Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/18650
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jesus, Luiz Carlos de | - |
dc.date.accessioned | 2024-10-11T12:51:28Z | - |
dc.date.available | 2024-10-11T12:51:28Z | - |
dc.date.issued | 2022-04-28 | - |
dc.identifier.citation | JESUS, Luiz Carlos de. Classificação de publicações em humanidades digitais apoiada em abordagem taxonômica. 2022. 90 f. Dissertação (Mestrado em Humanidades Digitais) - Instituto Multidisciplinar de Nova Iguaçu, Universidade Federal Rural do Rio de Janeiro, Nova Iguaçu, 2022. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/18650 | - |
dc.description.abstract | As publicações em periódicos científicos e em conferências especializadas desempenham o papel primordial de expressar os temas de interesse de autores e leitores em um de- terminado campo do conhecimento. Nesse sentido, o esforço de organizar a produção científica é vital para o avanço da difusão dos conteúdos produzidos de forma inequí- voca, rápida e segura. Considerando a atual inundação informacional provocada pelas ferramentas digitais, a questão da classificação automatizada se torna premente e deve obrigatoriamente ser abordada em todo repositório ou plataforma digital de publicações científicas. Dentre outros aspectos, sobressai-se o uso de uma taxonomia pela sua capaci- dade de adicionar um elemento semântico hierárquico ao ato de classificar ou categorizar conceitos e informações específicas que definem o domínio de um campo do conhecimento. Particularmente no campo das Humanidades Digitais, a cultura epistemológica que vem sendo construída pela sua crescente comunidade tem feito nascer e crescer projetos in- ternacionais que abordam a questão em um ambiente com desafios adicionais devido ao seu perfil fortemente interdisciplinar. O objetivo desta dissertação é usar ferramentas computacionais de análise por tópicos de textos para desenvolver um método auxiliar de classificação léxica de publicações apoiado em uma taxonomia denominada TaDiRAH – Taxonomy of Digital Research Activities in the Humanities. O método proposto pode ser visto como uma combinação da abordagem semântica da taxonomia com a abordagem léxica da análise automatizada de textos. Suas categorias são de uso livre e prático. No entanto, não é incomum, e até esperado pelo perfil interdisciplinar, que uma publicação possa ser classificada em diferentes categorias de níveis diferentes ou de mesmo nível da taxonomia, criando assim sobreposições. Somado a isso, a quantidade de publicações já classificadas artesanalmente pela comunidade científica ainda é relativamente pequena e, sobretudo, extremamente desbalanceada entre as categorias da taxonomia. Esses dois aspectos que caracterizam a amostragem disponível tornam a tarefa de classificar com fi- dedignidade publicações em Humanidades Digitais particularmente difícil. Propomos um método que combina modelos de classificação bayesianos da literatura com abordagens originais para lidar com sobreposições e desbalanceamento entre as categorias da taxo- nomia. Resultados de experimentos computacionais realizados com um universo de 443 publicações mostraram que as abordagens propostas são, de fato, capazes de melhorar profundamente o desempenho dos métodos de classificação empregados. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | Humanidades Digitais | pt_BR |
dc.subject | Processamento de Linguagem Natural | pt_BR |
dc.subject | Classificação de Textos | pt_BR |
dc.subject | Taxonomia | pt_BR |
dc.subject | Digital Humanities | pt_BR |
dc.subject | Natural Language Processing | pt_BR |
dc.subject | Text Classification | pt_BR |
