the National Cancer Institute, v. 107, n. 11, p. djv236, 2015. SOUZA, R. A. C.; OLIVEIRA, C. G. Investigação teórica por Docking molecular e parâmetros farmacocinéticos do potencial antibacteriano de complexos de manganês(II) com tiossemicarbazonas. Open Science Research II, v. 2, 2022. SPINALE, F. G.; SAPP, A. A. Cardiovascular risk and matrix metalloproteinase polymorphisms: Not just a simple substitution. Circulation. Cardiovascular genetics, v. 10, n. 6, 2017. SPURLINO, J. C. et al. 1.56 Å structure of mature truncated human fibroblast collagenase. Proteins, v. 19, n. 2, p. 98–109, 1994. STEWART, J. J. MOPAC 2000.00 Manual. Tokyo: Fujitsu Limited, 1999. STEWART, J. J. P. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. International journal of quantum chemistry, v. 58, n. 2, p. 133–146, 1996. STEWART, J. J. P. Optimization of parameters for semi-empirical methods. Journal of Computational Chemistry, Colorado Springs, Colorado, v. 10, n. 2, p. 221- 264, 1989. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and applications to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1-32, 2013. 149 STEWART, J. J. P.; STEWART, A. C. A semiempirical method optimized for modeling proteins. Journal of molecular modeling, v. 29, n. 9, 2023. SUKMAWATI, D. D.; SAPUTRA, E.; MERATI, T. P. Elevated serum levels of matrix metalloproteinase-9 (MMP-9) in severe dengue virus infection at Sanglah Hospital Denpasar, Bali-Indonesia. Bali Medical Journal, v. 5, n. 1, 2016. TANDON, A.; SINHA, S. Structural insights into the binding of MMP9 inhibitors. Bioinformation, v. 5, n. 8, p. 310, 2011. TARKO, L. QSPR for LogP using molecules without oxygen and nitrogen and quantum mechanics descriptors. Journal of the Iranian Chemical Society, v. 12, n. 2, p. 359– 365, 2015. THIEL, W.; VOITYUK, A. A. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, v. 81, n. 6, p. 391–404, 1992a. TIMERMAN, A.; NUNES, E.; LUZ, K. Dengue no Brasil: doença urbana. 1 ed., São Paulo: Limay, 2012. 190 p. VALLIANATOU, T.; TSOPELAS, F.; TSANTILI-KAKOULIDOU, A. Modeling ADMET properties based on biomimetic chromatographic data. In: Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development. [s.l.] Elsevier, 2023. p. 573–607. VAN DEN STEEN, P. E. et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical Reviews in Biochemistry and Molecular Biology, v. 37, n. 6, p. 375-536, 2002. VAN HERCK, Y. et al. Is cancer biology different in older patients? The Lancet. Healthy longevity, v. 2, n. 10, p. e663–e677, 2021. VAN TRAN, T. T.; TAYARA, H.; CHONG, K. T. Recent studies of artificial intelligence on in silico drug distribution prediction. International journal of molecular sciences, v. 24, n. 3, p. 1815, 2023. VANDENBROUCKE, R. E.; LIBERT, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nature reviews. Drug discovery, v. 13, n. 12, p. 904– 927, 2014. VANDOOREN, J.; VAN DEN STEEN, P. E.; OPDENAKKER, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Critical Reviews in Biochemistry and Molecular Biology, v. 48, n. 3, p. 222- 272, 2013. VEBER, D. F. et al. Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry, v. 45, n. 12, p. 2615–2623, 2002. VELASQUEZ, M. et al. Characterization of active MMP9 in chronic inflammatory diseases using a novel anti-MMP9 antibody. Antibodies (Basel, Switzerland), v. 12, n. 1, p. 9, 2023. 150 VERDONK, M. L. et al. Improved protein–ligand docking using GOLD. Proteins: Structure, Function and Bioinformatics, v. 52, n. 4, p. 609-623, 2003. VICTORIA, C. R.; SASSAK, L. Y.; NUNES, H. R. DE C. Incidence and prevalence rates of inflammatory bowel diseases, in midwestern of São Paulo State, Brazil. Arquivos de gastroenterologia, v. 46, n. 1, p. 20–25, 2009. VIETH, M. et al. Characteristic physical properties and structural fragments of marketed oral drugs. Journal of medicinal chemistry, v. 47, n. 1, p. 224–232, 2004. VIJAYAKUMAR, V.; RADHAKRISHNAN, N.; VASANTHA-SRINIVASAN, P. molecular docking analysis of triazole analogues as inhibitors of human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and MMP 9) and tyrosinase. Research Journal of Pharmacy and Technology, v. 13, n. 6, p. 2777-2783, 2020. VILLELA, P. B.; ANDRADE, L. F. Public health programs and cardiovascular diseases. International Journal of Cardiovascular Sciences, v. 34, n. 5, p. 53–54, 2021. VORAPHANI, N. et al. Matrix Metalloproteinase-9(MMP-9) in Children with Dengue Virus Infection. Japanese Journal of Infectious Diseases, v. 63, n. 5, p. 346-348, 2010. VRAKA, C. et al. Log P, a yesterday’s value?. Nuclear medicine and biology, v. 50, p. 1–10, 2017. WALLACE, G. C.; RAMSDEN, D. B.; GRANT, M. H. General principles of drug distribution. Encyclopedia of Drug Metabolism and Interactions. Wiley, 2012. WAN, S. et al. Autoimmunity in dengue pathogenesis. Journal of the Formosan Medical Association, v. 112, n. 1, p. 3-11, 2013. WANG, N.