Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/19974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSouza, Hemilly Oliveira-
dc.date.accessioned2025-02-04T15:36:11Z-
dc.date.available2025-02-04T15:36:11Z-
dc.date.issued2023-08-21-
dc.identifier.citationSOUZA, Hemilly Oliveira. Investigação de modelos de formação de glicolaldeído, gliceraldeído e di-hidroxiacetona no meio interestelar. 2023. 63 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/19974-
dc.description.abstractA partir de pesquisas observacionais, cerca de 241 moléculas orgânicas complexas foram detectadas em meio interestelar e circunstelar. Além disso, uma diversidade de compostos orgânicos, incluindo biomoléculas, tem sido identificada em fragmentos de cometas e meteoritos. Entre tais biomoléculas, açúcares e seus precursores despertam especial interesse. Os objetivos gerais deste trabalho são: investigar mecanismos de reação, ainda não elucidados e em condições astroquímicas para a síntese abiótica dos precursores de açúcares: glicolaldeído (GLA), gliceraldeído (GLI) e di-hidroxiacetona (DI) em fase gasosa e em superfícies. O mecanismo de síntese de GLA em fase gasosa foi investigadas em nível CCSD(T)//M06-2X/aug-cc-pVTZ+ZPE, considerando as reações elementares: R1: CO + CH3OH, R2: H2O + CH2CO, R3: HCO + CH2OH, R4: OH + CH2CHO e R5: H2CO + trans-HCOH todas levando a formação de GLA, sendo a rota R5 possível por duas vias: a primeira por meio da abstração do hidrogênio de O-H do trans-HCOH pelo oxigênio da carbonila (R5a), com barreira energética de 10,1 kcal/mol; e a segunda via pela abstração do hidrogênio de C-H do trans-HCOH pelo carbono da carbonila (R5b), em uma reação sem barreira. Coeficientes de velocidade, obtidos na faixa de 10 - 500 K, são expressos por:  , 1+() = 1, 80 × 10−15  0,7  ( − 85, 29/)  2+() = 1, 19 × 10−14  −0,1  (− 76, 57/) ,  , , 3 () = 3, 70 × 10−17  2,18  (− 0, 23/)  4 () = 6, 78 × 10−16  2,08  (− 0, 11/)  e . 5+() = 2, 68 × 10−10  −1,65  (− 10, 02/)  5 () = 8, 71 × 10−17  2,17  (0, 03/) Cálculos de coeficiente de velocidade sugerem que os caminhos sem barreira R3, R4 e R5b são as vias mais prováveis de formação do glicolaldeído. Uma melhor distinção de R3, R4 e R5b ocorre a altas temperaturas (~500 K), onde R4 se mostra uma rota mais rápida. Os coeficientes de velocidade para R4 diminuem sensivelmente com o abaixamento da temperatura e, por volta dos 100 K, a rota R5b apresenta o maior coeficiente de velocidade, sendo indicada como a mais provável rota de síntese de GLA, em condições mais frias. A rota R5b foi estendida para a formação do gliceraldeído (trans-HCOH + GLA → GLI) e R5a para a formação de di-hidroxiacetona (trans-HCOH + GLA → DI) mostrando coeficientes de velocidade expressos por:  , 5−() = 1, 60 × 10−17  2,18  (− 0, 31/)  obtidas na faixa de 10 a 500 K. É sabido que 5−() = 5, 77 × 10−18  1,97  (− 0, 38/) reações heterogêneas, em superfícies de grãos astroquímicos, possuem importante papel na síntese de compostos de crescente complexidade molecular. Assim, a reação R5 foi também estudada em superfície de forsterita e cálculos periódicos em nível PBE, adotando os pseudopotenciais ultrasoft de Vanderbilt (USPP), sugerem que os reagentes formaldeído e trans-hidroximetileno são adsorvidos na superfície, reagindo por mecanismo de Langmuir–Hinshelwood, em via semelhante à R5a, levando a formação do glicolaldeído, que se mostra fortemente adsorvido, com energia de adsorção de cerca de -131 kcal/mol. A intensa adsorção deste precursor deverá permitir reações consecutivas, levando ao aumento de complexidade dos açúcares em superfície. Finalmente, este estudo permitiu concluir acerca das possíveis rotas de síntese abiótica de glicoladeído, gliceraldeído e di-hidroxiacetona.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectGlicolaldeídopt_BR
