Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/19771Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Teles, Érico Atílio de Paiva | - |
| dc.date.accessioned | 2025-01-24T14:43:53Z | - |
| dc.date.available | 2025-01-24T14:43:53Z | - |
| dc.date.issued | 2023-03-02 | - |
| dc.identifier.citation | TELES, Érico Atílio de Paiva. Seleção e identificação de bactérias halofílicas e halotolerantes solubilizadoras de fosfato. 2023. 39f. Dissertação (Mestrado em Agronomia, Ciência do solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, 2023. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/19771 | - |
| dc.description.abstract | A salinização afeta gravemente a produção agrícola em todo o mundo. Esse processo ocorre naturalmente, mas é bastante agravado e acelerado por ações antrópicas. Outra questão que limita a produção agrícola é a baixa disponibilidade de fósforo para as plantas no solo. Isso ocorre devido à alta afinidade do fósforo solúvel a outros elementos presentes no solo, o que reduz a eficiência de fertilizantes fosfatados. A rizosfera de plantas halófitas abriga diversos microrganismos que contribuem para o estabelecimento desses vegetais sob estresse salino, reduzindo os efeitos deletérios da salinidade e através de atributos de promoção de crescimento vegetal. A utilização de inoculantes de bactérias solubilizadoras de fosfato tem sido considerada uma abordagem promissora para o estabelecimento e incremento da produção de culturas sob condições de deficiência nutricional e/ou outros estresses ambientais como a salinidade do solo. Dessa forma, o objetivo deste trabalho foi identificar 47 isolados bacterianos, previamente isolados da rizosfera de plantas halófitas, pelo sequenciamento do gene 16S rDNA, avaliá-los quanto ao desenvolvimento em concentrações crescentes de NaCl, classificá-los quanto a resposta a salinidade e avaliar a atividade de solubilização de fosfato. A capacidade de solubilização de fosfato foi avaliada utilizando os fosfatos minerais fosfato de cálcio dibásico (CaHPO4) e fosfato de alumínio (AlPO4) em meios de cultura sólido e líquido. Os gêneros identificados foram Bacillus sp., Citrobacter sp., Enterobacter sp., Halobacillus sp., Halomonas sp., Kushneria sp., Pantoea sp., Pseudomonas sp., Oceanobacillus sp. e Staphylococcus sp., sendo os mais abundantes entre os isolados os gêneros Enterobacter sp, Pseudomonas sp. e Bacillus sp. Não foi possível identificar o isolado 145, que apresentou maior identidade com sequências de bactérias não cultiváveis depositadas no NCBI. Quinze isolados, dos gêneros Bacillus sp., Enterobacter sp., Halobacillus sp., Halomonas sp., Pantoea so., Pseudomonas sp. e Staphylococcus sp., foram classificados com halofílicos e 32 isolados dos gêneros Bacillus sp. Enterobacter sp., Halomonas sp., Kushneria sp., Pseudomonas sp., Oceanobacillus sp. e Staphylococcus sp. foram classificadas como halotolerantes. Todos isolados apresentaram desenvolvimento de colônias em meio sólido contendo ambas as fontes de fosfato, porém três deles não apresentaram halo de solubilização no meio com fosfato de cálcio. Não foi observado halo no meio contendo fosfato de alumínio. Os isolados que apresentaram a maior capacidade de solubilização de fósforo a partir do fosfato de cálcio em meio líquido foram Kushneria sp. (102), Enterobacter sp. (186), o isolado 145 e Bacillus sp. (120), com 989,53 mg/L, 956,37 mg/L, 783, 82 mg/L e 757,60 mg/L, respectivamente. Para a solubilização do fosfato de alumínio os isolados que apresentaram os maiores resultados foram Bacillus sp. (89), Oceanobacillus sp. (94), que disponibilizaram 61,10 mg/L e 45,82 mg/L P no meio. Os isolados Pantoea sp. (150) e Pseudomonas sp. (183) apresentaram atividade de solubilização considerável para o fosfato de cálcio e alumínio, 436,04 mg/L e 23,89 mg/L respectivamente para o primeiro e 376,49 mg/L e 21,28 mg/L para o segundo. Os resultados confirmam que a rizosfera de plantas halófitas abriga bactérias de diversos táxons com capacidade de crescer em concentrações elevadas de sal e promover a solubilização de fosfato. | pt_BR |
