Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/20027
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Leal, Jéssica Ferreira Lourenço | - |
dc.date.accessioned | 2025-02-10T15:51:52Z | - |
dc.date.available | 2025-02-10T15:51:52Z | - |
dc.date.issued | 2022-06-24 | - |
dc.identifier.citation | LEAL, Jéssica Ferreira Lourenço. Metabolismo e fisiologia de conyza sumatrensis resistente a herbicidas. 2022. 114f. Tese (Doutorado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/20027 | - |
dc.description.abstract | A Conyza spp. é considerada uma das principais plantas daninhas do Brasil e tem sido frequentemente associada a casos de resistência a herbicidas. O cenário é pior em casos de resistência múltipla a herbicidas. Os objetivos deste estudo foram entender o metabolismo e fisiologia de Conyza sumatrensis resistente a herbicidas e o tipo de herança genética para resistência ao paraquat e diquat. No Capítulo I foi observado que herbicidas inibidores do FSI e FSII mostram rápidas alterações no índice de desempenho fotossintético mesmo antes de serem observados danos visuais de crescimento e desenvolvimento. A técnica de fluorescência da clorofila a demonstram claramente um potencial para rastrear rapidamente as perturbações metabólicas em Conyza sob aplicação dos herbicidas metribuzin e paraquat. No Capítulo II foi descrito que os sintomas observados no biótipo resistente ao 2,4-D foram necrose nas folhas em 30 minutos, com o restabelecimento do crescimento normal dentro de 1 a 2 semanas após o tratamento com 2,4-D. O biótipo resistente a 2,4-D mostra um rápido dano fotossintético e aumento no conteúdo de H2O2 em comparação ao biótipo suscetível. Além disso, a atividade da enzima antioxidante basal é maior no biótipo resistente. No Capítulo III, foi sugerido que o biotipo de buva com múltipla resistência aos herbicidas 2,4-D, paraquat, saflufenacil, glifosato e diuron pode também apresentar resistência aos herbicidas inibidores ALS clorimuron-etílico, imazapique + imazapir e etoxissulfurom. Estudos serão desenvolvidos para confirmar a hipótese através de dose-resposta. O capítulo IV confirmou a resistência de C. sumatrensis ao diquat com fator de resistência de 25,6 e 6,35 para LD50 e GR50, respectivamente, em comparação com o biótipo suscetível. O biótipo resistente ao paraquat não induz as enzimas antioxidantes, como um possível mecanismo de resistência ao paraquat, mas mostra rápida recuperação dos parâmetros fotossintéticos e crescimento contínuo quando submetido ao paraquat, enquanto o biótipo suscetível não sobrevive a aplicação do herbicida paraquat e morre. No Capítulo V conclui-se que a resistência ao paraquat em F2 e F3 foi baseada em um modelo de um único gene dominante (3:1), enquanto os resultados do diquat foram baseados em dois genes segregados independentemente (15:1) em Conyza sumatrensis. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | Resistência Múltipla. c. | pt_BR |
dc.subject | Fluorescência da Clorofila a. | pt_BR |
dc.subject | Multiple resistance | pt_BR |
dc.subject | Genetic inheritance | pt_BR |
dc.subject | Chlorophyll Fluorescence | pt_BR |
dc.title | Metabolismo e fisiologia de conyza sumatrensis resistente a herbicidas | pt_BR |
dc.title.alternative | Physiological and metabolism responses of conyza sumatrensis to herbicides | en |
dc.type | Tese | pt_BR |