dc.subject | Taxonomy | pt_BR |
dc.title | Classificação de publicações em Humanidades Digitais apoiada em abordagem taxonômica | pt_BR |
dc.title.alternative | Taxonomic-based digital humanities publications classification | en |
dc.type | Dissertação | pt_BR |
dc.description.abstractOther | Publications in scientific journals and in specialized conferences play a key role in ex- pressing the topics of interest to authors and readers in a given field of knowledge. In this sense, the effort to organize scientific production is vital for the advancement of the dissemination of contents produced in an unequivocal, fast and safe way. Considering the current information flood caused by digital tools, the issue of automated classification becomes urgent and must be addressed in every repository or digital platform of scien- tific publications. Among other aspects, the use of a taxonomy stands out for its ability to add a hierarchical semantic element to the act of classifying or categorizing concepts and specific information that define the domain of a field of knowledge. Particularly in the field of Digital Humanities, the epistemological culture that has been built by its growing community has given rise to international projects that address the issue in an environment with additional challenges due to its strongly interdisciplinary profile. The objective of this dissertation is to use computational tools for analysis by topics of texts to develop an auxiliary method of lexical classification of publications supported by a taxonomy called TaDiRAH – Taxonomy of Digital Research Activities in the Humanities. The proposed method can be seen as a combination of the semantic approach of taxonomy with the lexical approach of automated text analysis. Its categories are free and practical. However, it is not uncommon, and even expected by the interdisciplinary profile, that a publication can be classified into different categories of different levels or the same level of the taxonomy, thus creating overlaps. In addition, the number of publications already classified by the scientific community is still relatively small and, above all, extremely unbalanced between the taxonomy categories. These two aspects that characterize the available sample make the task of reliably classifying publications in Digital Humanities particularly difficult. We propose a method that combines Bayesian classification models from the literature with original approaches to deal with overlaps and imbalances between taxonomy categories. Results of computational experiments carried out with a universe of 443 publications showed that the proposed approaches are, in fact, capable of profoundly improving the performance of the classification methods use. | en |
dc.contributor.advisor1 | Corrêa, Ricardo Cordeiro | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-5618-9541 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8599181647215929 | pt_BR |
dc.contributor.referee1 | Corrêa, Ricardo Cordeiro | - |
dc.contributor.referee1ID | https://orcid.org/0000-0001-5618-9541 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/8599181647215929 | pt_BR |
dc.contributor.referee2 | Fortes, Alexandre | - |
dc.contributor.referee2ID | https://orcid.org/0000-0002-3728-2318 | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/3783212871067960 | pt_BR |
dc.contributor.referee3 | Mello, Carlos Eduardo Ribeiro de | - |
dc.contributor.referee3ID | https://orcid.org/0000-0002-3632-4002 | pt_BR |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/2417341890473612 | pt_BR |
dc.contributor.referee4 | Carvalho, Lucas Correia | - |
