Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/19324
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Wesley dos Santos-
dc.date.accessioned2024-12-05T12:52:22Z-
dc.date.available2024-12-05T12:52:22Z-
dc.date.issued2023-05-26-
dc.identifier.citationSOUZA, Wesley dos Santos. Dinâmica de carbono e nitrogênio em solo sob cultivo de capim Marandu (Urochloa Brizantha cv. Marandu) em monocultura e consorciado com leguminosa forrageira. 2023. 74 f. Tese (Doutorado em Agronomia, Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/19324-
dc.description.abstractDevido ao atual cenário do aquecimento global que vem provocando as mudanças climáticas, tem-se a necessidade de adoção de estratégias para mitigação das emissões dos gases causadores do efeito estufa (GEEs). Entre, as diversas áreas de ação para mitigação da emissão desses gases, está a agropecuária, responsável por boa parte das emissões de GEEs do Brasil, sendo necessária a implantação de sistemas com potencial de sequestro de carbono via solo, conforme recomenda o Plano de Agricultura de Baixo Carbono. Diante desse cenário este estudo teve como objetivos: 1- Avaliar se o uso de um sistema com pastagem consorciada com leguminosa forrageira é tão eficiente no acúmulo de carbono no solo quanto um sistema em monocultura adubado com fertilizante nitrogenado. 2- Estudar o impacto no acúmulo do carbono e nitrogênio no solo pela implantação, no mesmo ano, de sistemas com pastagens com e sem adubação com fertilizante nitrogenado ou consorciadas com leguminosa forrageira em duas regiões sob condições edafoclimáticas diferentes. Para atingir tais objetivos foram conduzidos três experimentos, a saber: 1- sistemas com pastagem produtiva de Urochloa brizantha cv. Marandu com pastagem consorciada de amendoim forrageiro (Arachis pintoi)- capim Marandu introduzida 8 anos após pastagem de capim-elefante (Pennisetum purpureum) fertilizada com N; 2- estudo instalado em duas áreas experimentais com diferentes condições edafoclimáticas, sendo implantados sistemas com pasto de capim Marandu com e sem fertilização nitrogenada e consorciado com leguminosa forrageira (Arachis pintoi e Desmodium ovalifolium), além de avaliar também sistemas consorciados e em monocultura mais antigos já implantados e tendo como referência a área de vegetação nativa do entorno. Em todos os sistemas foram coletadas amostras de terra para análise da densidade do solo, teores de carbono e nitrogênio total e abundância isotópica de 13C. Como resultados observados, os sistemas com pastagens consorciada com leguminosa forrageira (Arachis pintoi e Desmodium ovalifolium) são recomendados, por acumular carbono no solo em taxas similares ou até maiores que os sistemas de pastagens em monocultura fertilizados com nitrogênio sintético. Os sistemas com pastagens bem manejadas, em monocultura ou consociadas, apresentam maiores quantidades de sequestros de carbono nos anos iniciais após a implantação e reduzem com o avançar dos anos até atingir um equilíbrio. O que interfere no uso do valor de sequestro de curto prazo para projetar o potencial de mitigação de GEE dos sistemas de longo prazo. O sistema implantado para fins de crédito de carbono e projetos de mitigação de GEE, visando o armazenamento e sequestro de carbono no solo, respondem de forma diferenciada quando implantados em regiões com condições edafoclimáticas e/ou históricos de manejos anteriores a implantação diferentes.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectArachis pintoipt_BR
dc.subjectDesmodium ovalifoliumpt_BR
dc.subjectEstoque de carbonopt_BR
dc.subjectMOSpt_BR
dc.subjectCarbon sequestrationpt_BR
dc.subjectSOMpt_BR
dc.titleDinâmica de carbono e nitrogênio em solo sob cultivo de capim marandu (Urochloa brizantha cv. Marandu) em monocultura e consorciado com leguminosa forrageirapt_BR
dc.title.alternativeCarbon and nitrogen dynamics in soil under Marandu grass pasture (Urochloa brizantha cv. Marandu) in monoculture and mixed with forage legumeen
dc.typeTesept_BR
dc.description.abstractOtherDue to the current scenario of climate change that has been causing global warming, there is a need to adopt strategies to mitigate greenhouse gas (GHG) emissions. Among the various areas of action to mitigate greenhouse gases emissions, the agriculture is responsible for a large part of emissions in Brazil. There is a need to implement systems with potential for soil carbon sequestration. Therefore, this study aimed to: 1- Assess whether the use of a system with pasture mixed with forage legumes will be efficient in the carbon sequestration as a monoculture system fertilized with nitrogen. 2- To study the impact on the carbon and nitrogen accumulation in the soil after the system implantation in the same year, evaluating pastures with and without fertilized with nitrogen or mixed with forage legumes in two regions under different edaphoclimatic conditions. To achieve these objectives, three experiments were performed, where 1- systems with productive pasture of Urochloa brizantha cv. Marandu with mixed pasture of forage peanut (Arachis pintoi)-Marandu grass 8 after pasture of elephant grass (Pennisetum purpureum) fertilized with N, 2- study installed in two areas located in regions with different edaphoclimatic experimental conditions, where they were solved systems with Marandu grass pasture with and without nitrogen fertilization and intercropped with forage leguminous, in addition to also evaluating older existing systems and the area of native vegetation in the surroundings. In all systems, soil samples were collected for analysis of soil density, carbon, and nitrogen concentration and 13C isotopic abundance. As results found with these studies, for the implementation of systems that favor carbon sequestration in the soil, systems with pastures intercropped with forage legumes (Arachis pintoi and Desmodium ovalifolium) are recommended, as they accumulate carbon at similar or even higher rates than yeast-fertilized monoculture pasture systems. Systems with well-managed pastures, in monoculture or intercropping, had high rates of carbon sequestration in the initial years after implementation and reduce with advancing years of improvement until reaching a balance. This interferes with the use of the short-term sequestration rate to project the GHG mitigation potential of long-term systems. The improved system for carbon credit purposes and GHG mitigation projects, aimed at storing and sequestering carbon in the soil, respond differently when updated in rules with edaphoclimatic conditions and/or history of management prior to different implementation.en