| dc.description.sponsorship | Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Estresse salino | pt_BR |
| dc.subject | Rizobactérias | pt_BR |
| dc.subject | Solubilização de fosfato | pt_BR |
| dc.subject | Salt stress | pt_BR |
| dc.subject | Rhizobacteria | pt_BR |
| dc.subject | Phosphate solubilization | pt_BR |
| dc.title | Seleção e identificação de bactérias halofílicas e halotolerantes solubilizadoras de fosfato | pt_BR |
| dc.title.alternative | Selection and identification of halophilic and halotolerant bacteria that solubilize phosphate | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | Salinization severely affects agricultural production worldwide. This process occurs naturally, but is greatly aggravated and accelerated by human actions. Another issue that limits agricultural production is the low availability of phosphorus for plants in the soil. This occurs due to the high affinity of soluble phosphorus to other elements present in the soil, which reduces the efficiency of phosphate fertilizers. The rhizosphere of halophytic plants harbors several microorganisms that contribute for the establishment of these plants under saline stress, reducing the deleterious effects of salinity and through attributes of plant growth promotion. The use of phosphate-solubilizing bacterial inoculants has been considered a promising approach for establishing and increasing crop production under conditions of nutritional deficiency and/or other environmental stresses such as soil salinity. Thus, the aim of this work was to identify 47 bacterial isolates, previously isolated from the rhizosphere of halophyte plants, by sequencing of the 16S rDNA gene, to evaluate their development in increasing concentrations of NaCl, classify them according to salinity response and phosphate solubilization activity. Phosphate solubilization capacity was evaluated using the mineral phosphates dibasic calcium phosphate (CaHPO4) and aluminum phosphate (AlPO4) in solid and liquid culture media. The genera identified were Bacillus sp., Citrobacter sp., Enterobacter sp., Halobacillus sp., Halomonas sp., Kushneria sp., Pantoea sp., Pseudomonas sp., Oceanobacillus sp. and Staphylococcus sp., and the most abundant among isolates were of the genera Enterobacter sp, Pseudomonas sp. and Bacillus sp. It was not possible to identify isolate 145, which had greater identity with sequences from non-cultivable bacteria deposited at the NCBI. Fifteen isolates from the genera Bacillus sp., Enterobacter sp., Halobacillus sp., Halomonas sp., Pantoea sp., Pseudomonas sp. and Staphylococcus sp. were classified as halophilic and 32 isolates of the genus Bacillus sp. Enterobacter sp., Halomonas sp., Kushneria sp., Pseudomonas sp., Oceanobacillus sp. and Staphylococcus sp. were classified as halotolerant. All isolates developed from colonies on solid medium containing insoluble phosphate as sources, but three of them did not show a solubilization halo in the medium with calcium phosphate. No halo was observed in the media containing aluminum phosphate. The isolates that developed the greatest ability to solubilize phosphorus from calcium phosphate in liquid medium were Kushneria sp. (102), Enterobacter sp. (186), isolate 145 and Bacillus sp. (120), 989.53 mg/L, 956.37 mg/L, 783, 82 mg/L and 757.60 mg/L, respectively. For the solubilization of aluminum phosphate, the isolates that presented the best results were Bacillus sp. (89) and Oceanobacillus sp. (94), which raised soluble P by 61.10 mg/L and 45.82 mg/L, respectively. Pantoea sp. (150) and Pseudomonas sp. (183) showed considerable solubilization activity for calcium and aluminum phosphate, 436.04 mg/L and 23.89 mg/L respectively for the first and 376.49 mg/L and. 21.28 mg/L for the second. The results confirm that the rhizosphere of halophytic plants harbor bacteria from different taxa capable of growing | en |