dc.subjectISMpt_BR
dc.subjectAstroquímicapt_BR
dc.subjectGlycolaldehydept_BR
dc.subjectAstrochemistrypt_BR
dc.titleInvestigação de modelos de formação de glicolaldeído, gliceraldeído e di-hidroxiacetona no meio interestelarpt_BR
dc.title.alternativeInvestigation of models of formation of glycolaldehyde, glyceraldehyde and dihydroxyacetone in the interstellar mediumen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherFrom observational research, about 241 complex organic molecules have been detected in interstellar and circumstellar medium. Furthermore, a diversity of organic compounds, including biomolecules, has been identified in fragments of comets and meteorites. Among such biomolecules, sugars and their precursors are of special interest. The general objectives of this work are: to investigate reaction mechanisms, not yet elucidated and under astrochemical conditions for the abiotic synthesis of the sugar precursors: glycolaldehyde (GLA), glyceraldehyde (GLI) and dihydroxyacetone (DI) in gaseous phase and on surfaces . The mechanism of GLA synthesis in the gas phase was investigated at CCSD(T)//M06-2X/aug-cc-pVTZ+ZPE level, considering the elementary reactions: R1: CO + CH3OH, R2: H2O + CH2CO, R3: HCO + CH2OH , R4: OH + CH2CHO and R5: H2CO + trans-HCOH, all leading to the formation of GLA, the R5 route being possible in two ways: the first through the abstraction of the hydrogen of O-H from trans-HCOH by the carbonyl oxygen (R5a ), with an energy barrier of 10.1 kcal/mol; and the second way by the abstraction of the hydrogen of C-H from trans-HCOH by the carbonyl carbon (R5b), in a reaction without a barrier. Rate coefficients, obtained in the range of 10 - 500 K, are expressed by:  , 1+() = 1, 80 × 10−15  0,7  ( − 85, 29/)  2+() = 1, 19 × 10−14  −0,1  (− 76, 57/) ,  , , 3 () = 3, 70 × 10−17  2,18  (− 0, 23/)  4 () = 6, 78 × 10−16  2,08  (− 0, 11/)  and . 5+() = 2, 68 × 10−10  −1,65  (− 10, 02/)  5 () = 8, 71 × 10−17  2,17  (0, 03/) . Rate coefficient calculations suggest that the barrier-free pathways R3, R4, and R5b are the most likely pathways for glycolaldehyde formation. A better distinction of R3, R4 and R5b occurs at high temperatures (~500 K), where R4 is the fastest. Rate coefficients for R4 decrease significantly with the lowering of the temperature and, around 100 K, route R5b shows the highest rate coefficient, being indicated as the most probable route of GLA synthesis, in colder conditions. Route R5b was extended to the formation of glyceraldehyde (trans-HCOH + GLA → GLI) and R5a to the formation of dihydroxyacetone (trans-HCOH + GLA → DI), showing rate coefficients expressed by:  , , 5−() = 1, 60 × 10−17  2,18  (− 0, 31/)  5−() = 5, 77 × 10−18  1,97  (− 0, 38/) in the range of 10 to 500 K. It is known that heterogeneous reactions, on surfaces of astrochemical grains, play an important role in the synthesis of compounds of increasing molecular complexity. Thus, the R5 reaction was also studied on a forsterite surface and periodic calculations at PBE level, adopting Vanderbilt ultrasoft pseudopotentials (USPP), suggest that formaldehyde and trans-hydroxymethylene reagents are adsorbed on the surface, reacting by Langmuir–Hinshelwood mechanism , in a similar way to R5a, leading to the formation of glycolaldehyde, which is strongly adsorbed, with adsorption energy close to -131 kcal/mol. The intense adsorption of this precursor should allow consecutive reactions, leading to an increase in the complexity of surface sugars. Finally, this study allowed conclusions about the possible routes of abiotic synthesis of glycolaldehyde, glyceraldehyde and dihydroxyacetone.en