dc.description.abstractOther | Conyza spp. is considered one of the most important weeds in Brazil and has been frequently associated with cases of herbicide resistance. The scenario is even worse when multiple herbicide resistance is involved. In this work, we studied the metabolic and physiological responses of resistant and susceptible Conyza sumatrensis to herbicides and identified the kind of genetic inheritance of paraquat and diquat resistance in Conyza sumatrensis. In Chapter I, it was found that both PSII- and PSI -inhibiting herbicides show a rapid negative effect on photosynthetic energy dynamics that can be monitored prior to the onset of a visual effect of the herbicide, demonstrating the potential use of chlorophyll fluorescence to rapidly investigate herbicide-induced metabolic disorders. In chapter II, it was described that the resistant biotype showed necrosis in leaves about 30 minutes after application and plants recovered from leaf damage 1 to 2 weeks after 2,4-D application. The 2,4-D-resistant biotype exhibited rapid photosynthetic damage and increased H2O2 content compared with the susceptible biotype. In addition, basal antioxidant enzyme activity is higher in the resistant biotype. In chapter III, it was suggested that the biotype with multiple resistance to the herbicides 2,4-D, paraquat, saflufenacil, glyphosate, and diuron may also have resistance to the herbicide inhibitors ALS chlorimuron-ethyl, imazapique + imazapyr, and ethoxysulfuron. Studies are being developed to confirm this hypothesis. Chapter IV confirms resistance of C. sumatrensis to diquat by the dose-response test with a resistance factor of 26-fold and 6-fold for LD50 and GR50 values, respectively, compared to the susceptible biotype. The paraquat-resistant biotype does not induce antioxidant enzymes, which is a possible mechanism for resistance to paraquat, but shows rapid recovery of photosynthesis and continued growth when exposed to paraquat. In Chapter V, it was demonstrated that paraquat resistance in F2 and F3 is based on a model with a single dominant gene (3:1), while the diquat results are based on two independently segregated genes (15:1) in C.sumatrensis. | en |
dc.contributor.advisor1 | Pinho, Camila Ferreira de | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0003-2861-2212 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/3934515090201644 | pt_BR |
dc.contributor.advisor-co1 | Machado, Aroldo Ferreira Lope | - |
dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-6506-9728 | pt_BR |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/1657705026007826 | pt_BR |
dc.contributor.referee1 | Pinho, Camila Ferreira de | - |
dc.contributor.referee1ID | https://orcid.org/0000-0003-2861-2212 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/3934515090201644 | pt_BR |
dc.contributor.referee2 | Oliveira Junior, Rubem Silverio de | - |
dc.contributor.referee2ID | https://orcid.org/0000-0002-5222-8010 | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/0094488560035820 | pt_BR |
dc.contributor.referee3 | Dalazen, Giliardi | - |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/6739201176070287 | pt_BR |
dc.contributor.referee4 | Borella, Junior | - |
dc.contributor.referee4ID | https://orcid.org/0000-0002-0745-5759 | pt_BR |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/0414217126348513 | pt_BR |
dc.contributor.referee5 | Damasceno Junior, Pedro Corrêa | - |
dc.contributor.referee5ID | https://orcid.org/0000-0001-8879-4850 | pt_BR |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/3493599001978076 | pt_BR |
dc.creator.ID | https://orcid.org/0000-0001-6654-7998 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/4563532581503851 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Agronomia | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Fitotecnia | pt_BR |