dc.contributor.advisor1Urquiaga Caballero, Segundo Sacramento-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-3601-1233pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0525790556695433pt_BR
dc.contributor.advisor-co1Boddey, Robert Michael-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-3648-9859pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0277415539607307pt_BR
dc.contributor.referee1Urquiaga Caballero, Segundo Sacramento-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-3601-1233pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0525790556695433pt_BR
dc.contributor.referee2Pereira, Marcos Gervasio-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-1402-3612pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3657759682534978pt_BR
dc.contributor.referee3Pinheiro, Érika Flávia Machado-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-9039-4127pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8101589624388403pt_BR
dc.contributor.referee4Jantalia, Cláudia Pozzi-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-6178-6145pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3465919209024196pt_BR
dc.contributor.referee5Inácio, Caio de Teves-
dc.contributor.referee5IDhttps://orcid.org/0000-0002-5376-0420pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/7920142064540802pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-5186-6627pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4286185972062563pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Agronomiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopt_BR
dc.relation.referencesABDALLA, K.; MUTEMA, M.; CHIVENGE, P.; EVERSON, C.; CHAPLOT, V. Grassland degradation significantly enhances soil CO2 emission. Catena, v. 167, p. 284-292, 2018. https://doi.org/10.1016/j.catena.2018.05.010 ALLEN, V. G.; BATELLO, C.; BERRETTA, E. J.; HODGSON, J.; KOTHMAN, M.; LI, X.; MCIVOR, J. G.; MILNE, J.; MORRIS, C.; PEETERS, A.; SANDERSON, M. An international terminology for grazing lands and grazing animals. Grass Forage Science. v. 66, p. 2-28, 2011. https://doi.org/10.1111/j.1365-2494.2010.00780.x ALVA, A. K. Comparison of Mehlich 3, Mehlich 1, ammonium bicarbonate-DTPA, 1.0 M ammonium acetate, and 0.2 M ammonium chloride for extraction of calcium, magnesium, phosphorus, and potassium for a wide range of soils. Communications in Soil Science and Plant Analysis, v. 24, p. 603-612, 1993.https://doi.org/10.1080/00103629309368826 ANDRIOLLO, D. D.; REDIN, C. G.; REICHERT, J. M.; SILVA, L. S. Soil carbon isotope ratios in forest-grassland toposequences to identify vegetation changes in southern Brazilian grasslands. Catena, v. 159, n. July, p. 126-135, 2017. https://doi.org/10.1016/j.catena.2017.08.012. ANDRUSCHKEWITSCH, R.; GEISSELER, D.; KOCH, H. J.; LUDWIG, B. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials. Geoderma, v. 192, p. 368-377, 2013. https://doi.org/10.1016/j.geoderma.2012.07.005 ARNOLD, S. L.; SCHEPERS, J. S. A simple roller-mill grinding procedure for plant and soil samples. Communications in Soil Science and Plant Analysis, v. 35, n. 3-4, p. 537-545, 2004. https://doi.org/10.1081/CSS-120029730. AYARZA, M. A.; RAO, I. M.; VILELA, L.; LASCANO, C. E.; VERA-INFANZÓN, R. Soil carbon accumulation in crop-livestock systems in acid soil savannas of South America: A review. Advances in Agronomy, v. 173, p. 163-226, 2022. https://doi.org/10.1016/bs.agron.2022.02.003 BAI, Y.; COTRUFO, M. F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science, v. 377, p. 603-608, 2022. https://doi.org/10.1126/science.abo2380 BALDOTTO, M. A.; BALDOTTO, L. E. B. Relationships between soil quality indicators, redox properties, and bioactivity of humic substances of soils under integrated farming, livestock, and forestry. Revista Ceres, v. 65, n. 4, p. 373–380, 2018. https://doi.org/10.1590/0034-737X201865040010. BALESDENT, J.; BASILE-DOELSCH, I.; CHADOEUF, J.; CORNU, S.; FEKIACOVA, Z.; FONTAINE, S.; GUENET, B.; HATTÉ, C. Renouvellement du carbone profond des sols cultivés: une estimation par compilation de données isotopiques. Biotechnology, Agronomy, Society and Environment, 21(3), 181-190, 2017. 59 BALESDENT, J.; MARIOTTI, A.; GUILLET, B. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biology and Biochemistry, v. 19(1), p. 25-30, 1987. https://doi.org/10.1016/0038-0717(87)90120-9 BARBERO, R. P.; MALHEIROS, E.B.; ARAUJO, T. L. R.; NAVE, R. L. G.; MULLINIKS, J. T.; BERCHIELLI, T. T.; RUGGIERI, A. C.; REIS, R. A. Combining Marandu grass grazing height and supplementation level to optimize growth and productivity of yearling bulls. Animal Feed Science and Technology. v. 209, p. 110-118, 2015. https://doi.org/10.1016/j.anifeedsci.2015.09.010 BARCELLOS, A. O.; RAMOS, A. K. B.; VILELA, L.; MARTHA JUNIOR, G. B. Sustentabilidade da produção animal baseada em pastagens consorciadas e no emprego de leguminosas exclusivas, na forma de banco de proteína, nos trópicos brasileiros. Revista Brasileira de Zootecnia, v. 37, n. July, p. 51-67, 2008. https://doi.org/10.1590/S1516-35982008001300008. BERTHELIN, J.; LABA, M.; LEMAIRE, G.; POWLSON, D. S.; TESSIER, D.; WANDER, M. M.; BAVEYE, P. C. Soil carbon sequestration for climate change mitigation: Mineralization kinetics of organic inputs as an overlooked limitation. European Journal of Soil Science. v. 73, n. 13221, 2022. https://doi.org/10.1111/ejss.13221 BEZERRA, C. B.; SOUZA JUNIOR, A. J.; CORRÊIA, M. M.; LIMA, J. R. S.; SANTORO, K. R.; SOUZA, E. S.; OLIVEIRA, C. L. Latossolo húmico sob pastagem com diferentes intensidades de usos : atributos químicos e físico-hídricos. Revista Brasileira de Ciências Agrárias, v. 14, n. 1, p. 1-9, 2019. https://doi.org/10.5039/agraria.v14i1a5603. BIELUCZYK, W.; PICCOLO, M. C.; PEREIRA, M. G.; MORAES, M. T.; SOLTANGHEISI, A.; BERNARDI, A. C. C.; PEZZOPANE, J. R. M.; OLIVEIRA, P. P. A.; MOREIRA, M. Z.; CAMARGO, P. B.; DIAS, C. T. S.; BATISTA, I.; CHERUBIN, M. R. Integrated farming systems influence soil organic matter dynamics in southeastern Brazil. Geoderma, v. 371, n. July, p. 114368, 2020. https://doi.org/10.1016/j.geoderma.2020.114368 BLAGODATSKAYA, E.; YUYUKINA, T.; BLAGODATSKY, S.; KUZYAKOV. Turnover of soil organic matter and of microbial biomass under C3-C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization. Soil Biology and Biochemistry, v. 43, n. 1, p. 159-166, 2011. https://doi.org/10.1016/j.soilbio.2010.09.028 BLANCO-CANQUI, H.; LAL, R. Mechanisms of carbon sequestration in soil aggregates. Critical reviews in plant sciences, v. 23, n. 6, p. 481-504, 2010. https://doi.org/10.1080/07352680490886842 BLANCO-CANQUI, H.; LAL, R. No-Tillage and Soil-Profi le Carbon Sequestration : An On-Farm Assessment. Soil Science Society of America Journal, v. 72, n. 3, p. 693-701, 2008. BLUNDEN, J.; ARNDT, D. S. State of the Climate in 2018. Bull. American Meteorological Society, 100(9), Si-S305, 2019. BODDEY, R. M.; MACEDO, R.; TARRÉ, R. M.; FERREIRA, E.; OLIVEIRA, O. C.; REZENDE, C. D. P.; CANTARUTTI, R. B.; PEREIRA, J. M.; ALVES, B. J. R.; URQUIAGA, S. Nitrogen cycling in Brachiaria pastures: The key to understanding the process of pasture decline. Agriculture, Ecosystems and Environment, v. 103, n. 2, p. 389-403, 2004. 