dc.contributor.advisor1Bauerfeldt, Glauco Favilla-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-5906-7080pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1876040291299143pt_BR
dc.contributor.advisor-co1Xavier Junior, Neubi Francisco-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-2133-0557pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4668989034458574pt_BR
dc.contributor.referee1Bauerfeldt, Glauco Favilla-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-5906-7080pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1876040291299143pt_BR
dc.contributor.referee2Ferreira, Leonardo da Cunha-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8964252962654912pt_BR
dc.contributor.referee3Oliveira Junior, Ricardo Rodrigues de-
dc.contributor.referee3IDhttp://orcid.org/0000-0001-9472-3899pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4099883545390049pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2168195465355394pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Químicapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Químicapt_BR
dc.relation.referencesAPPONI, A. J. et al. Investigating the limits of chemical complexity in Sagittarius B2 (N): a rigorous attempt to confirm 1, 3-dihydroxyacetone. The Astrophysical Journal, v. 643, n. 1, p. L29, 2006. BACMANN, A. et al. Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models. Astronomy & Astrophysics, v. 541, p. L12, 2012. BALUCANI, Nadia; CECCARELLI, Cecilia; TAQUET, Vianney. Formation of complex organic molecules in cold objects: the role of gas-phase reactions. Monthly Notices of the Royal Astronomical Society: Letters, v. 449, n. 1, p. L16-L20, 2015. BASANT, Ali Hassan. Chemistry of interstellar medium & nebulae and their relationship to elements formation. Nature and Science 2012.10(1).87-112. BELTRÁN, María Teresa et al. First detection of glycolaldehyde outside the galactic center. The Astrophysical Journal, v. 690, n. 2, p. L93, 2008. BELTRÀN, Maria T. et al. The discovery of glycolaldehyde in a star forming region. Proceedings of the International Astronomical Union, v. 5, n. H15, p. 701-702, 2009. BENNETT, Chris J.; KAISER, Ralf I. On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. The Astrophysical Journal, v. 661, n. 2, p. 899, 2007. BONFAND, M. et al. The complex chemistry of hot cores in Sgr B2 (N): influence of cosmic-ray ionization and thermal history. Astronomy & Astrophysics, v. 628, p. A27, 2019. BRESLOW, Ronald; HAYNIE, Robert; MIRRA, Joseph. The synthesis of diphenylcyclopropenone. Journal of the American Chemical Society, v. 81, n. 1, p. 247-248, 1959. BUTSCHER, T. et al. Formation mechanism of glycolaldehyde and ethylene glycol in astrophysical ices from HCO• and• CH2OH recombination: an experimental study. Monthly Notices of the Royal Astronomical Society, v. 453, n. 2, p. 1587-1596, 2015. CARLOS, Mariana Falcão Lopes Princisval et al. Avaliação teórica e experimental da atividade anticorrosiva de enaminoésteres frente ao aço-carbono em meio ácido. Brazilian Journal of Development, v. 7, n. 2, p. 17518-17533, 2021. CHARNLEY, S. B.; RODGERS, S. D. Pathways to molecular complexity. Proceedings of the International Astronomical Union, v. 1, n. S231, p. 237-246, 2005. CHUANG, K.-J. et al. Production of complex organic molecules: H-atom addition versus UV irradiation. Monthly Notices of the Royal Astronomical Society, v. 467, n. 3, p. 2552-2565, 2017. 54 CERNICHARO, J. et al. Discovery of the methoxy radical, CH3O, toward B1: dust grain and gas-phase chemistry in cold dark clouds. The Astrophysical journal letters, v. 759, n. 2, p. L43, 2012. COE, Steven. Nebulae and how to observe them. Springer Science & Business Media, 2007. COE, S. R. Patrick Moore's Practical Astronomy Series. Springer-Verlag London Ltd. 2000 - Science - 376 pages COLLINS, Peter M.; FERRIER, Robert J. Monosaccharides: their chemistry and their roles in natural products. 