-N. et al. ADME properties evaluation in drug discovery: Prediction of caco- 2 cell permeability using a combination of NSGA-II and boosting. Journal of chemical information and modeling, v. 56, n. 4, p. 763–773, 2016. WANG, N.-N. et al. Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC advances, v. 7, n. 31, p. 19007–19018, 2017. WEBB, R. E.; KIM, Y. T. The urinary excretion of amino acid conjugates in free living adult males. Toxicology and industrial health, v. 7, n. 3, p. 119–124, 1991. WEINER, I. M. Excretion of drugs by the kidney. In: Concepts in Biochemical Pharmacology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1971. p. 328–353. WHO. World Health Organization. Cancer. 2022. Disponível em: <https://www.who.int/news-room/fact-sheets/detail/cancer>. Acesso em: 23 nov. 2023. 151 WHO. World Health Organization. Cardiovascular diseases (CVDs). 2021. Disponível em: <https://www.who.int/news-room/fact-sheets/detail/cardiovascular- diseases-(cvds)>. Acesso em: 23 nov. 2023. WHO. World Health Organization. Comprehensive guidelines for prevention and control of dengue and dengue haemorrhagic fever. Revised and expanded edition. Índia: World Health Organization, 2011. 196 p. Disponível em: https://apps.who.int/iris/handle/10665/204894. Acesso em 12 out. 2020. WHO. World Health Organization. Dengue and severe dengue. Disponível em: <https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue>. Acesso em: 12 nov. 2023. WILDMAN, S. A.; CRIPPEN, G. M. Prediction of physicochemical parameters by atomic contributions. Journal of chemical information and computer sciences, v. 39, n. 5, p. 868–873, 1999. WU, B. et al. MMP9 in pan-cancer and computational study to screen MMP9 inhibitors. 2023. Disponível em: <http://dx.doi.org/10.21203/rs.3.rs-2589286/v1>. WU, G. et al. Detailed analysis of grid‐based molecular docking: A case study of CDOCKER—A CHARMm‐based MD docking algorithm. Journal of computational chemistry, v. 24, n. 13, p. 1549–1562, 2003. WU, Y. et al. Decoding the complexity of metastasis. Cancer biology & medicine, v. 19, n. 3, p. 1–5, 2022. XIANG, M. et al. Computer-Aided Drug Design: Lead Discovery and Optimization. Combinatory Chemistry & High Throughput Screening, v. 15, p. 328-337, 2012. XU, C. et al. In silico Prediction of Chemical Ames Mutagenicity. Journal of chemical information and modeling, v. 52, n. 11, p. 2840–2847, 2012. XU, Y. et al. Deep learning for drug-induced liver injury. Journal of chemical information and modeling, v. 55, n. 10, p. 2085–2093, 2015. XUE, Q. et al. High expression of MMP9 in glioma affects cell proliferation and is associated with patient survival rates. Oncology letters, v. 13, n. 3, p. 1325–1330, 2017. YABLUCHANSKIY, A. et al. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda, Md.), v. 28, n. 6, p. 391–403, 2013. YANG, C.; CHEN, E. A.; ZHANG, Y. Protein–ligand docking in the machine-learning era. Molecules (Basel, Switzerland), v. 27, n. 14, p. 4568, 2022. YOUNG, D. C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems. 1. ed. [S.l.]: John Wiley & Sons, Inc, v. 1, 2001. ZENG, Y. et al. Prognostic and immunological roles of MMP-9 in pan-cancer. BioMed research international, v. 2022, p. 1–32, 2022. 152 ZHANG, Y. et al. How motility can enhance mass transfer and absorption in the duodenum: Taking the structure of the villi into account. Chemical engineering science, v. 213, n. 115406, p. 115406, 2020. ZHANG, Z. et al. A systematic survey in geometric deep learning for structure-based drug design. Cornell University, Quantitative Methods (q-bio.QM), arXiv preprint arXiv:2306.11768, 2023. ZHU, H. et al. Quantitative Structure−Activity relationship modeling of rat acute toxicity by oral exposure. Chemical research in toxicology, v. 22, n. 12, p. 1913–1921, 2009. ZUBAIR, H.; AHMAD, A. Cancer Metastasis. In: Introduction to Cancer Metastasis. [s.l.] Elsevier, 2017. p. 3–12. | pt_BR |
dc.subject.cnpq | Química | pt_BR |
Appears in Collections: | Mestrado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.