| dc.contributor.advisor1 | Coelho, Irene da Silva | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0003-1357-2529 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2191695584157582 | pt_BR |
| dc.contributor.advisor-co1 | Rouws, Luc Felicianus Marie | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-4634-5501 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/4500797890789377 | pt_BR |
| dc.contributor.referee1 | Coelho, Irene da Silva | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0003-1357-2529 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/2191695584157582 | pt_BR |
| dc.contributor.referee2 | Zonta, Everaldo | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0001-8106-0504 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/3943601345963141 | pt_BR |
| dc.contributor.referee3 | Coelho, Marcia Reed Rodrigues | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-7528-1615 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/6287470887476622 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/0697885953176336 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Agronomia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | pt_BR |
| dc.relation.references | ABREU, C. S.; FIGUEIREDO, J. E. F.; OLIVEIRA, C. A.; DOS SANTOS, V. L.; GOMES, E. A.; RIBEIRO, V. P.; BARROS, B. A.; LANA, U. G. P.; MARRIEL, I. E. Maize endophytic bacteria as mineral phosphate solubilizers. Genetics and Molecular Research, vol. 16, no. 1, 16 Feb. 2017. AFRIDI, M. S.; VAN HAMME, J. d.; BUNDSCHUH, J.; SUMAIRA; KHAN, M. N.; SALAM, A.; WAQAR, M.; MUNIS, M. F. H.; CHAUDHARY, H. J. Biotechnological approaches in agriculture and environmental management - bacterium Kocuria rhizophila 14ASP as heavy metal and salt- tolerant plant growth- promoting strain. Biologia, vol. 76, no. 10, p. 3091–3105, Oct. 2021. ALORI, E. T.; GLICK, B. R.; BABALOLA, O. O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in microbiology, vol. 8, p. 971, 2 Jun. 2017. ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, v. 25, n. 17, p. 3389–3402, 1997. AMNA; UD DIN, B.; SARFRAZ, S.; XIA, Y.; KAMRAN, M. A.; JAVED, M. T.; SULTAN, T.; HUSSAIN MUNIS, M. F.; CHAUDHARY, H. J. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress. Ecotoxicology and Environmental Safety, vol. 183, p. 109466, 15 Nov. 2019. AMOOZEGAR, M. A.; SAFARPOUR, A.; NOGHABI, K. A.; BAKHTIARY, T.; VENTOSA, A. Halophiles and their vast potential in biofuel production. Frontiers in microbiology, vol. 10, p. 1895, 22 Aug. 2019. AZZI, V.; KANSO, A.; KAZPARD, V.; KOBEISSI, A.; LARTIGES, B.; EL SAMRANI, A. Lactuca sativa growth in compacted and non-compacted semi-arid alkaline soil under phosphate fertilizer treatment and cadmium contamination. Soil and Tillage Research, vol. 165, p. 1–10, Jan. 2017. ARCAND, M. M.; SCHNEIDER, K. D. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Anais da Academia Brasileira de Ciencias, vol. 78, no. 4, p. 791–807, Dec. 2006. BAIS, H. P.; WEIR, T. L.; PERRY, L. G.; GILROY, S.; VIVANCO, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual review of plant biology, vol. 57, p. 233–266, 2006. BASHAN, Y.; KAMNEV, A. A.; DE-BASHAN, L. E. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils, v. 49, n. 4, p. 465–479, May 2013. 32 BASHAN, Y.; MORENO, M.; TROYO, E. Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biology and fertility of soils, vol. 32, no. 4, p. 265–272, 23 Nov. 2000. BATISTA, B. D.; LACAVA, P. T.; FERRARI, A.; TEIXEIRA-SILVA, N. S.; BONATELLI, M. L.; TSUI, S.; MONDIN, M.; KITAJIMA, E. W.; PEREIRA, J. O.; AZEVEDO, J. L.; QUECINE, M. C. Screening of tropically derived, multi-trait plant growth- promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiological Research, vol. 206, p. 33–42, Jan. 2018. BERRAQUERA, F. R.; BAYA, A.; CORMENZANA, A. R. Establecimiento de índices para el estudio de la solubilización de fosfatos por bacterias del suelo. Ars. Pharm., 1976. BOITT, G.; SIMPSON, Z. P.; TIAN, J.; BLACK, A.; WAKELIN, S. A.; CONDRON, L. M. Plant biomass management impacts on short-term soil phosphorus dynamics in a temperate grassland. Biology and Fertility of Soils, vol. 54, no. 3, p. 397–409, Apr. 2018. BULGARI, R.; FRANZONI, G.; FERRANTE, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy, vol. 9, no. 6, p. 306, 12 Jun. 2019. CHEN, Q.; LIU, S. Identification and Characterization of the Phosphate-Solubilizing Bacterium Pantoea sp. S32 in Reclamation Soil in Shanxi, China. Frontiers in microbiology, vol. 10, p. 2171, 19 Sep. 2019. CHOPRA, A.; KUMAR VANDANA, U.; RAHI, P.; SATPUTE, S.; MAZUMDER, P. B. Plant growth promoting potential of Brevibacterium sediminis A6 isolated from the tea rhizosphere of Assam, India. Biocatalysis and agricultural biotechnology, vol. 27, p. 101610, Aug. 2020. COMPANT, S.; CLÉMENT, C.; SESSITSCH, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, vol. 42, no. 5, p. 669–678, May 2010. COSTA, C. S. B.; HERRERA, O. B. Halophytic life in brazilian salt flats: biodiversity, uses and threats. In: KHAN, M. A.; BOËR, B.; ȪZTURK, M.; CLÜSENER-GODT, M.; GUL, B.; BRECKLE, S.-W. (eds.). Sabkha Ecosystems. Tasks for vegetation science. Cham: Springer International Publishing, 2016. vol. 48, p. 11–27. DASSARMA, S.; DASSARMA, P. Halophiles and their enzymes: negativity put to good use. Current Opinion in Microbiology, vol. 25, p. 120–126, 9 Jun. 2015. DESALE, P.; PATEL, B.; SINGH, S.; MALHOTRA, A.; NAWANI, N. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. Journal of Basic Microbiology, vol. 54, no. 8, p. 781–791, Aug. 2014. DIAS, N.S.; BLANCO F.F.; SOUZA E.R.; FERREIRA J.F.S.; NETO, O.N.S.; QUEIROZ, I.S.R. Efeitos dos sais na planta e tolerância das culturas à salinidade. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. 33 DÖBEREINER, J.; ANDRADE, V. D. O.; BALDANI, V. L. D. Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Embrapa Agrobiologia-Documentos (INFOTECA-E). 1999. DODD, I. C.; PÉREZ-ALFOCEA, F. Microbial amelioration of crop salinity stress. Journal of Experimental Botany, vol. 63, no. 9, p. 3415–3428, May 2012. DU, G.-X.; QU, L.-Y.; HONG, X.-G.; LI, C.-H.; DING, D.-W.; GAO, P.; XU, Q.-Z. Kushneria phosphatilytica sp. nov., a phosphate-solubilizing bacterium isolated from a solar saltern. International Journal of Systematic and Evolutionary Microbiology, vol. 71, no. 2, Feb. 2021. EGAMBERDIEVA, D.; ALIMOV, J.; SHURIGIN, V.; ALAYLAR, B.; WIRTH, S.; BELLINGRATH-KIMURA, S. D. Diversity and Plant Growth-Promoting Ability of Endophytic, Halotolerant Bacteria Associated with Tetragonia tetragonioides (Pall.) Kuntze. Plants, vol. 11, no. 1, 24 Dec. 2021. EGAMBERDIEVA, D.; KAMILOVA, F.; VALIDOV, S.; GAFUROVA, L.; KUCHAROVA, Z.; LUGTENBERG, B. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology, vol. 10, no. 1, p. 1–9, Jan. 2008. ETESAMI, H.; BEATTIE, G. A. Mining Halophytes for Plant Growth-Promoting Halotolerant Bacteria to Enhance the Salinity Tolerance of Non-halophytic Crops. Frontiers in microbiology, v. 9, p. 148, 8 Feb. 2018. FAO; GLOBAL MAP OF SALT-AFFECTED SOILS | FAO SOILS PORTAL | FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. FAO [s. d.]