1996. COUTENS, Audrey et al. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A. Astronomy & Astrophysics, v. 576, p. A5, 2015. DE LOOZE, Ilse et al. The dust mass in Cassiopeia A from a spatially resolved Herschel analysis. Monthly Notices of the Royal Astronomical Society, p. stw2837, 2016. DE JESUS, Diego N. et al. Chemical mechanism for the decomposition of CH3NH2 and implications to interstellar glycine. Monthly Notices of the Royal Astronomical Society, v. 501, n. 1, p. 1202-1214, 2021. DE SIMONE, M. et al. Glycolaldehyde in Perseus young solar analogs. Astronomy & Astrophysics, v. 599, p. A121, 2017. DOROFEEVA, Olga V. et al. Molecular structure and conformational composition of 1, 3-dihydroxyacetone studied by combined analysis of gas-phase electron diffraction data, rotational constants, and results of theoretical calculations. Ideal gas thermodynamic properties of 1, 3-dihydroxyacetone. The Journal of Physical Chemistry A, v. 111, n. 28, p. 6434-6442, 2007. DRAINE, Bruce T. Interstellar dust grains. Annual Review of Astronomy and Astrophysics, v. 41, n. 1, p. 241-289, 2003. ECKHARDT, André K. et al. Gas-phase sugar formation using hydroxymethylene as the reactive formaldehyde isomer. Nature Chemistry, v. 10, n. 11, p. 1141-1147, 2018. ETXALUZE, M. et al. Herschel observations of the Sagittarius B2 cores: Hydrides, warm CO, and cold dust. Astronomy & Astrophysics, v. 556, p. A137, 2013. FEDOSEEV, Gleb et al. Experimental evidence for glycolaldehyde and ethylene glycol formation by surface hydrogenation of CO molecules under dense molecular cloud conditions. Monthly Notices of the Royal Astronomical Society, v. 448, n. 2, p. 1288-1297, 2015. FENG, Rong; WESDEMIOTIS, Chrysostomos; MCLAFFERTY, Fred W. Gaseous negative ions from neutral molecules and positive ions: new information for neutralization-reionization 55 mass spectrometry. Journal of the American Chemical Society, v. 109, n. 21, p. 6521-6522, 1987. FRISCH, M. J. et al. GAUSSIAN16. Revision C. 01. Gaussian Inc., Wallingford, CT, USA. 2016. FURUKAWA, Yoshihiro et al. Extraterrestrial ribose and other sugars in primitive meteorites. Proceedings of the National Academy of Sciences, v. 116, n. 49, p. 24440-24445, 2019. GOICOECHEA, Javier R.; RODRÍGUEZ-FERNÁNDEZ, Nemesio J.; CERNICHARO, José. The Far-Infrared Spectrum of the Sagittarius B2 Region:* Extended Molecular Absorption, Photodissociation, and Photoionization. The Astrophysical Journal, v. 600, n. 1, p. 214, 2004. GARROD, Robin T.; WEAVER, Susanna L. Widicus; HERBST, Eric. Complex chemistry in star-forming regions: An expanded gas-grain warm-up chemical model. The Astrophysical Journal, v. 682, n. 1, p. 283, 2008. HALFEN, D. T. et al. A systematic study of glycolaldehyde in Sagittarius B2 (N) at 2 and 3 mm: Criteria for detecting large interstellar molecules. The Astrophysical Journal, v. 639, n. 1, p. 237, 2006. HERBST, Eric; VAN DISHOECK, Ewine F. Complex organic interstellar molecules. Annual Review of Astronomy and Astrophysics, v. 47, p. 427-480, 2009. HOLLIS, Jan M.; LOVAS, Frank J.; JEWELL, Philip R. Interstellar glycolaldehyde: The first sugar. The Astrophysical Journal, v. 540, n. 2, p. L107, 2000. HORN, Anne et al. The gas-phase formation of methyl formate in hot molecular cores. The Astrophysical Journal, v. 611, n. 1, p. 605, 2004. HORVATH, J. E. Subsídios para uma discussão da formação das estrelas na sala de aula. Revista Brasileira de Ensino de Física, v. 43, p. e20210237, 2021. IRIKURA, Karl K.; FRURIP, David J. Prediction and estimation of molecular thermodynamics. Computational Thermochemistry, 1998. JABER, Ali A. et al. The census of complex organic molecules in the solar-type