dc.contributor.referee4ID | https://orcid.org/0000-0003-0118-7762 | pt_BR |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/5149701777708320 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/7015195506264153 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto Multidisciplinar de Nova Iguaçu | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação Interdisciplinar em Humanidades Digitais | pt_BR |
dc.relation.references | AGARWAL, D.; CHEN, B.-C. fLDA: matrix factorization through latent dirichlet allocationProceedings of the third ACM international conference on Web search and data mining. Anais...: WSDM ’10.New York, NY, USA: Association for Computing Machinery, fev. 2010. Acesso em: 25 ago. 2021 AHMED, A.; XING, E. Staying Informed: Supervised and Semi-Supervised Multi-View Topical Analysis of Ideological PerspectiveProceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Anais...Cambridge, MA: Association for Computational Linguistics, out. 2010. Acesso em: 23 set. 2021 ALGHAMDI, R.; ALFALQI, K. A Survey of Topic Modeling in Text Mining. Inter- national Journal of Advanced Computer Science and Applications, v. 6, n. 1, 2015. ALTMAN, N. S. An Introduction to Kernel and Nearest-Neighbor Nonparametric Regres- sion. The American Statistician, v. 46, n. 3, p. 175–185, 1992. BAI, Y.; WANG, J. News Classifications with Labeled LDA:Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Kno- wledge Management. Anais...Lisbon, Portugal: SCITEPRESS - Science; and Technology Publications, 2015. Acesso em: 14 out. 2021 BAO, S. et al. Joint Emotion-Topic Modeling for Social Affective Text Mining. 2009 Ninth IEEE International Conference on Data Mining, 2009. BATISTA, G. E. A. P. A.; PRATI, R. C.; MONARD, M. C. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explo- rations Newsletter, v. 6, n. 1, p. 20–29, jun. 2004. BERGHOLZ, A. et al. Improved phishing detection using model-based featuresIn Fifth Conference on Email and Anti-Spam, CEAS. Anais...2008 BLEI, D. M. Probabilistic topic models. Communications of the ACM, v. 55, n. 4, p. 77–84, abr. 2012. BLEI, D. M.; GRIFFITHS, T. L.; JORDAN, M. I. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. Journal of the ACM, v. 57, n. 2, p. 7:1–7:30, fev. 2010. BLEI, D. M.; LAFFERTY, J. D. Dynamic topic modelsProceedings of the 23rd inter- national conference on Machine learning - ICML ’06. Anais...Pittsburgh, Pennsylvania: ACM Press, a2006. Acesso em: 21 ago. 2021 BLEI, D. M.; LAFFERTY, J. D. A correlated topic model of Science. The Annals of Applied Statistics, v. 1, n. 1, p. 17–35, jun. 2007. BLEI, D. M.; LAFFERTY, J. D. Topic ModelsTaylor; Francis Group, LLC, 2009. Acesso em: 9 out. 2021 85 BLEI, D. M.; MCAULIFFE, J. D. Supervised Topic ModelsAdvances in Neural Infor- mation Processing Systems. Anais...Curran Associates, Inc., dez. 2007. Acesso em: 28 abr. 2021 BLEI, D. M.; MCAULIFFE, J. D. Supervised Topic Models. arXiv:1003.0783 [stat], mar. 2010. BLEI, D. M.; NG, A. Y.; JORDAN, M. I. Latent Dirichlet Allocation. p. 30, 2003. BLEI, D.; LAFFERTY, J. D. Correlated Topic ModelsAdvances in Neural Information Processing Systems. Anais...MIT Press, b2006. Acesso em: 6 set. 2021 BLOCH, M. Apologia da História ou O Ofício de Historiador. p. 153, 2002. BOREK, L. et al. TOWARDS A PRACTICAL TAXONOMY OF DIGITAL HUMANITIES RESEARCH ACTIVITIES AND OBJECTSDigial Humani- ties - Lausanne - Switzeland ’14, jul. 2014. Acesso em: 15 maio. 2020 BOREK, L. et al. TaDiRAH: a Case Study in Pragmatic Classification. Digital Huma- nities Quarterly, v. 010, n. 1, fev. 2016. BOREK, L. et al. TaDiRAH: Taxonomy of Digital Research Activities in the Humanities, set. 2020. Acesso em: 23 jul. 2021 BOREK, L. et