. Disponível em: https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/global-map-of-salt- affected soils/en/#:~:text=With%20the%20current%20information%20from%20118%20countries%20 covering,saline%2C%2010%25%20are%20sodic%20and%205%25%20are%20saline- sodic. Acesso em jun. 2022 FELSENSTEIN, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, vol. 39, no. 4, p. 783–791, Jul. 1985. FERREIRA, C. M. H.; SOARES, H. M. V. M.; SOARES, E. V. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. The Science of the Total Environment, vol. 682, p. 779–799, 10 Sep. 2019. FERREIRA, J P; VIDAL, M S and BALDANI, J I. Método para detecção e quantificação da atividade de ACC deaminase em bactérias diazotróficas promotoras de crescimento vegetal. Embrapa Agrobiologia-Comunicado Técnico (INFOTECA-E). out. 2020. FROSSARD, E.; ACHAT, D. L.; BERNASCONI, S. M.; BÜNEMANN, E. K.; FARDEAU, J. C.; JANSA, J.; MOREL, C.; RABEHARISOA, L.; RANDRIAMANANTSOA, L.; SINAJ, S.; TAMBURINI, F.; OBERSON, A. The use of tracers to investigate phosphate cycling in soil–plant systems. In: BÜNEMANN, E.; OBERSON, A.; FROSSARD, E. 34 (eds.). Phosphorus in action: biological processes in soil phosphorus cycling. Soil Biology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. vol. 26, p. 59–91. GAMALERO, E.; BONA, E.; TODESCHINI, V.; LINGUA, G. Saline and Arid Soils: Impact on Bacteria, Plants, and their Interaction. Biology, vol. 9, no. 6, 2 Jun. 2020. GLICK, B. R. Introduction to Plant Growth-Promoting Bacteria. Beneficial Plant-Bacterial Interactions. Cham: Springer International Publishing, 2020. p. 1–37. GLOBALFERT. Fosfatados – Principais origens de importação no Brasil em 2018. GlobalFert. 21 mai. 2019. Boletins. Disponível em: https://www.globalfert.com.br/boletins/fosfatados-principais-origens-de-importacao-no- brasilem-2018-2/. Acesso em jun. 2022. GOMES, E. A.; SOUZA, F. A.; SOUSA, S. M.; VASCONCELOS, M. J. V.; MARRIEL, I. E.; SILVA, U. C. Prospecção de Comunidades Microbianas do Solo Ativas no Aproveitamento Agrícola de Fontes de Fósforo de Baixa Solubilidade. Documentos 107, 2010. GHOSH, P. K.; DE, T. K.; MAITI, T. K. Role of ACC Deaminase as a Stress Ameliorating Enzyme of Plant Growth-Promoting Rhizobacteria Useful in Stress Agriculture: A Review. In: MEENA, V. S. (ed.). Role of rhizospheric microbes in soil. Singapore: Springer Singapore, 2018. p. 57–106. HADLICH, G. M.; UCHA, J. M.; CELINO, J. J. Apicuns na Baía de Todos os Santos: distribuição espacial, descrição e caracterização física e química. In: Queiroz, A. F. de S.; CELINO, J. J. (Org.). Avaliação de ambientes na Baía de Todos os Santos: aspectos geoquímicos, geofísicos e biológicos, cap. 2, p. 59-72. Salvador: UFBA 2008. HAGEMANN, M. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiology Reviews, vol. 35, no. 1, p. 87–123, Jan. 2011. HANIF, M. K.; HAMEED, S.; IMRAN, A.; NAQQASH, T.; SHAHID, M.; VAN ELSAS, J. D. Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Frontiers in microbiology, vol. 6, p. 583, 9 Jun. 2015. HASANUZZAMAN, M.; NAHAR, K.; ALAM, M. M.; BHOWMIK, P. C.; HOSSAIN, M. A.; RAHMAN, M. M.; PRASAD, M. N. V.; OZTURK, M.; FUJITA, M. Potential use of halophytes to remediate saline soils. BioMed research international, vol. 2014, p. 589341, 6 Jul. 2014 HASHEM, A.; ABD ALLAH, E. F.; ALQARAWI, A. A.; AL-HUQAIL, A. A.; SHAH, M. A. Induction of Osmoregulation and Modulation of Salt Stress in Acacia gerrardii Benth. by Arbuscular Mycorrhizal Fungi and Bacillus subtilis (BERA 71). BioMed research international, vol. 2016, p. 6294098, 15 Aug. 2016. HIGGINS, DESMOND G. CLUSTAL V: multiple alignment of DNA and protein sequences. In: Computer analysis of sequence data. Springer, Totowa, NJ. p.307-318, 1994. 