dc.relation.references | APEL, K.; HIRT, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol, v. 55, p. 373–399, 2004. AZEVEDO-NETO, A. D.; PRISCO, J. T.; ENÉAS-FILHO, J.; DE ABREU, C. E. B.; GOMES- FILHO, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot, v. 56, p. 87–94, 2006. BROMILOW, R. H. Paraquat and sustainable agriculture. Pest Management Science, v. 60, p. 340-349, 2004. BRUNHARO, C. A.; HANSON, B. D. Vacuolar sequestration of paraquat is involved in the resistance mechanism in Lolium perenne L. spp. multiflorum. Front Plant Sci, v. 8 p. 1485, 2017 BRUNHARO, C. A.; PATTERSON, E. L.; CARRIJO, D. R.; DE MELO, M. S.; NICOLAI, M.; GAINES, T. A.; NISSEN, S. J.; CHRISTOFFOLETI, P. J. Confirmation and mechanism of glyphosate resistance in tall windmill grass (Chloris elata) from Brazil. Pest Manag Sci, v. 72, p. 1758–1764, 2016. CAVERZAN, A.; PIASECKI, C.; CHAVARRIA, G.; STEWART, C. N.; VARGAS, L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. International journal of molecular sciences, v. 20(5), p. 1086, 2019. DAYAN, F. E.; ZACCARO, M. L. M. Chlorophyll fluorescence a as marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology, v. 102, p. 189–197, 2012. FOYER, C. H.; DESCOURVIERES, P.; KUNERT, K. J. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant, Cell & Environment, v. 17, p. 507–523, 1994. GAINES, T. A.; DUKE, S. O.; MORRAN, S.; RIGON, C. A.; TRANEL, P. J.; KÜPPER, A.; DAYAN, F. E. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, v. 295, n. 30, p.10307-10330, 2020. GIANNOPOLITIS, C. N.; RIES, S. K. Superoxide dismutase. Part I: Occurrence in higher plants. Plant Physiol, v. 59, p. 309–314, 1977. GILL, S.S.; TUTEJA, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v. 48, p. 909-930, 2010. HASSANNEJAD, S.; LOTFI, R.; GHAFARBI, S. P.; OUKARROUM, A.; ABBASI, A.; KALAJI, H. M.; RASTOGI, A. Early identification of herbicide modes of action by the use of chlorophyll fluorescence measurements. Plants, v. 9, p. 529, 2020 98 HAWKES, T. R. Mechanisms of resistance to paraquat in plants. Pest management science, v. 70(9), p. 1316-1323, 2014. Heap I. The International Survey of Herbicide-Resistant Weeds. 2021. Disponível em: <www.weedscience.org>. Acesso em: 10 de maio de 2021. HESS, F. D. Light-dependent herbicides: an overview. Weed Science, v. 48, p. 160-170, 2000. KALAJI, H. M. SCHANSKER, G.; LADLE, R. J.; GOLTSEV, V.; BOSA, K.; ALLAKHVERDIEV, S. I.; BRESTIC, M.; BUSSOTTI, F.; CALATAYUD, A.; DĄBROWSKI, P.; ELSHEERY, N. I.; FERRONI, L.; GUIDI, L.; HOGEWONING, S. W.; JAJOO, A.; MISRA, A. N.; NEBAUER, S. G.; PANCALDI, S.; PENELLA, C.; POLI, D.; POLLASTRINI, M.; ROMANOWSKA-DUDA, Z. B.; RUTKOWSKA, B.; SERÔDIO, J.; SURESH, K.; SZULC, W.; TAMBUSSI, E.; YANNICCARI, M.; ZIVCAK, M. Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Research, v. 122, p. 121–158, 2014. LEAL, J. F. L.; SOUZA, A. D. S.; RIBEIRO, S. R. DE S.; DE OLIVEIRA, G. F. P. B.; ARAUJO, A. L. S.; BORELLA, J.; LANGARO, A. C.; MACHADO, A. F. L.; PINHO, C. F. 2, 4‐D and Haloxyfop‐P‐methyl interaction: Sequential and interval applications to effectively control sourgrass (Digitaria insularis L.) and fleabane (Conyza spp. L.). Agronomy Journal, v. 112, p. 1216-1226, 2020. MORETTI, M.L.; HANSON, B. D. Reduced translocation is involved in resistance to glyphosate and paraquat in Conyza bonariensis and Conyza canadensis from California. Weed Research, v. 57, p. 25-34, 2017. NAKANO, Y.; ASADA, K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol, v. 22, p. 867–880, 1981 NIWA, Y.; ISHIMOTO, K.; KANOH, T. Induction of superoxide dismutase in leukocytes by paraquat: correlation with age and possible predictor of longevity. Blood, v. 76, p. 835–841, 1990. NORSWORTHY, J. K.; WARD, S. M.; SHAW, D. R.; LEWELLYN, R. S.; NICHOLS, R. L.; WEBSTER, T. M.; BRADLEY, K. W.; FRISVOLD, G.; POWLES, S. B.; BURGOS, N. R.; WITT, W. W.; BARRETT, M. Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science, v. 60, p. 31–62, 2012. PIASECKI, C.; CARVALHO, I. R.; CECHIN, J.; GOULART, F. A.; MAIA, L. C. D.; AGOSTINETTO, D.; CAVERZAN, A.; STEWART-JR., N. C.; VARGAS, L. Oxidative stress and differential antioxidant enzyme activity in glyphosate-resistant and-sensitive hairy fleabane in response to glyphosate treatment. Bragantia, v. 78, p. 379-396, 2019. PINHO, C. F., LEAL, J. F. L.; DOS SANTOS, A. S.; DE OLIVEIRA, G. F. P. B.; DE OLIVEIRA, C.; LANGARO, A. C.; MACHADO, A. F. L.; CHRISTOFFOLETI, P. J.; ZOBIOLE, L. H. S. First evidence of multiple resistance of Sumatran Fleabane (Conyza 99 sumatrensis (Retz.) E. Walker) to five-mode-of-action herbicides. Australian Journal of Crop Science, v. 13, p. 1688-1697, 2019. Preston C. Resistance to photosystem I disrupting herbicides. In S.B. Powles and J.A.M. Holtum, Eds. Herbicide resistance in plants: Biology and Biochemistry. Boca Raton, FL: Lewis, p. 61– 92, 1994. PRESTON, C.; SOAR, C. J.; HIDAYAT, I.; GREENFIELD, K. M.; POWLES, S. B. Differential translocation of paraquat in paraquat-resistant populations of Hordeum leporinum. Weed Research, v. 45, p. 289–295, 2005. PYON, J. Y.; PIAO, R. Z.; ROH, S. W.; SHIN, S. Y.; KWAK, S. S. Differential levels of antioxidants in paraquat‐resistant and‐susceptible Erigeron canadensis biotypes in Korea. Weed Biology and Management, v. 4, p. 75-80, 2004. SEEFELDT, S. S.; JENSEN, J. E.; FUERST, E. P. Log-logistic analysis of herbicide dose- response relationships. Weed Technology, v. 9, p. 218- 227, 1995. STRASSER, B. J.; STRASSER, R. J. Measuring fast fluorescence transients to address environmental question: the JIP-test. in Mathis P, ed. Photosynthesis: From Light to Biosphere. Dordrecht, Netherlands: Kluwer Academic, p. 977–980, 1995. STRASSER, R. J.; TSIMILLI-MICHAEL, M.; SRIVASTAVA, A. “Analysis of the Chlorophyll a fluorescence transient.” In: Papageorgiou, C., Govindjee, (Eds.), Chlorophyll Fluorescence: A Signature of Photosynthesis. Springer, Netherlands, p. 321–362, 2004. STREIBIG, J. C. Herbicide bioassay. Weed Research, v. 28, p. 479-84, 1988. Szigeti, Z.; Richter, P.; Lichtenthaler, H. K. Fluorescence emission spectra of paraquat resistant Conyza canadensis during the chlorophyll fluorescence induction as determined by the CCD- OMA system. Journal of Plant Physiology, v. 148, p. 574–578, 1996. TSUJI, K.; HOSOKAWA, M.; MORITA, S.; MIURA, R.; TOMINAGA, T. Resistance to paraquat in Mazus pumilus. Weed Research, v. 53, p. 176-182, 2013. VELIKOVA, V.; YORDANOV, I.; EDREVA, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, v. 15, p. 59–66, 2000. YE, B.; GRESSEL, J. Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta, v. 211(1), p. 50-61, 2000. YUSUF, M. A.; KUMAR, D.; RAJWANSHI, R.; STRASSER, R. J.; GOVINDJEE, T. M. M.; SARIN, N. B. Overexpression of γ-tocopherol methyltransferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta – Bioenergetics, v. 1797, p. 1428–1438, 2010. | pt_BR |
dc.subject.cnpq | Agronomia | pt_BR |
Appears in Collections: | Doutorado em Fitotecnia |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2022 - Jéssica Ferreira Lourenço Leal.Pdf | 3.41 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.