60 https://doi.org/10.1016/j.agee.2003.12.010. BODDEY, R. M.; CASAGRANDE, D. R.; HOMEN, B. G. C.; ALVES, B. J. R. Forage legumes in tropical grass pastures in Brazil and likely impacts on greenhouse gas emissions. Grass Forage Science, v. 75, p. 357-371, 2020. https://doi.org/10.1111/gfs.12498 BODDEY, R. M.; JANTALIA, C. P.; ZANATTA, J. A.; CONCEIÇÃO, P. C.; BAYER, C.; MIELNICZUK, J.; DIECKOW, J.; SANTOS, H. P.; DENARDIN, J. E.; AITA, C.; ALVES, B. J. R.; URQUIAGA, S. Carbon accumulation at depth in Ferralsols under zero-till subtropical agriculture in southern Brazil. Global Change Biology. v. 16, p. 784-795, 2010. https://doi.org/10.1111/j.1365-2486.2009.02020.x BRAZ, S. P. URQUIAGA, S.; ALVES, B. J. R. JANTALIA, C. P.; GUIMARÃES, A. P.; SANTOS, C. A.; SANTOS, S.C.; PINHEIRO, E.F.M.; BODDEY, R. M. Soil carbon stocks under productive and degraded Brachiaria pastures in the Brazilian Cerrado. Soil Science Society of America Journal, v. 77, n. 3, p. 914-928, 2013. https://doi.org/10.2136/sssaj2012.0269 BRONICK, C. J.; LAL, R. Soil structure and management: a review. Geoderma, 124(1-2), 3-22, 2005. https://doi.org/10.1016/j.geoderma.2004.03.005 CANTARUTTI, R. B.; TARRÉ, R.; MACEDO, R.; CADISCH, G.; REZENDE, C. P.; PEREIRA, J. M.; BRAGA, J. M.; GOMIDE, J. A.; FERREIRA, E.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R. M. The effect of grazing intensity and the presence of a forage legume on nitrogen dynamics in Brachiaria pastures in the Atlantic forest region of the south of Bahia, Brazil. Nutrient Cycling in Agroecosystems, v. 64, p. 257-271, 2002. CARVALHO, L. R.; PEREIRA, L. E. T.; HUNGRIA, M.; CAMARGO, P. B.; SILVA, S. C. Nodulation and biological nitrogen fixation (BNF) in forage peanut (Arachis pintoi) cv. Belmonte subject to grazing regimes. Agriculture, Ecosystems & Environment. v. 278, p. 96-106, 2019. https://doi.org/10.1016/j.agee.2019.02.016 CERRI, C. E. P.; SPAROVEK, G.; BERNOUX, M.; EASTERLING, W. E.; MELILLO, J. M.; CERRI, C. C. Tropical agriculture and global warming: Impacts and mitigation options. Scientia Agricola, v. 64, n. 1, p. 83-99, 2007. https://doi.org/10.1590/S0103-90162007000100013. CERRI, C.C.; FELLER, C.; BALESDENT, J.; VICTORIA, R.; PLENECASSEGNE, A. Application du traçage isotopique naturel en 13C, à l'étude de la dynamique de la matière organique dans les sols. Comptes Rendus de l'Académie des Sciences. v. 11, p. 423-428, 1985. CHAPUIS-LARDY, L.; BROSSARD, M.; ASSAD, M. L. L.; LAURENT, J. Y. Carbon and phosphorus stocks of clayey Ferralsols in Cerrado native and agroecosystems, Brazil. Agriculture, Ecosystems & Environment. v. 92, p. 147-158, 2002. https://doi.org/10.1016/S0167-622 8809(01)00303-6 CHA-UN, N.; CHIDTHAISONG, A.; YAGI, K., SUDO, S.; TOWPRAYOON, S. Greenhouse gas emissions, soil carbon sequestration and crop yields in a rain-fed rice field with crop rotation management. Agriculture, Ecosystems & Environment. v. 237, n. january, p. 109-120, 2017. https://doi.org/10.1016/j.agee.2016.12.025. 61 CHEN, S.; ARROUAYS, D.; ANGERS, D. A.; MARTIN, M. P.; WALTER, C. Soil carbon stocks under different land uses and the applicability of the soil carbon saturation concept. Soil & Tillage Research, v. 188, n. May, p. 53-58, 2019. https://doi.org/10.1016/j.still.2018.11.001. CHEN, S.; ZOU, J.; HU, Z.; LU, Y. Temporal and spatial variations in the mean residence time of soil organic carbon and their relationship with climatic, soil and vegetation drivers. Global and Planetary Change, v. 195, p. 103-359, 2020. https://doi.org/10.1016/j.gloplacha.2020.103359 CHENU, C.; ANGERS, D. A.; BARRÉ, P.; DERRIEN, D.; ARROUAYS, D.; BALESDENT, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil and Tillage Research. v. 199, p. 41-52, 2019. https://doi.org/10.1016/j.still.2018.04.011 CHONÉ, T.; ANDREUX, F.; CORREA, J. C.; VOLKOFF, B.; CERRI, C. C. Changes in organic matter in an oxisol from the central Amazonian Forest during eight years as pasture, determined by 13C isotopic composition. Developments in Geochemistry. v. 6, p. 397-405, 1991. https://doi.org/10.1016/B978-0-444-88900-3.50043-6 CLAESSEN, M. E. C.; BARRETO, W.O.; PAULA, J. L.; DUARTE, M. Manual de métodos de análise de solo. Embrapa, Rio de Janeiro: Centro Nacional de Pesquisa de Solos, 1997. Retrieved from: https://www.agencia.cnptia.embrapa.br/Repositorio/Manual+de+Metodos_000fzvh otqk02wx5ok0q43a0ram31wtr.pdf CONANT, R. T.; CERRI, C. E. P.; OSBORNE, B. B.; PAUSTIAN, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecological Applications, v. 27, n. 2, p. 662-668, 2017. https://doi.org/10.1002/eap.1473. CONANT, R. T.; CERRI, C. E. P.; OSBORNE, B. B.; PAUSTIAN, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecological Applications, v. 27, p. 662-668, 2017. https://doi.org/10.1002/eap.1473 CONRAD, K. A.; DALAL, R. C.; DALZELL, S. A.; ALLEN, D. E.; MENZIES, N. W. The sequestration and turnover of soil organic carbon in subtropical leucaena-grass pastures. Agriculture, Ecosystems and Environment, v. 248, n. October, p. 38-47, 2017. https://doi.org/10.1016/j.agee.2017.07.020. COSTA JUNIOR, C.; CORBEELS, M.; BERNOUX, M.; PICCOLO, M. C.; SIQUEIRA NETO, M.; FEIGL, B. J.; CERRI, C. E. P.; CERRI, C. C.; SCOPEL, E.; LAL, R. Assessing soil carbon storage rates under no-tillage: Comparing the synchronic and diachronic approaches. Soil and Tillage Research, v. 134, p. 207-212, 2013. http://dx.doi.org/10.1016/j.still.2013.08.010 COSTA, O. V.; CANTARUTTI, R. B.; FONTES, L. E. F.; COSTA, L. M.; NACIF, P. G. S.; FARIA, J. C. Estoque de carbono do solo sob pastagem em área de tabuleiro costeiro no sul da Bahia. Revista Brasileira de Ciencia do Solo, v. 33, n. 5, p. 1137–1145, 2009. https://doi.org/10.1590/S0100-06832009000500007 COTRUFO, M. F.; LAVALLEE, J. M. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Advances in agronomy, v. 172, p. 1-66, 2022. 