35 HÖHN, A.; TOBSCHALL, H. J.; MADDOCK, J. E. L. Biogeochemistry of a hypersaline lagoon east of Rio de Janeiro, Brazil. Science of The Total Environment, vol. 58, no. 1–2, p. 175–185, Dec. 1986. HONMA, M.; SHIMOMURA, T. Metabolism of 1-Aminocyclopropane-1-carboxylic Acid. Agricultural and biological chemistry, vol. 42, no. 10, p. 1825–1831, Oct. 1978. HUANG, L.; LI, Q.-C.; HOU, Y.; LI, G.-Q.; YANG, J.-Y.; LI, D.-W.; YE, J.-R. Bacillus velezensis strain HYEB5-6 as a potential biocontrol agent against anthracnose onEuonymus japonicus. Biocontrol science and technology, vol. 27, no. 5, p. 636–653, 4 May 2017. HUSSAIN, A.; AHMAD, M.; MUMTAZ, M. Z.; ALI, S.; SARFRAZ, R.; NAVEED, M.; JAMIL, M.; DAMALAS, C. A. Integrated Application of Organic Amendments with Alcaligenes sp. AZ9 Improves Nutrient Uptake and Yield of Maize (Zea mays). Journal of plant growth regulation, vol. 39, no. 3, p. 1277–1292, Sep. 2020. IQBAL, S.; HUSSAIN, S.; ABDUL QAYYAUM, M.; ASHRAF, M.; SAIFULLAH. The Response of Maize Physiology under Salinity Stress and Its Coping Strategies. In: HOSSAIN, A. (ed.). Plant Stress Physiology. [S. l.]: IntechOpen, 2021. JHA, B.; GONTIA, I.; HARTMANN, A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant and soil, vol. 356, no. 1–2, p. 265–277, Jul. 2012. KATHERINE, K. Environmental impacts of agricultural technologies. Evans School Policy Analysis & Research (EPAR). EPAR Brief, n. 65, p. 20, 2010. JOHNSON, J. S.; SPAKOWICZ, D. J.; HONG, B.-Y.; PETERSEN, L. M.; DEMKOWICZ, P.; CHEN, L.; LEOPOLD, S. R.; HANSON, B. M.; AGRESTA, H. O.; GERSTEIN, M.; SODERGREN, E.; WEINSTOCK, G. M. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, vol. 10, no. 1, p. 5029, 6 Nov. 2019. KRISHNARAJ, P. U. DAHALE U. P. Mineral phosphate solubilization: concepts and prospects in sustainable agriculture. Proc Indian Natl Sci Acad. 2014. p. 389-405. KROLOW, R. H.; MISTURA, C.; COELHO, R. W.; SIEWERDT, L.; ZONTA, É. P. Efeito do fósforo e do potássio sobre o desenvolvimento e a nodulação de três leguminosas anuais de estação fria. Revista Brasileira de Zootecnia, vol. 33, no. 6 suppl 3, p. 2224–2230, Dec. 2004. KUMAR ARORA, N.; FATIMA, T.; MISHRA, J.; MISHRA, I.; VERMA, S.; VERMA, R.; VERMA, M.; BHATTACHARYA, A.; VERMA, P.; MISHRA, P.; BHARTI, C. Halo- tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of advanced research, vol. 26, p. 69–82, Nov. 2020. LIU, Z.; LI, Y. C.; ZHANG, S.; FU, Y.; FAN, X.; PATEL, J. S.; ZHANG, M. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Applied Soil Ecology, vol. 96, p. 217–224, Nov. 2015. 36 MERBACH, W.; FANKEM, H.; DEUBEL, A. Influence of rhizosphere bacteria of African oil palm (Elaeis guineensis) on calcium, iron, and aluminum phosphate in vitro mobilization. In: International symposium “Root Research and Applications”, 2–4 BOKU, Vienna, Austria. Sep. 2009. URL: http://asrr.boku.ac.at/fileadmin/files/ RRcd/session03/poster/042.pdf MOKRANI, S.; NABTI, E.; CRUZ, C. Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Applied Sciences, vol. 10, no. 20, p. 7025, 10 Oct. 2020. MUKHTAR, S.; ZAREEN, M.; KHALIQ, Z.; MEHNAZ, S.; MALIK, K. A. Phylogenetic analysis of halophyte-associated rhizobacteria and effect of halotolerant and halophilic phosphate solubilizing biofertilizers on maize growth under salinity stress conditions. Journal of Applied Microbiology, 25 Oct. 2019. NADEEM, S. M.; ZAHIR, Z. A.; NAVEED, M.; NAWAZ, S. Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Annals of microbiology, vol. 63, no. 1, p. 225–232, Mar. 2013. NAUTIYAL, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, v. 170, n. 1, p. 265–270, 1 Jan. 1999. OLIVEIRA, C. A.; ALVES, V. M. C.; MARRIEL, I. E.; GOMES, E. A.; SCOTTI, M. R.; CARNEIRO, N. P.; GUIMARÃES, C. T.; SCHAFFERT, R. E.; SÁ, N. M. H. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, vol. 41, no. 9, p. 1782–1787, Sep. 2009. ONDRASEK, G.; RATHOD, S.; MANOHARA, K. K.; GIREESH, C.; ANANTHA, M. S.; SAKHARE, A. S.; PARMAR, B.; YADAV, B. K.; BANDUMULA, N.; RAIHAN, F.; ZIELIŃSKA-CHMIELEWSKA, A.; MERIÑO-GERGICHEVICH, C.; REYES-DÍAZ, M.; KHAN, A.; PANFILOVA, O.; SEGUEL FUENTEALBA, A.; ROMERO, S. M.; NABIL, B.; WAN, C. C.; HORVATINEC, J. Salt stress in plants and mitigation approaches. Plants, vol. 11, no. 6, 8 Mar. 2022. OREN, A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. Journal of Industrial Microbiology & Biotechnology, vol. 28, no. 1, p. 56–63, Jan. 2001. OREN, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems, vol. 4, p. 2, 15 Apr. 2008. OREN, A. Thermodynamic limits to microbial life at high salt concentrations. Environmental Microbiology, vol. 13, no. 8, p. 1908–1923, Aug. 2011. OTEINO, N.; LALLY, R. D.; KIWANUKA, S.; LLOYD, A.; RYAN, D.; GERMAINE, K. J.; DOWLING, D. N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in microbiology, vol. 6, p. 745, 22 Jul. 2015. 37 PARKS, D. H.; CHUVOCHINA, M.; WAITE, D. W.; RINKE, C.; SKARSHEWSKI, A.; CHAUMEIL, P.-A.; HUGENHOLTZ, P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nature Biotechnology, vol. 36, no. 10, p. 996–1004, Nov. 2018. PEDROTTI, A.; CHAGAS, R. M.; RAMOS, V. C.; PRATA, A. P. M.; LUCAS A. A. T.; SANTOS P. B. S. Causas e conseqüências do processo de salinização dos solos. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental, v. 19, n. 2, p. 1308-1324, 2015. PELLEGRINI, J. A. C. Caracterização da planície hipersalina (Apicum) associada a um bosque de mangue em Guaratiba, Baía de Sepetiba, Rio de Janeiro - RJ. 2000. Dissertação (Mestrado em Oceanografia Biológica) - Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 2000. PEREIRA, J. R.; Solos salinos e sodicos.In: Reuniao Brasileira De Fertilidade Do Solo, Acidez e calagem no Brasil. Campinas: p. 127-143., SBCS, 1982. PESSOA, L. G. M.; FREIRE, M. B. G. dos S.; FILHO, J. C. de A.; SANTOS, P. R.; MIRANDA, M. F. A.; FREIRE, F. J. Characterization and classification of halomorphic soils in the semiarid region of northeastern brazil. Journal of Agricultural Studies, vol. 11, no. 4, p. 405, 15 Mar. 2019 RASUL, M.; YASMIN, S.; SULEMAN, M.; ZAHEER, A.; REITZ, T.; TARKKA, M. T.; ISLAM, E.; MIRZA, M. S. Glucose dehydrogenase gene containing phosphobacteria for biofortification of Phosphorus with growth promotion of rice. Microbiological Research, vol. 223–225, p. 1–12, 22 Mar. 2019. RAWAT, P.; DAS, S.; SHANKHDHAR, D.; SHANKHDHAR, S. C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of soil science and plant nutrition, vol. 21, no. 1, p. 49–68, Mar. 2021. RUPPEL, S.; FRANKEN, P.; WITZEL, K. Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology, vol. 40, no. 9, p. 940, 2013. RUSSELL, N. J. Adaptive modifications in membranes of halotolerant and halophilic microorganisms. Journal of Bioenergetics and Biomembranes, vol. 21, no. 1, p. 93–113, Feb. 1989 SAGAR, A.; RAI, S.; ILYAS, N.; SAYYED, R. Z.; AL-TURKI, A. I.; EL ENSHASY, H. A.; SIMARMATA, T. Halotolerant Rhizobacteria for Salinity-Stress Mitigation: Diversity, Mechanisms and Molecular Approaches. Sustainability, vol. 14, no. 1, p. 490, 3 Jan. 2022. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R., ALMEIDA, J. A. de; ARAUJO FILHO, J. C. de; OLIVEIRA, J. B. de; CUNHA, T. J. F. Sistema Brasileiro de Classificação dos Solos. Brasília, DF: Embrapa, 2018. SANTOS, D. R. DOS; GATIBONI, L. C.; KAMINSKI, J. Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Ciência Rural, v. 38, n. 2, p. 576–586, Apr. 2008. 