al. TaDiRAH v2.0.1, jul. 2021. Disponível em: <<https://vocabs.dar iah.eu/tadirah/en/>>. Acesso em: 21 out. 2021 BRAMER, M. Ensemble Classification. Em: Principles of Data Mining. [s.l.] Sprin- ger, 2013. BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, out. 2001. CAO, J. et al. A density-based method for adaptive LDA model selection. Neurocom- puting, Advances em Machine Learning e Computational Intelligence. v. 72, n. 7, p. 1775–1781, mar. 2009. CASTRO, R. M. DE. Análise da literatura das humanidades digitais: uma pro- posta bibliométrica para descrição de seu escopo e congruência conceitual. tese de doutorado—[s.l: s.n.]. CHAMORRO, W. et al. Listado de especies y clave de generos y subgeneros de escara- bajos estercoleros (Coleoptera: Scarabaeidae: Scarabaeinae) presentes y presuntos para Ecuador. Revista Colombiana de Entomologia, v. 44, n. 1, p. 72–101, jan. 2018. CHAWLA, N. V. et al. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, v. 16, p. 321–357, jun. 2002. CHIENA, J.-T.; LEEA, C.-H.; TANB, Z.-H. Latent Dirichlet mixture model - Sci- enceDirect, set. 2017. Acesso em: 25 ago. 2021 CORTES, C.; VAPNIK, V. Support-vector networks. Machine Learning, v. 20, n. 3, p. 273–297, set. 1995. COSTA, G.; ORTALE, R. Jointly modeling and simultaneously discovering topics and clusters in text corpora using word vectors. Information sciences, v. 563, p. 226–240, 2021. 86 DACOS, M. Manifesto das digital humanitiesTHATCamp Paris, 2011. Acesso em: 7 fev. 2021 DARIAH-UE CONSORTIUM. Zotero | Groups > Doing Digital Humanities - A DARIAH Bibliography, nov. 2012. Acesso em: 9 mar. 2021 DEERWESTER, S. et al. Indexing by latent semantic analysis. Journal of the Ame- rican Society for Information Science, v. 41, n. 6, p. 391–407, 1990. DHTAXONOMY. TaDiRAH (github)Digital Humanities Taxonomy Group, 2020. Acesso em: 15 maio. 2020 EBENUWA, S. H. Handling Imbalanced Classes: Feature Based Variance Ran- king Techniques for Classification. text—[s.l.] University of East London, set. 2019. EISENSTEIN, J. et al. A Latent Variable Model for Geographic Lexical Varia- tionProceedings of the 2010 Conference on Empirical Methods in Natural Language Pro- cessing. Anais...Cambridge, MA: Association for Computational Linguistics, out. 2010. Acesso em: 23 set. 2021 EISENSTEIN, J.; AHMED, A.; XING, E. Sparse Additive Generative Models of TextICML. Anais...2011 FORTES, A.; ALVIM, L. Evidências, códigos e classificações: o ofício do historiador e o mundo digital. Esboços: histórias em contextos globais, v. 27, p. 207–227, jun. 2020. GRIFFITHS, T. L.; STEYVERS, M. Finding scientific topics. Proceedings of the National Academy of Sciences, v. 101, n. suppl 1, p. 5228–5235, abr. 2004. GRIMMER, J.; STEWART, B. M. Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, v. 21, n. 3, p. 267– 297, 2013. GROSSETTI, F. OpTop: detect the optimal number of topics from a pool of LDA models, jul. 2021. Disponível em: <<https://github.com/contefranz/OpTop>>. Acesso em: 27 out. 2021 GROSSETTI, F.; LEWIS, C. OpTop: detect the optimal number of topics from a pool of LDA models. [s.l: s.n.]. HINGMIRE, S. et al. Document Classification by Topic Labeling. [s.l: s.n.]. HOFMANN, T. Probabilistic Latent Semantic Indexing. ACM SIGIR Forum, v. 51, n. 2, p. 211–218, ago. 2017. HONG, L.; DAVISON, B. D. Empirical study of topic modeling in Twit- terProceedings of the First Workshop on Social Media Analytics. Anais...: SOMA ’10.New York, NY, USA: Association for Computing Machinery, jul. 2010. Acesso em: 20 ago. 2021 HOSPEDALES, T.; GONG, S.; XIANG, T. Video Behaviour Mining Using a Dynamic Topic Model. International Journal of Computer Vision, v. 98, n. 3, p. 303–323, jul. 2012. JAPKOWICZ, N. The Class Imbalance Problem: Significance and StrategiesIn 87 Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI. Anais...2000 KHALIFA, O. et al. Multi-objective Topic Modeling. Em: HUTCHISON, D. et al. (Eds.). Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. v. 7811p. 51–65. KOZIARSKI, M. Radial-Based Undersampling for imbalanced data classification. Pat- tern Recognition, v. 102, p. 107262, 2020. KOZIARSKI, M.; KRAWCZYK, B.; WOŹNIAK, M. Radial-Based Approach to Imba- lanced Data Oversampling. Em: MARTÍNEZ DE PISÓN, F. et al. (Eds.). Hybrid Artificial Intelligent Systems – HAIS 2017. Lecture Notes em Computer Science. [s.l.] Springer, 2017. v. 10334. KRAWCZYK, B. Learning from imbalanced data: open challenges and future directions. Progress in Artificial Intelligence, v. 5, n. 4, p. 221–232, nov. 2016. LEWIS, C.; GROSSETTI, F. A Statistical Approach for Optimal Topic Model Identification. [s.l: s.n.]. LING, C. X.; SHENG, V. S. Cost-Sensitive Learning. Em: SAMMUT, C.; WEBB, G. I. (Eds.). Encyclopedia of Machine Learning. Boston, MA: Springer US, 2010. p. 231–235. LIU, L. et al. An overview of topic modeling and its current applications in bioinformatics. SpringerPlus, v. 5, n. 1, p. 1608, set. 2016. LUZ, F. F. Consulta a ontologias utilizando linguagem natural controlada. text— [s.l.] Universidade de São Paulo, out. 2013. MACHADO, F. S. Scientific Divulgation and Digital Utterances. Bakhtiniana: Revista de Estudos do Discurso, v. 11, p. 93–110, ago. 2016. MANNING, C. D.; SCHÜTZE, H. Foundations of Statistical Natural Language Processing. [s.l.] The MIT Press, 1999. MCCALLUM, A.; WANG, X.; CORRADA-EMMANUEL, A. Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email. Journal of Artificial Intelligence Research, v. 30, p. 249–272, out. 2007. MEYER, E. T.; ECCLES, K. The Impacts of Digital Collections: Early English Books Online & House of Commons Parliamentary Papers. Rochester, NY: Social Science Research Network, mar. 2016. Acesso em: 29 out. 2021. MIMNO, D.; MCCALLUM, A. Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression. arXiv:1206.3278 [cs, stat], jun. 2012. PERKINS, J. et al. Building Bridges to the Future of a Distributed Network: From DiRT Categories to TaDiRAH, a Methods Taxonomy for Digital Humanities. International Conference on Dublin Core and Metadata Applications, p. 181–183, out. 2014. RIBEIRO, F. A. D. S. et al. EXPLORANDO OS POTENCIAIS DA HISTÓRIA DI- GITAL: A EXPERIÊNCIA DO CENTRO DE DOCUMENTAÇÃO E IMAGEM DA UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO - CAMPUS DE NOVA IGUAÇU. Estudos Históricos (Rio de Janeiro), v. 33, n. 69, p. 152–172, abr. 2020. 88 ROBERTS, M. E. et al. The Structural Topic Model and Applied Social Science. p. 4, 2013. ROBERTS, M. E. et al. Structural Topic Models for Open-Ended Survey Responses: STRUCTURAL TOPIC MODELS FOR SURVEY RESPONSES. American Journal of Political Science, v. 58, n. 4, p. 1064–1082, out. 2014. ROBERTS, M. E.; STEWART, B. M.; TINGLEY, D. stm: An R Package for Structural Topic Models. Journal of Statistical Software, v. 91, n. 1, p. 1–40, out. 2019. ROSEN-ZVI, M. et al. The Author-Topic Model for Authors and Documents. ar- Xiv:1207.4169 [cs, stat], p. 487–494, jul. 2012. SALTON, G. Some research problems in automatic information retrieval. ACM SIGIR Forum, v. 17, n. 4, p. 252–263, jun. 1983. SHEN, Z.-Y.; SUN, J.; SHEN, Y.