62 DE DEYN, G. B.; SHIEL, R. S.; OSTLE, N. J.; MCNAMARA, N. P.; OAKLEY, S.; YOUNG, I.; FREEMAN, C.; FENNER, N.; QUIRK, H.; BARDGETT, R. D. Additional carbon sequestration benefits of grassland diversity restoration. Journal of Applied Ecology, v. 48, n. 3, p. 600-608, 2011. https://doi.org/10.1111/j.1365-2664.2010.01925.x DELEVATTI, L. M.; CARDOSO, A. S.; BARBERO, R.P.; LEITE, R. G.; ROMANZINI, E. P.; RUGGIERI, A. C.; REIS, R. A. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Nature Science Reports. v. 9, n. 7596, 2019. https://doi.org/10.1038/s41598-019-44138-x DENG, L.; WANG, K.; TANG, Z.; SHANGGUAN, Z. Soil organic carbon dynamics following natural vegetation restoration : Evidence from stable carbon isotopes (δ13C). Agriculture, Ecosystems and Environment, v. 221, p. 235-244, 2016. https://doi.org/10.1016/j.agee.2016.01.048. DIEKOW, J.; MIELNICZUK, J.; KNICKER, H.; BAYER, C.; DICK, D.P.; KOGEL-KNABNER, I. Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil and Tillage Research. v. 81, p. 87-95, 2005. https://doi.org/10.1016/j.still.2004.05.003 DÜMIG, A.; RUMPEL, C.; DIGNAC, M. F.; KNABNER, I. K. The role of lignin for the δ13C signature in C4 grassland and C3 forest soils. Soil Biology and Biochemistry, v. 57, n. February, p. 1-13, 2013. https://doi.org/10.1016/j.soilbio.2012.06.018. EZE, S.; PALMER, S. M.; CHAPMAN, P. J. Soil organic carbon stock and fractional distribution in upland grasslands. Geoderma, v. 314, n. October 2016, p. 175-183, 2018. https://doi.org/10.1016/j.geoderma.2017.11.017. FEIGL, B.J.; MELILLO, J.; CERRI, C. C. Changes in the origin and quality of soil organic matter after pasture introduction in Rondônia (Brazil). Plant Soil, v. 175, p. 21-29, 1995. https://doi.org/10.1007/BF02413007 FELLER, C.; BEARE, M. H. Physical control of soil organic matter dynamics in the tropics. Geoderma, v. 79, n. 1-4, p. 69-116, 1997. FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia (Lavras), v. 35, p. 1039-1042, 2011. https://doi.org/10.1590/S1413-70542011000600001 FISHER, M.J.; BRAZ, S.P., SANTOS, R.S.M.; URQUIAGA, S.; ALVES, B.J.R.; BODDEY, R.M. Another dimension to grazing systems: Soil carbon. Tropical Grassland. 41, 65-83. Global Landscapes Forum, 2019. (https://news.globallandscapesforum.org/viewpoint/large-scale-restoration-alreadyunderway-in-the-brazilian-atlantic-forest/ - accessed 12 October 2022. FISHER, M.J.; RAO, I.M.; AYARZA, M.A.; LASCANO, C.E.; SANZ, J.I.; THOMAS, R.J.; VERA, R.R. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature, v. 371, p. 236-238, 1994. https://doi.org/10.1038/371236a0 FREITAS, L. O.; CASAGRANDE, I. A.; SILVA, J. C.; CAMPOS, L. S.; COSTA, M. C. Estoque de carbono de latossolos em sistemas de manejo natural e alterado. Ciência Florestal, v. 28, n. 1, p. 228-239, 2018. https://doi.org/10.5902/1980509831575. 63 FUJII, K.; MORIOKA, K.; HAYAKAWA, C.; INAGAKI, Y.; HANGS, R. D.; ANDERSON, D. W.; MCCONKEY, B. G. Litter decomposition and soil organic carbon stabilization in a Kastanozem of Saskatchewan, Canada. Geoderma Regional, 23, e00348, 2020. https://doi.org/10.1016/j.geodrs.2020.e00348 FUJISAKI, K.; CHAPUIS-LARDY, L.; ALBRECHT, A.; RAZAFIMBELO, T.; CHOTTE, J. L.; CHEVALLIER, T. Data synthesis of carbon distribution in particle size fractions of tropical soils: Implications for soil carbon storage potential in croplands. Geoderma, 313, 41-51, 2018. GODDE, C. M., DE BOER, I. J., ZU ERMGASSEN, E., HERRERO, M., VAN MIDDELAAR, C. E., MULLER, A., ... & GARNETT, T. (2020). Soil carbon sequestration in grazing systems: managing expectations. Climatic Change, 1-7. https://doi.org/10.1007/s10584-020-02673-x GOMES, F. K.; OLIVEIRA, M.; HOMEM, B. G. C.; BODDEY, R. M.; BERNARDES, T. F.; GIONBELLI, M. P.; LARA, M. A. S.; CASAGRANDE, D. R. Effects of grazing management in brachiaria grass-forage peanut pastures on canopy structure and forage intake. Journal of Animal Science, v. 96, p. 3837–3849. 2018. https://doi.org/10.1093/jas/sky236 GONG, J. R.; WANG, Y.; LIU, M.; HUANG, Y.; YAN, X.; ZHANG, Z.; ZHANG, W. Effects of land use on soil respiration in the temperate steppe of Inner Mongolia, China. Soil and Tillage Research, v. 144, n. december, p. 20-31, 2014. https://doi.org/10.1016/j.still.2014.06.002 HASSINK, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil, v. 191, p. 77-87, 1997. HEIMANN, M.; REICHSTEIN, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, v. 451, n. 7176, p. 289-292, 2008. HOMEM, B. G.; LIMA, I. B.; SPASIANI, P. P.; FERREIRA, I. M.; BODDEY, R. M.; BERNARDES, T. F.; DUBEUX JR, J. C. B.; CASAGRANDE, D. R. Palisadegrass pastures with or without nitrogen or mixed with forage peanut grazed to a similar target canopy height. 1. Effects on herbage mass, canopy structure and forage nutritive value. Grass and Forage Science, v. 76, n. 3, p. 400-412, 2021a. DOI: 10.1111/gfs.12532 HOMEM, B. G. C.; LIMA, I. B. G.; SPASIANI, P. P.; BORGES, L. P. C.; BODDEY, R. M.; DUBEUX, J. C. B. J.; BERNARDES, T. F.; CASAGRANDE, D. R. Palisadegrass pastures with or without nitrogen or mixed with forage peanut grazed to a similar target canopy height. 2. Effects on animal performance, forage intake and digestion, and nitrogen metabolism. Grass Forage Science, v. 76, p. 413-426, 2021a. https://doi.org/10.1111/gfs.12533 HOMEM, B. G. C.; LIMA, I. B. G.; SPASIANI, P.P.; GUIMARÃES, B. C.; GUIMARÃES, G. D.; BERNADES, T. F.; REZENDE, C. P.; BODDEY, R. M.; CASAGRANDE, D. R. N-fertiliser application or legume integration enhances N cycling in tropical pastures. Nutrient Cycling in Agroecosystems, v. 121, n. september, p. 167-190, 2021b. https://doi.org/10.1007/s10705-021-10169-y HUANG, X.; JIA, Z.; GUO, J.; LI, T.; SUN, D.; MENG, H.; YU, G.; HE, X.; RAN, W.; ZHANG, S.; HONG, J.; SHEN, Q. Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a 64 reclaimed Cambisol. Geoderma, 355, 113880, 2019. https://doi.org/10.1016/j.geoderma.2019.113880 IBGE – Instituto Brasileiro de Geográfia Estatistica. Censo agropecuário 2017- Resultados preliminares. Censo agropecuário., Rio de Janeiro, v. 7, p.1-108, 2017. IBGE–LSPA 2022. Area and yield pf Crops 2021 and 2022 - Accessed 05/10/2022 at: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html?=&t=resultados INMET – Instituto Nacional de Meteorologia. Banco de Dados Meteorológicos do INMET. 2023. https://bdmep.inmet.gov.br/. IPCC. In: METZ, B., DAVIDSON, O.R., BOSCH, P. R., DAVE, R., MEYER, L. A. (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, USA, 2007. JANK, L.; BARRIOS, S. C.; VALLE, C. B.; SIMEÃO, R. M.; ALVES, G. F. The value of improved pastures to Brazilian beef production. Crop and Pasture Science, v. 65, n. 11, p.1132-1137, 2014. https://doi.org/10.1071/CP13319. JANTALIA, C. P.; RESCK, D. V. S.