38 SARETHY, I. P.; PAN, S.; DANQUAH, M. K. Modern taxonomy for microbial diversity. In: GRILLO, O. (ed.). Biodiversity - The Dynamic Balance of the Planet. [S. l.]: InTech, 2014. SARI, I.; DIN, Z. B. Effects of salinity on the uptake of lead and cadmium by two mangrove species Rhizophora apiculata Bl. and Avicennia alba Bl. Chemistry and Ecology, vol. 28, no. 4, p. 365–374, Aug. 2012. SCHAEFFER-NOVELLI, Y.; CINTRÓN-MOLERO, G.; SOARES, M. L. G.; DE-ROSA, T. Brazilian mangroves. Aquatic ecosystem health & management, vol. 3, no. 4, p. 561–570, 1 Jan. 2000. SHAILENDRA SINGH, G. G. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology, vol. 07, no. 02, 2015. SHI, W.; TAKANO, T.; LIU, S. Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World journal of microbiology & biotechnology, v. 28, n. 5, p. 2147–2157, May 2012. SINGH, M.; KUMAR, J.; SINGH, S.; SINGH, V. P.; PRASAD, S. M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology, vol. 14, no. 3, p. 407–426, Sep. 2015. SINGH, P.; JAIN, K.; DESAI, C.; TIWARI, O.; MADAMWAR, D. Microbial community dynamics of extremophiles/extreme environment. Microbial diversity in the genomic era. [S. l.]: Elsevier, 2019. p. 323–332. SUTTON, G. C.; RUSSELL, N. J.; QUINN, P. J. The effect of salinity on the phase behaviour of total lipid extracts and binary mixtures of the major phospholipids isolated from a moderately halophilic eubacterium. Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1061, no. 2, p. 235–246, Jan. 1991. TEIXEIRA, P. C., DONAGEMMA, G. K., FONTANA, A., & TEIXEIRA, W. G. Manual de métodos de análise de solo. Brasília, DF: Embrapa, 2017. 3. ed. rev. e ampl., 574 p. 2017 TINDALL, B. J. The combination Enterobacter agglomerans is to be cited as Enterobacter agglomerans (Beijerinck 1888) Ewing and Fife 1972 and the combination Pantoea agglomerans is to be cited as Pantoea agglomerans (Beijerinck 1888) Gavini et al. 1989. Opinion 90. Judicial Commission of the International Committee on Systematics of Prokaryotes. International Journal of Systematic and Evolutionary Microbiology, vol. 64, no. Pt 10, p. 3582–3583, Oct. 2014. WALTERSON, A. M.; STAVRINIDES, J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiology Reviews, vol. 39, no. 6, p. 968–984, Nov. 2015. WAN, W.; QIN, Y.; WU, H.; ZUO, W.; HE, H.; TAN, J.; WANG, Y.; HE, D. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources 39 utilizing capability and their potential for lead immobilization in soil. Frontiers in microbiology, vol. 11, p. 752, 23 Apr. 2020. WOO, P. C. Y.; LAU, S. K. P.; TENG, J. L. L.; TSE, H.; YUEN, K. Y. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection, vol. 14, no. 10, p. 908–934, Oct. 2008. XAVIER, J. F.; Isolamento e Caracterização de Bactérias Associadas À Rizosfera de Plantas Halófitas. 2021.Dissertação (Mestrado em Agronomia - Ciências do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. ZHANG, H.; IRVING, L. J.; MCGILL, C.; MATTHEW, C.; ZHOU, D.; KEMP, P. The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Annals of Botany, vol. 106, no. 6, p. 1027–1035, Dec. 2010. ZHANG, S.; FAN, C.; WANG, Y.; XIA, Y.; XIAO, W.; CUI, X. Salt-tolerant and plant- growth-promoting bacteria isolated from high-yield paddy soil. Canadian Journal of Microbiology, vol. 64, no. 12, p. 968–978, Dec. 2018. ZHU, F.; QU, L.; HONG, X.; SUN, X. Isolation and Characterization of a Phosphate- Solubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evidence-Based Complementary and Alternative Medicine, vol. 2011, p. 615032, 2 Jun. 2011. ZHU, J.; LI, M.; WHELAN, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. The Science of the Total Environment, vol. 612, p. 522–537, 15 Jan. 2018. | pt_BR |
| dc.subject.cnpq | Agronomia | pt_BR |
| Appears in Collections: | Mestrado em Agronomia - Ciência do Solo | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2023 - Érico Atílio de Paiva Teles.pdf | 2.31 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