protostar IRAS16293-2422. The Astrophysical Journal, v. 791, n. 1, p. 29, 2014. JENSEN, Frank. Introduction to computational chemistry. John wiley & sons, 2017. JIMÉNEZ-SERRA, Izaskun et al. The spatial distribution of complex organic molecules in the L1544 pre-stellar core. The Astrophysical Journal Letters, v. 830, n. 1, p. L6, 2016. JØRGENSEN, J. K. et al. The ALMA Protostellar Interferometric Line Survey (PILS)-first results from an unbiased submillimeter wavelength line survey of the Class 0 protostellar binary IRAS 16293-2422 with ALMA. Astronomy & Astrophysics, v. 595, p. A117, 2016. 56 KIKUCHI, Osamu. Ab initio GB study of conformational space of d-glyceraldehyde in aqueous solution. Journal of Molecular Structure: THEOCHEM, v. 496, n. 1-3, p. 145-152, 2000. KLYNE, W. t; PRELOG, V. Description of steric relationships across single bonds. Experientia, v. 16, p. 521-523, 1960. KONG, Aristo et al. Sugars in space: a quantum chemical study on the barrierless formation of dihydroxyacetone in the interstellar medium. Canadian Journal of Chemistry, v. 99, n. 3, p. 326-329, 2021. LEFLOCH, Bertrand et al. L1157-B1, a factory of complex organic molecules in a solar-type star-forming region. Monthly Notices of the Royal Astronomical Society: Letters, v. 469, n. 1, p. L73-L77, 2017. LATTELAIS, M. et al. A new weapon for the interstellar complex organic molecule hunt: the minimum energy principle. Astronomy & Astrophysics, v. 519, p. A30, 2010. LARRALDE, Rosa; ROBERTSON, Michael P.; MILLER, Stanley L. Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proceedings of the National Academy of Sciences, v. 92, n. 18, p. 8158-8160, 1995. LAYSSAC, Y. et al. Detection of glyceraldehyde and glycerol in VUV processed interstellar ice analogues containing formaldehyde: A general formation route for sugars and polyols. Monthly Notices of the Royal Astronomical Society, v. 496, n. 4, p. 5292-5307, 2020. LEFLOCH, Bertrand et al. L1157-B1, a factory of complex organic molecules in a solar-type star-forming region. Monthly Notices of the Royal Astronomical Society: Letters, v. 469, n. 1, p. L73-L77, 2017. LEQUEUX, James. The interstellar medium. Springer Science & Business Media, 2004. LEWARS, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, 2. ed, Ontaro. CA: Springer, 2011. MACIEL, W. J. Astrophysics of the Interstellar Medium. Springer Science & Business Media. 2013 - Science - 258 pages. MAITY, Surajit; KAISER, Ralf I.; JONES, Brant M. Infrared and reflectron time-of-flight mass spectroscopic study on the synthesis of glycolaldehyde in methanol (CH3OH) and methanol–carbon monoxide (CH3OH–CO) ices exposed to ionization radiation. Faraday Discussions, v. 168, p. 485-516, 2014. MARALDI, J. D. Observations de la comète qui a paru au mois d'août 1746. Mémoires de l'Académie Royale des Sciences pour, v. 1746, p. 56-62, 1751. 57 McGUIRE, B, A, 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules, The Astrophysical Journal Supplement Series, v.259, n.2, March. 2022. MOLPECERES, Germán et al. Silicate-mediated interstellar water formation: A theoretical study. Monthly Notices of the Royal Astronomical Society, v. 482, n. 4, p. 5389-5400, 2019. MORISSET, S. et al. The dynamics of H 2 formation on a graphite surface at low temperature. Physical Chemistry Chemical Physics, v. 5, n. 3, p. 506-513, 2003. NUEVO, Michel; COOPER, George; SANDFORD, Scott A. Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites. Nature Communications, v. 9, n. 1, p. 5276, 2018. PECUL, Magdalena; RIZZO, Antonio; LESZCZYNSKI, Jerzy. Vibrational Raman and Raman optical activity spectra of D-lactic acid, D-lactate, and D-glyceraldehyde: Ab initio calculations. The Journal of Physical Chemistry A, v. 106, n. 46, p. 11008-11016, 2002. PILLING, Sérgio. Fotoionizaçao e Fotodissociaçao deAcidos eAlcoois em Regioes de Formaçao Estelar. 