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R. M. Effect of tillage intensity on carbon stocks under a soybean-based crop rotation in the Brazilian Cerrado. Soil and Tillage Research. v. 85, p. 97-109, 2007. https://doi.org/10.1016/j.still.2006.11.005 JENKINSON, D.S.; RAYNER, J.H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, v. 123, p. 298-305, 1977. https://doi.org/10.1097/00010694-197705000-00005 JOHNSTON, A.E.; POULTON, P.R.; COLEMAN, K. Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes. Advances in Agronomy. v. 101, p. 1-57, 2009. https://doi.org/10.1016/S0065-2113(08)00801-8 KÄMPF, I.; HOLZEL, N.; STORRLE, M.; BROLL, G.; KIEHL, K. Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment, v. 566-567, p. 428-435, 2016. https://doi.org/10.1016/j.scitotenv.2016.05.067. KASSAM, A.; FRIEDRICH, T.; DERPSCH, R. Global spread of Conservation Agriculture. International Journal of Environmental Studies, v. 76, n. 1, p. 1-23, 2018. https://doi.org/10.1080/00207233.2018.1494927 KELLOGG, E. A. C4 photosynthesis. Current Biology. v. 23, n. 14, 2013. KERRÉ, B.; HERNANDEZ-SORIANO, M. C.; SMOLDERS, E. Science of the Total Environment Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil : A 13 C study. Science of the Total Environment, v. 547, n. 15, p. 30–38, 2016. https://doi.org/10.1016/j.scitotenv.2015.12.107. KIRKBY, C. A.; KIRKEGAARD, J. A.; RICHARDSON, A. E.; WADE, L. J.; BLANCHARD, 65 C.; BATTEN, G. Stable soil organic matter: a comparison of C: N: P: S ratios in Australian and other world soils. Geoderma, v. 163, n.3, p. 197-208, 2011. https://doi.org/10.1016/j.geoderma.2011.04.010. KIRKBY, C. A.; RICHARDSON, A. E.; WADE, L. J.; BATTEN, G. D.; BLANCHARD, C.; KIRKEGAARD, J. A. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biology and Biochemistry, v. 60, n. May, p. 77-86. https://doi.org/10.1016/j.soilbio.2013.01.011. KOPECKÝ, M.; PETERKA, J.; KOLAR, L.; KONVELINA, P.; MAROUSEK, J.; VACHALOVA, R.; HEROUT, M.; STRUNECKY, BATT, J.; TRAN, D. K. Influence of selected maize cultivation technologies on changes in the labile fraction of soil organic matter sandy-loam cambisol soil structure. Soil and Tillage Research, v. 207, p. 104865, 2021. KOPITTKE, P. M.; DALAL, R. C.; HOESCHEN, C., LI, C.; MENZIES, N. W.; MUELLER, C. W. Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma, 357, 113974, 2020. https://doi.org/10.1016/j.geoderma.2019.113974 KOUTIKA, L. S.; BARTOLI, F.; ANDREUX, F.; CERRI, C. C.; BURTIN, G.; CHONÉ, T.; PHILIPPY, R. Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in the eastern Amazon Basin. Geoderma, v. 76, p. 87-112, 1997. https://doi.org/10.1016/S0016-7061(96)00105-X LAL, R. Promise and limitations of soils to minimize climate change. Journal of soil and water conservation, v. 63, n. 4, p.113-118, 2008. https://doi.org/10.2489/jswc.63.4.113A. LAL, R. Sequestering carbon in soils of agro-ecosystems. Food Policy, v. 36, n. January, p. 33–39, 2011. https://doi.org/10.1016/j.foodpol.2010.12.001 LAL, R. Soil carbon sequestration impacts on global climate change and food security. Science, v. 304, n. 5677, p. 1623-1627, 2004. 10.1126/science.1097396. LAL, R.; NEGASSA, W.; LORENZ, K. Carbon sequestration in soil. Current Opinion in Environmental Sustainability, v. 15, p. 79-86, 2015. https://doi.org/10.1016/j.cosust.2015.09.002 LANGE, M.; EISENHAUER, N.; SIERRA, C. A.; BESSLER, H.; ENGELS, C.; GRIFFITHS, R. I.; VÁZQUEZ, P. G. M.; MALIK, A. A.; ROY, J.; SCHEU, S.; STEINBEISS, S.; THOMSON, B. C.; TRUMBORE, S. E.; GLEIXNER, G. Plant diversity increases soil microbial activity and soil carbon storage. Nature Communications, v. 6, n. 6707, 2015. doi: 10.1038/ncomms7707 (2015). LAROCA, J. V. S.; SOUZA, J. M. A.; PIRES, G. C.; PIRES, G. J. C.; PACHECO, L. P.; SILVA, F. D.; WRUCK, F. J.; CARNEIRO, M. A. C.; SILVA, L. S.; SOUZA, E. D. Soil quality and soybean productivity in crop-livestock integrated system in no-tillage. Pesquisa Agropecuária Brasileira, v. 53, n. 11, p. 1248-1258, 2018. https://doi.org/10.1590/S0100-204X2018001100007 LAVALLEE, J. M.; SOONG, J. L.; COTRUFO, M. F. Conceptualizing soil organic matter into particulate and mineral‐associated forms to address global change in the 21 st century. Global 66 Change Biology,v., p. 261-273, 2019. LEHMANN, J.; KLEBER, M. The contentious nature of soil organic matter. Nature, v. 528, n. 7580, p. 60-68, 2015. doi:10.1038/nature16069 LI, Q.; YU, P.; LI, G.; ZHOU, D. Grass–legume ratio can change soil carbon and nitrogen storage in a temperate steppe grassland. Soil and Tillage Research, v. 157, p. 23-31, 2016. https://doi.org/10.1016/j.still.2015.08.021 LIU, F.; WANG, X.; CHI, Q.; TIAN, M. Spatial variations in soil organic carbon, nitrogen, phosphorus contents and controlling factors across the “Three Rivers” regions of southwest China. Science of The Total Environment, v. 794, n. 148795, 2021. https://doi.org/10.1016/j.scitotenv.2021.148795 LIU, S.; ZAMANIAN, K.; SCHLEUSS, P. M.; ZAREBANADKOUKI, M.; KUZYAKOV, Y. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agriculture, Ecosystems and Environment, v. 252, n. January, p. 93-104, 2018. https://doi.org/10.1016/j.agee.2017.10.011. LIU, Y.; ZHANG, Z.; TONG, L.; KHALIFA, M.; WANG, Q.; GANG, C.; WANG, Z.; LI, J.; SUN, Z. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecological Indicators, v. 106, n. June, p. 105504, 2019. https://doi.org/10.1016/j.ecolind.2019.105504. LOCATELLI, J. L.; SANTOS, R. S.; CHERUBIN, M. R.; CERRI, C. E. Changes in soil organic matter fractions induced by cropland and pasture expansion in Brazil's new agricultural frontier. Geoderma Regional, v. 28, n. 00474, 2022. MACEDO, M. C. M. Pastagens no 718 ecossistema cerrados: Pesquisas para desenvolvimento sustentável. In: Anais da Reunião Anual da Sociedade Brasileira de Zootecnia, Brasília, DF. p. 28–62, 1995. MACHADO, P. L. O. A. Carbono do solo e a mitigação da mudança climática global. Quimica Nova, v. 28, n. 2, p. 329-334, 2005. https://doi.org/10.1590/S0100-40422005000200026. MANDAL, B.; MAJUMDER, B.; BANDYOPADHYAY, P. K.; HAZRA, G. C.; GANGOPADHYAY, A.; SAMANTARAY, R. N.; MISHRA, A. K.; CHAUDHURY, J.; SAHA, M. N.; KUNDU, S. The potential of cropping systems and soil amendments for carbon sequestration in soils under long‐term experiments in subtropical India. Global change biology, 13(2), 357-369, 2007. https://doi.org/10.1111/j.1365-2486.2006.01309.x