-D. Collective Latent Dirichlet Allocation2008 Eighth IEEE International Conference on Data Mining. Anais...Pisa, Italy: IEEE, dez. 2008. Acesso em: 2 set. 2021 SONG, J. et al. A bi-directional sampling based on K-means method for imba- lance text classification2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS). Anais...2016 STEYVERS, M.; GRIFFITHS, T. Probabilistic Topic Models. Em: Handbook of La- tent Semantic Analysis. [s.l.] Psychology Press, 2007. SUN, Y. et al. Cost-Sensitive Boosting for Classification of Imbalanced Data. Pattern Recogn., v. 40, n. 12, p. 3358–3378, dez. 2007. TADIRAH. TaDiRAH - Taxonomy of Digital Research Activities in the Hu- manitieshttps://vocabularyserver.com/tadirah/en/, jul. 2014. Acesso em: 8 mar. 2021 TEMPLETON, C. Topic Modeling in the Humanities: An Overview, 2011. Acesso em: 7 out. 2021 TERRAS, M. M.; NYHAN, J.; VANHOUTTE, E. (EDS.). Defining digital huma- nities: a reader. Farnham, Surrey, England : Burlington, VT: Ashgate Publishing Limited ; Ashgate Publishing Company, 2013. THOMPSON, E. P. The Poverty of Theory: Or an Orrery of Errors. [s.l.] Merlin Press, 1996. UNSWORTH, J. What is humanities Computing and What is Not? Em: TERRAS, M. M.; NYHAN, J.; VANHOUTTE, E. (Eds.). Farnham, Surrey, England : Burlington, VT: Ashgate Publishing Limited ; Ashgate Publishing Company, 2013. p. 35–48. VAYANSKY, I.; KUMAR, S. A. P. A review of topic modeling methods. Information Systems, v. 94, p. 101582, dez. 2020. VIGNOLI, R. G.; SOUTO, D. V. B.; CERVANTES, B. M. N. Sistemas de organização do conhecimento com foco em ontologias e taxonomias. Informação & Sociedade, v. 23, n. 2, p. 59–72, jul. 2013. VIKRAMKUMAR; B, V.; TRILOCHAN. Bayes and Naive Bayes Classifier. ar- 89 Xiv:1404.0933 [cs], abr. 2014. VITAL, L. P.; CAFÉ, L. M. A. Ontologias e taxonomias: diferenças. Perspectivas em Ciência da Informação, v. 16, n. 2, p. 115–130, 2011. VORONTSOV, K.; POTAPENKO, A. Tutorial on Probabilistic Topic Modeling: Additive Regularization for Stochastic Matrix Factorization (D. I. Ignatov et al., Eds.)Analysis of Images, Social Networks and Texts. Anais...: Communications em Computer e Information Science.Cham: Springer International Publishing, 2014 WANG, X.; MCCALLUM, A. Topics over time: a non-Markov continuous-time model of topical trendsProceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’06. Anais...Philadelphia, PA, USA: ACM Press, 2006. Acesso em: 2 set. 2021 WATANABE, K. Latent Semantic Scaling: A Semisupervised Text Analysis Technique for New Domains and Languages. Communication Methods and Measures, v. 0, n. 0, p. 1–22, nov. 2020. WATANABE, K.; ZHOU, Y. Theory-Driven Analysis of Large Corpora: Semisupervi- sed Topic Classification of the UN Speeches. Social Science Computer Review, p. 0894439320907027, fev. 2020. WELBERS, K.; ATTEVELDT, W. V.; BENOIT, K. Text Analysis in R. Communica- tion Methods and Measures, v. 11, n. 4, p. 245–265, out. 2017. YAU, C.-K. et al. Clustering scientific documents with topic modeling. Scientometrics, v. 100, n. 3, p. 767–786, abr. 2014. ZHAO, W. et al. A heuristic approach to determine an appropriate number of topics in topic modeling. BMC Bioinformatics, v. 16, n. 13, p. S8, dez. 2015. ZHOU, Z.; ZHOU, J.; ZHANG, L. Demand-adaptive Clothing Image Retrieval Using Hybrid Topic ModelProceedings of the 24th ACM international conference on Multimedia. Anais...: MM ’16.New York, NY, USA: Association for Computing Machinery, out. 2016. Acesso em: 21 ago. 2021 ZUO, Y. et al. Topic Modeling of Short Texts: A Pseudo-Document ViewProceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anais...San Francisco California USA: ACM, ago. 2016. Acesso em: 26 ago. 2021 | pt_BR |
dc.subject.cnpq | Ciência da Computação | pt_BR |
Appears in Collections: | Mestrado em Humanidades Digitais |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Luiz Carlos de Jesus.Pdf | 1.45 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.