2006. PIZZARELLO, Sandra et al. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proceedings of the National Academy of Sciences, v. 109, n. 30, p. 11949-11954, 2012. SAMMARITANO, Mariela Aguilera et al. Temperature dependence of rate coefficients for the gas phase reaction of OH with 3-chloropropene. A theoretical and experimental study. Chemical Physics Letters, v. 755, p. 137757, 2020. SCHREINER, Peter R. et al. Capture of hydroxymethylene and its fast disappearance through tunnelling. Nature, v. 453, n. 7197, p. 906-909, 2008. SHAPIRO. Rober. Prebiotic ribose synthesis: a critical analysis. Origins of Life and Evolution of the Biosphere. v. 18, n. 1, p. 71-85, 1988. SKOUTERIS, Dimitrios et al. The genealogical tree of ethanol: gas-phase formation of glycolaldehyde, acetic acid, and formic acid. The Astrophysical Journal, v. 854, n. 2, p. 135, 2018. SNYDER, L. E. Interferometric observations of large biologically interesting interstellar and cometary molecules. PNAS 103 (33) 12243-12248, 2006. SORRELL, Wilfred H. Origin of amino acids and organic sugars in interstellar clouds. The Astrophysical Journal, v. 555, n. 2, p. L129, 2001. 58 TAQUET, V.; LÓPEZ-SEPULCRE, A.; CECCARELLI, C.; NERI, R.; KAHANE, C.; CHARNLEY, S. B. Constraining the Abundances of Complex Organics in the Inner Regions of Solar-Type Protostars. ApJ 804 81. 2015. THROWER, John D. et al. Hydrogenation of PAH molecules through interaction with hydrogenated carbonaceous grains. Physical Chemistry Chemical Physics, v. 16, n. 8, p. 3381-3387, 2014. TIELENS, Alexander GGM. The physics and chemistry of the interstellar medium. Cambridge University Press, 2005. VALKOVIĆ, Vlado; OBHOĐAŠ, Jasmina. Origins of chiral life in interstellar molecular clouds. The Astronomical Journal, v. 163, n. 6, p. 270, 2022. VANDENBROUCKE, Arne. Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis. 2015. Tese de Doutorado. Ghent University. VASTEL, Charlotte et al. The origin of complex organic molecules in prestellar cores. The Astrophysical Journal Letters, v. 795, n. 1, p. L2, 2014. VASYUNIN, A. I.; HERBST, Eric. Reactive desorption and radiative association as possible drivers of complex molecule formation in the cold interstellar medium. The Astrophysical Journal, v. 769, n. 1, p. 34, 2013. VASYUNIN, Anton I. et al. Formation of complex molecules in prestellar cores: a multilayer approach. The Astrophysical Journal, v. 842, n. 1, p. 33, 2017. VICHIETTI, Rafael Mario et al. Could HCN be responsible for the Formamide synthesis in Earth’s primitive atmosphere?. The Astrophysical Journal Supplement Series, v. 245, n. 1, p. 11, 2019. VERA, Mauro González et al. Theoretical and experimental study of the OH radical with 3‐Bromopropene gas phase reaction rate coefficients temperature dependence. Journal of Physical Organic Chemistry, p. e4555. WANG, Pengchao et al. Gas-phase conformational preference of the smallest saccharide (glycolaldehyde) and its hydrated complexes with bridged hydrogen bonding. RSC advances, v. 7, n. 11, p. 6242-6250, 2017. WEAVER, Susanna L. Widicus; BLAKE, Geoffrey A. 1, 3-Dihydroxyacetone in sagittarius B2 (N-LMH): the first interstellar ketose. The Astrophysical Journal, v. 624, n. 1, p. L33, 2005. WEBER, Arthur L. Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia. Origins of Life and Evolution of the Biosphere, v. 28, p. 259-270, 1998. 59 WOODS, Paul M. et al. On the formation of glycolaldehyde in dense molecular cores. The Astrophysical Journal, v. 750, n. 1, p. 19, 2012.pt_BR
dc.subject.cnpqQuímicapt_BR
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2023 - Hemilly Oliveira Souza.Pdf5.71 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.