MARSCHNER, B.; BRODOWSKI, S.; DREVES, A.; GLEIXNER, G.; GUDE, A.; GROOTES, P. M.; HAMER, U.; HEIM, A.; JANDL, G.; JI, R.; KAISER, K.; KALBITZ, K.; KRAMER, C.; LEINWEBERM P.; RETHEMEYER, J.; SCHAFFER, A.; SCHMIDT, M. W. I.; SCHWARK, L.; WIESENBERG, G. L. B. How relevant is recalcitrance for the stabilization of organic matter in soils. Journal of plant nutrition and soil science, 171(1), 91-110, 2008. https://doi.org/10.1002/jpln.200700049 MCNALLY, S. R.; BEARE, M. H.; CURTIN, D.; MEENKEN, E. D.; KELLIHER, F. M.; PEREIRA, R. C.; SHEN, Q.; BALDOCK, J. Soil carbon sequestration potential of permanent 67 pasture and continuous cropping soils in New Zealand. Global Change Biology, 23(11), 4544-4555, 2017. https://doi.org/10.1111/gcb.13720 MCSHERRY, M. E.; RITCHIE, M. E. Effects of grazing on grassland soil carbon: a global review. Global change biology, v. 19, n. 5, p. 1347-1357, 2013. https://doi.org/10.1111/gcb.12144 MEENA, V. S.; MONDAL, T.; PANDEY, B. M.; MUKHERJEE, A.; YADAV, R. P.; CHOUDHARY, M.; SINGH, S.; BISHT, J. K.; PATTANAYAK, A. Land use changes: Strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India. Geoderma, 321, 69-78, 2018. https://doi.org/10.1016/j.geoderma.2018.02.002 MENEGAT, S.; LEDO, A.; TIRADO, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Scientific Reports, v. 12, n. 1, p. 1-13, 2022. MEYER, N.; BORNEMANN, L.; WELP, G.; SCHIEDUNG, H.; HERBST, M.; AMELUNG, W. (2017). Carbon saturation drives spatial patterns of soil organic matter losses under long-term bare fallow. Geoderma, v. 306, p. 89-98, 2017. https://doi.org/10.1016/j.geoderma.2017.07.004 MINASNY, B.; MALONE, B.P.; MCBRATNEY, A.B.; ANGERS, D.A.; ARROUAYS, D.; CHAMBERS, A.; CHAPLOT, V.; CHEN, Z.S.; CHENG, K.; DAS, B.S.; FIELD, D.J.; GIMONA, A.; HEDLEY, C.B.; HONG, S.Y.; MANDAL, B.; MARCHANT, B.P.; MARTIN, M.; MCCONKEY, B.G.; MULDER, V.L.; O'ROURKE, S.; RICHER-DE-FORGES, A.C.; ODEH, I.; PADARIAN, J.; PAUSTIAN, K.; PAN, G.; POGGIA, L.; SAVIN, I.; STOLBOVOY, V.; SULAEMAN, Y.; STOCKMANN, U.; SULAEMAN, Y.; TSUI, C.C.; VAGEN, T.G.; VANWESEMAEL, B.; WINOWIECKI, L. Soil carbon 4 per mille. Geoderma, v. 292, p. 59-86, 2017. http://dx.doi.org/10.1016/j.geoderma.2017.01.002 MOINET, G.Y.K.; HIJBEEK, R.; VAN VUUREN, D.P.; GILLER, K.E. Carbon for soils, not soils for carbon. Global Change Biology, v. 29, n. 9, p. 2384-2398, 2023. http://dx.doi.org/10.1111/gcb.16570 MORAES, J.F.L.; VOLKOFF, B.; CERRI, C.C.; BERNOUX, M. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma, v. 70, p. 63-81, 1996. https://doi.org/10.1016/0016-7061(95)00072-0 NEILL, C.; MELILLO, J.M.; STEUDLER, P.A.; CERRI, C.C.; MORAES, J.F.L.; PICCOLO, M.C.; BRITO, M. Soil carbon and nitrogen stocks following forest clearing for pasture in the southwestern Brazilian Amazon. Ecolological Applications, v. 7, n. 4, p. 1216-1225, 1997. https://doi.org/10.2307/2641209 NESPER, M.; BÜNEMANN, E. K.; FONTE, S. J.; RAO, I. M.; VELÁSQUEZ, J. E.; RAMIREZ, B.; HEGGLIN, D.; FROSSARD, E.; OBERSON, A. Pasture degradation decreases organic P content of tropical soils due to soil structural decline. Geoderma, v. 257–258, p. 123–133, 2015. https://doi.org/10.1016/j.geoderma.2014.10.010. NEWCOMB, C. J.; QAFOKU, N. P.; GRATE, J. W.; BAILEY, V. L.; DE YOREO, J. J. Developing a molecular picture of soil organic matter–mineral interactions by quantifying 68 organo-mineral binding. Nature communications, v. 8, n. 1, p. 396, 2017. DOI: 10.1038/s41467-017-00407-9 OLIVEIRA, D. M. S.; TAVARES, R. L M.; LOSS, A.; MADARI, B. E.; CERRI, C. E. P.; ALVES, B. J. R.; PEREIRA, M. G.; CHERUBIN, M. R. Climate-smart agriculture and soil C sequestration in Brazilian Cerrado: a systematic review. Revista Brasileira de Ciência do Solo, Special Issue, 2023. DOI: 10.36783/18069657rbcs20220055 OLIVEIRA, F. E. R.; OLIVEIRA, J. M.; XAVIER, F. A. S. Changes in soil organic carbon fractions in response to cover crops in an orange orchard. Revista Brasileira de Ciência do Solo, v. 40, 2016. https://doi.org/10.1590/18069657rbcs20150105 OZLU, E.; ARRIAGA, F. J. The role of carbon stabilization and minerals on soil aggregation in different ecosystems. Catena, 202, 105303, 2021. https://doi.org/10.1016/j.catena.2021.105303 PARRAS‐ALCÁNTARA, L.; DÍAZ‐JAIMES, L.; LOZANO‐GARCÍA, B. Management effects on soil organic carbon stock in Mediterranean open rangelands—treeless grasslands. Land Degradation & Development, v. 26, n. 1, p. 22-34, 2015. https://doi.org/10.1002/ldr.2269 PEEL, M. C.; FINLAYSON, B. L.; MCAHON, T. A. Updated world map of the Köppen- Geiger climate classification. Hydrology and Earth System Sciences, v. 5, p. 1633-1644, 2007. https://doi.org/10.5194/hess-11-1633-2007 PEOPLES, M. B.; HAUGGAARD-NIELSEN, H.; HUGUENIN-ELIE, O.; JENSEN, E. S.; JUSTES, E.; WILLIAMS, M. The Contributions of Legumes to Reducing the Environmental Risk of Agricultural Production. Agroecosystem Diversity, p. 123-143, 2019. https://doi.org/10.1016/B978-0-12-811050-8.00008-X. PEREIRA, J.M.; REZENDE, C. P.; BORGES, A.M.F.; HOMEN, B.G.C.; CASAGRANDE, D.R. MACEDO, T.M.; ALVES, B.J.R.; SANT´ANNA, S.A.C.; URQUIAGA, S.; BODDEY, R.M. Production of beef cattle grazing on Brachiaria brizantha (Marandu grass) - Arachis pintoi (forage peanut cv. Belomonte) mixtures exceeded that on grass monocultures fertilized with 120 kg N/ha. Grass Forage Science, v. 75, p. 28-36, 2022. https://doi.org/10.1111/gfs.12463 PEREIRA, L. E. T.; PAIVA, A. J.; GUARDA, V. D.; PEREIRA, P. M.; CAMINHA, F. O.; DA SILVA, S. C. Herbage utilisation efficiency of continuously stocked marandu palisade grass subjected to nitrogen fertilisation. Scientia Agricola, v. 72, p. 114-123, 2015. https://doi.org/10.1590/0103-9016-2014-0013 PLAZA, C.; COURTIER-MURIAS, D.; FERNÁNDEZ, J. M.; POLO, A.; SIMPSON, A. J. Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: a central role for microbes and microbial by-products in C sequestration. Soil Biology and Biochemistry, 57, 124-134, 2013. POULTON, P.R.; JOHNSTON, J.; MACDONALD, A.; WHITE, R.E.; POWLSON, D.S. Major limitations to achieving "4 per 1000" increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted research, United Kingdom. Global Change Biology, v. 24, p. 2563-2584, 2018. https://doi.org/10.1111/gcb.14066 69 R Development Core Team 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available online at: (https://www.R-project.org/-- Accessed 02 Dec 2021). RAMALHO, I. O.; REZENDE, C. D. P.; PEREIRA, J. M.; MACEDO, R. D. O.; SANTOS, C. A. D.; MONTEIRO, R. C.; ALVES, B. J. R.; CARVALHO, I. N. O.; URQUIAGA, S.; BODDEY, R. M. Deposition and decomposition of litter in periods of grazing and rest of a tropical pasture under rotational grazing. Ciência Rural, v. 49, n. 12, 2019. https://doi.org/10.1590/0103-8478cr20190266 RAMESH, T. BOLAN, N. S.; KIRKHAM, M. B.; WIJESEKARA, H.; KANCHIKERIMATH, M.; RAO, C. S.; SANDEEP, S.; RINKLEBE, J.; OK, Y. S.; CHOUDHURY, B. U.; WANG, H.; TANG, C.; WANG, X.; SONG, Z.; FREEMAN II, O. W. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy, v. 156, p. 1–107, 2019. https://doi.org/10.1016/bs.agron.2019.02.001. REZENDE, C. P.; PEREIRA, J. M.; MACEDO, T.M.; BORGES, A.M.F.; CARVALHO, G.G.P.; LOBÃO, É.S.P.; NICORY, I.M.C. Ganho de peso de novilhos em pastagens de capim-cameroon e capim-braquiarão. Semina Ciências Agrarias. v. 36, p. 2185-2194, 2015. https://doi.org/10.5433/1679-0359.2015v36n3Supl1p2185 RODRIGUES, L.A.T.; DIECKOW, J.; GIACOMINI, S.J.; OTTONELLI, A.S.; ZORZO, G.P.P.; BAYER, C. Carbon sequestration capacity in no-till soil decreases in the long-term due to saturation of fine silt plus clay-size fraction. Geoderma, v. 412, p. 115711, 2022. https://doi.org/10.1016/j.geoderma.2022.115711 ROSA, R.; SANO, E. E.; ROSENDO, J. S. Estoque de carbono em solos sob pastagens cultivadas na bacia hidrográfica do rio paranaíba. Sociedade & Natureza, v. 26, n. 2, p. 333-351, 2014. https://doi.org/10.1590/1982-451320140210. ROSCOE, R.; BUURMAN, P.; VELTHORST, E. J.; VASCONCELLOS, C. A. Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado's oxisol. Geoderma, v. 104, p. 185-202, 2001. https://doi.org/10.1016/S0016-762 7061(01)00080-5 ROSINGER, C.; KEIBLINGER, K.; BIEBER, M.; BERNARDINI, L. G.; HUBER, S.; MENTLER, A.; SAE-TUN, O.; SCHARF, B.; BODNER, G. On-farm soil organic carbon sequestration potentials are dominated by site effects, not by management practices. Geoderma, v. 433, n. may, n. 116466, 2023. https://doi.org/10.1016/j.geoderma.2023.116466 ROWLEY, M. C.; GRAND, S.; VERRECCHIA, É. P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry, 137(1), 27-49, 2018. SÁ, J. C. M.; TIVET, F.; LAL, R.; BRIEDIS, C.; HARTMAN, D. C.; SANTOS, J. Z.; SANTOS, J. B. Long-term tillage systems impacts on soil C dynamics, soil resilience and agronomic productivity of a Brazilian Oxisol. Soil and Tillage Research, v. 136, p. 38-50, 2014. http://dx.doi.org/10.1016/j.still.2013.09.010. SANDERS, W. L.; GAYNOR, P. J. Analysis of switchback data using Statistical Analysis System, Inc.® software. J. Dairy Science, v. 70, p. 2186-2191, 1987. https://doi.org/10.3168/jds.S0022-0302(87)80273-4 70 SANT´ANNA, S. A. C.; JANTALIA, C.P.; SÁ, J. M.; VILELA, L.; MARCHÃO, R. L.; ALVES, B.J.R.; URQUIAGA, S.; BODDEY, R. M. Changes in soil organic carbon during 22 years of pastures, cropping or integrated crop/livestock systems in the Brazilian Cerrado. Agriculture, Ecosystems & Environment, v. 108, p. 101-120, 2017. https://doi.org/10.1007/s10705-016-9812-z SANTANA, M. S.; SAMPAIO, E. V. D. S. B.; GIONGO, V.; MENEZES, R. S. C.; DE JESUS, K. N.; ALBUQUERQUE, E. R. G. M.; NASCIMENTO, D. M.; PAREYN, F. G. C.; CUNHA, T. J. F.; SAMPAIO, R. M. B.; PRIMO, D. C. Carbon and nitrogen stocks of soils under different land uses in Pernambuco state, Brazil. Geoderma Regional, v. 16, n. e00205, 2019. https://doi.org/10.1016/j.geodrs.2019.e00205 SANTOS, C. A.; REZENDE, C. P.; PINHEIRO, E. F. M.; PEREIRA, J. M.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R M. Changes in soil carbon stocks after land-use change from native vegetation to pastures in the Atlantic forest region of Brazil. Geoderma, v. 337, n. September 2018, p. 394-401, 2019. https://doi.org/10.1016/j.geoderma.2018.09.045. SANTOS, C. A.; MONTEIRO, R. C.; HOMEM, B. G. C.; SALGADO, L. S.; CASAGRANDE, D.R. PEREIRA, J. M.; REZENDE, C. P.; ALVES, B. J. R.; BODDEY, R. M. Productivity of beef cattle grazing Brachiaria brizantha cv. Marandu with and without nitrogen fertilizer application or mixed pastures with the legume Desmodium ovalifolium. Grass Forage Science, v. 78, n. 1, p. 147-160, 2022. https://doi.org/10.1111/gfs.12581 SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J.F.; COELHO, M. R.; ALMEIDA, J. A.; FILHO, J. C. A.; OLIVEIRA, J. B.; CUNHA, T. J. F. Sistema Brasileiro de Classificacão de Solos. 5. ed., revisada e ampliada, Brasília, DF:Embrapa, 2018. SARKHOT, D. V.; COMERFORD, N.; JOKELA, E. J.; REEVES, J. B.; HARRIS, W. G. Aggregation and aggregate carbon in a forested southeastern coastal plain spodosol. Soil Science Society of America Journal. v. 71, n. 6, p. 1779-1787, 2007. https://doi.org/10.2136/sssaj2006.0340. SCHMIDT, M.; TORN, M.; ABIVEN, S. DITTMAR, T.; GUGGENBERGE, G.; JANSSENS, I. A.; KLEBER, M.; KNABNER, I. K.; LEHMANN, J.; MANNING, D. A. C.; NANNIPIERI, P.; RASSE, D. P.; WEINER, S.; TRUMBORE, S. E. Persistence of soil organic matter as an ecosystem property. Nature, v. 478, n. October, p. 49–56, 2011. https://doi.org/10.1038/nature10386 SCHULP, C. J. E.; VERBURG, P. H. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agriculture, Ecosystems & Environment, v. 133, n. 1-2, p. 86-97, 2009. https://doi.org/10.1016/j.agee.2009.05.005 SEEG - Sistema de Estimativa de Emissões de Gases de Efeito Estufa. Análise das emissões brasileiras de gases de efeito estufa e suas implicações para as metas climáticas do Brasil. 2021. SIGNOR, D.; DEON, M. D. I.; CAMARGO, P. B. D.; CERRI, C. E. P. Quantity and quality of soil organic matter as a sustainability index under different land uses in Eastern Amazon. Scientia Agricola, n. 75,p. 225-232, 2018. http://dx.doi.org/10.1590/1678-992X-2016-0089 71 SILVA, I. R.; MENDONÇA, E. S. Matéria orgânica do solo. IN: NOVAIS, R. F.; ALVAREZ V., V. H.; BARROS, N. F.; FONTES, R. L.; CANTARUTTI, R. B.; NEVES, J. C. L. Fertilidade do Solo. Viçosa, MG. Sociedade Brasileira de Ciência do Solo, 2007. SILVA, P. L. F.; OLIVEIRA, F. P.; PEREIRA, W. E.; BORBA, J. O. M.; TAVARES, D. D.; SANTOS, T. E. D.; MARTINS, A. F. Carbon stocks and hydrical retention in grass biomass in the Paraíba agreste mesoregion. Brazilian Journal of Biosystems Engineering v. 13, n. 2, p. 155-167, 2019. https://doi.org/10.18011/bioeng2019v13n2p155-167. SINGH, M.; SARKAR, B.; SARKAR, S.; CHURCHMAN, J.; BOLAN, N.; MANDAL, S.; MENON, M.; PURAKAYASTHA, T. J.; BEERLING, D. J. Stabilization of soil organic carbon as influenced by clay mineralogy. Advances in agronomy, 148, 33-84, 2018. https://doi.org/10.1016/bs.agron.2017.11.001 SISTI, C. P. J.; SANTOS, H. P.; KOCHHANN, R. A.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R.M. Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in southern Brazil. Soil and Tillage Research, v. 76, p. 39-58, 2004. https://doi.org/10.1016/j.still.2003.08.007 SIX, J.; CONANT, R. T.; PAUL, E. A.; PAUSTIAN, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and soil, v. 241, n. April, p. 155-176, 2002. SMITH, P.; FANG, C.; DAWSON, J. J.; MONCRIEFF, J. B. Impact of global warming on soil organic carbon. Advances in agronomy, 97, 1-43, 2008. https://doi.org/10.1016/S0065-2113(07)00001-6 SONG, W.; LIU, Y.; TONG, X. Forest Ecology and Management Newly sequestrated soil organic carbon varies with soil depth and tree species in three forest plantations from northeastern China. Forest Ecology and Management, v. 400, n. September, p. 384–395, 2017. https://doi.org/10.1016/j.foreco.2017.06.012. SONG, X. Y.; SPACCINI, R.; PAN, G.; PICCOLO, A. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils. Science of the total environment, 458, 319-330, 2013. https://doi.org/10.1016/j.scitotenv.2013.04.052 STEINBEISS, S.; BEßLER, H.; ENGELS, C.; TEMPERTON, V. M.; BUCHMANN, N.; ROSCHER, C.; KREUTZIGER, Y.; BAADE, J.; HABEKOST, M.; GLEIXNER, G. Plant diversity positively affects short‐term soil carbon storage in experimental grasslands. Global Change Biology, v. 14, n. 12, p. 2937-2949, 2008. https://doi.org/10.1111/j.1365-2486.2008.01697.x STEWART, C. E.; PAUSTIAN, K.; CONANT, R. T.; PLANTE, A. F.; SIX, J. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 86(1), 19-31, 2007. DOI 10.1007/s10533-007-9140-0 TAIZ, L.; ZEIGER, E.; MØLLER, I. M.; MURPHY, A. Fisiologia e desenvolvimento vegetal. 6. ed. – Porto Alegre: Artmed, 2017. 72 TARRÉ, R. M.; MACEDO, R.; CANTARUTTI, R. B.; REZENDE, C. P.; PEREIRA, J. M.; FERREIRA, E.; ALVES, B. J. R.; URQUIAGA, S.; BODDEY, R. M. The effect of the presence of a forage legume on nitrogen and carbon levels in soils under Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Plant Soil, v. 234, p. 15-26, 2001. https://doi.org/10.1023/A:1010533721740 TELLES, E. C. C.; CAMARGO, P. B.; MARTINELLI, L.A.; TRUMBORE, S. E.; COSTA, E. S.; SANTOS, J.; HIGUCHI, N.; OLIVEIRA JR, R. C. O. Influence of soil texture on carbon dynamics and storage potential in tropical forest soils of Amazonia. Global Biogeochemical Cycles, v. 17, n. 2, 2003. https://doi.org/10.1029/2002GB001953 TERRA, A. B. C.; FLORENTINO, L. A.; REZENDE, A. V.; SILVA, N. C. D. E. Leguminosas forrageiras na recuperação de pastagens no Brasil. Revista de Ciências Agrárias, v. 42, n. 2, p. 305–313, 2019. https://doi.org/10.19084/rca.16016. TRUJILLO, W.; FISHER, M. J.; LAL, R. Root dynamics of native savanna and introduced pastures in the Eastern Plains of Colombia. Soil and Tillage Research, v. 87, p. 28-38, 2006. https://doi.org/10.1016/j.still.2005.02.038 VICENTE, L. C.; GAMA-RODRIGUES, E. F.; GAMA-RODRIGUES, A. C. Organic carbon within soil aggregates under forestry systems and pasture in a southeast region of Brazil. Catena, v. 182, n. November, p. 104139, 2019. https://doi.org/10.1016/j.catena.2019.104139. VICENTE, L. C.; GAMA-RODRIGUES, E. F.; GAMA-RODRIGUES, A. C. Soil carbon stocks of Ultisols under different land use in the Atlantic rainforest zone of Brazil. Geoderma Regional, v. 7, n. 3, p. 330-337, 2016. https://doi.org/10.1016/j.geodrs.2016.06.003. VIDAL, A.; HIRTE, J.; BENDER, S. F.; MAYER, J.; GATTINGER, A.; HÖSCHEN, C.; SCHÄDLER, S.; IQBAL, T. M.; MUELLER, C. W. Linking 3D Soil Structure and Plant-Microbe-Soil Carbon Transfer in the Rhizosphere. Frontiers Environmental Sciense, v. 6, n. February, 2018. doi: 10.3389/fenvs.2018.00009 VON LÜTZOW, M.; KÖGEL‐KNABNER, I.; EKSCHMITT, K.; MATZNER, E.; GUGGENBERGER, G.; MARSCHNER, B.; FLESSA, H. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review. European journal of soil science, 57(4), 426-445, 2006. WAN, D.; MA, M.; PENG, N.; LUO, X.; CHEN, W.; CAI, P.; WU, L.; PAN, H.; CHEN, J.; YU, G.; HUANG, Q. Effects of long-term fertilization on calcium-associated soil organic carbon: Implications for C sequestration in agricultural soils. Science of The Total Environment, 772, 145037, 2021. https://doi.org/10.1016/j.scitotenv.2021.145037 WELLS, J. M.; CROW, S. E.; SIERRA, C. A. DEENIK, J. L.; CARLSON, K. M.; MEKI, M. N.; KINIRY, J. Edaphic controls of soil organic carbon in tropical agricultural landscapes. Scientific Reports, v. 12, n. 21574, 2022. https://doi.org/10.1038/s41598-022-24655-y WERTH, M.; KUZYAKOV, Y. 13C fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biology and Biochemistry, v. 42, n. 9, p. 1372-1384, 2010. 73 WHITEHEAD, D.; SCHIPPER, L. A.; PRONGER, J.; MOINET, G. Y.; MUDGE, P. L.; PEREIRA, R. C.; KIRSCHBAUM, M. U. F.; MCNALLY, S. R.; BEARE. M. H.; CAMPS-ARBESTAIN, M. Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture, ecosystems & environment, v. 265, p. 432-443, 2018. https://doi.org/10.1016/j.agee.2018.06.022 WIESMEIER, M.; URBANSKI, L.; HOBLEY, E.; LANG, B.; VON LÜTZOW, M.; SPIOTTA, E. M.; WESEMAEL, B. V.; RABOT, E.; LIE, M.; FRANCO, N. G.; WOLLSCHLÄGER, U.; VOGEL, H. J.; KNABNER, I. K. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma. v. 333, n. 1, p. 149-162, 2019. https://doi.org/10.1016/j.geoderma.2018.07.026 WINCK, B. R.; RIGOTTI, V. M.; SACCOL DE SÁ, E. L. Effects of different grazing intensities on the composition and diversity of Collembola communities in southern Brazilian grassland. Applied Soil Ecology, v. 144, n. December, p. 98-106, 2019. https://doi.org/10.1016/j.apsoil.2019.07.003. XU, X.; SCHAEFFER, S.; SUN, Z.; ZHANG, J.; AN, T.; WANG, J. Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels. Soil and Tillage Research, v. 199, n. 104593, 2020. https://doi.org/10.1016/j.still.2020.104593 YANG, J. Q.; ZHANG, X.; BOURG, I. C.; STONE, H. A. 4D imaging reveals mechanisms of clay-carbon protection and release. Nature communications, 12(1), 1-8, 2021. https://doi.org/10.1038/s41467-020-20798-6 ZHOU, G.; ZHOU, X.; HE, Y.; SHAO, J.; HU, Z.; LIU, R.; ZHOU, H.; HOSSEINIBAI, S. Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland ecosystems : a meta-analysis. Global Change Biology, v. 23, n. 3, p. 1167-1179, 2017. https://doi.org/10.1111/gcb.13431. ZINN, Y. L.; LAL, R.; BIGHAM, J. M.; RESCK, D. V. Edaphic controls on soil organic carbon retention in the Brazilian Cerrado: texture and mineralogy. Soil Science Society of America Journal, v. 71, n. 4, p. 1204-1214, 2007. ZINN, Y. L.; MARRENJO, G. J.; SILVA, C. A. Soil C: N ratios are unresponsive to land use change in Brazil: A comparative analysis. Agriculture, ecosystems & environment, v. 255, n. March, p. 62-72, 2018. https://doi.org/10.1016/j.agee.2017.12.019.pt_BR
dc.subject.cnpqAgronomiapt_BR
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2023 - WESLEY DOS SANTOS SOUZA.pdf1.4 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.