Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/20197
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilvestre, Nathally Lima do Nascimento-
dc.date.accessioned2025-02-25T15:51:58Z-
dc.date.available2025-02-25T15:51:58Z-
dc.date.issued2022-06-27-
dc.identifier.citationSILVESTRE, Nathally Lima do. Planejamento por modelagem molecular de possíveis inibidores duais de fosfolipase a2 e metaloprotease de peçonha de serpente. 2022. 97f. Dissertação (Mestrado em Química Medicinal) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20197-
dc.description.abstractA busca por medicamentos com ação antiveneno pode contribuir significativamente para o tratamento de vítimas de acidentes ofídicos. Dada a complexidade do mecanismo da ação tóxica das peçonhas de serpentes, inibidores enzimáticos com ação multialvo parecem ser os mais promissores para esse fim. Esse trabalho teve como objetivo planejar por meio de métodos de modelagem molecular compostos candidatos a inibidores duais de dois dos principais tipos de enzimas presentes em peçonhas de serpentes brasileiras, as metaloproteases (MP) e as fosfolipases A2 (PLA2). Esse estudo prévio de docagem molecular e de orbitais moleculares semiempíricos permitiu identificar elementos farmacofóricos importantes para a interação de compostos indólicos com atividade inibitória conhecida na PLA2 humana. Estudo com a estrutura cristalográfica da PLA2 de Bothrops jararacussu indicou que a conformação não era apropriada ao estudo da interação. Foi construído um modelo da PLA2 de B. jararacussu usando-se como molde a PLA2 humana, que produziu um modelo com uma conformação mais adequada para interagir com os ligantes. Como o objetivo é o desenvolvimento de ligantes com ação dual, foi feito um estudo com um modelo da MP de B. pauloensis, anteriormente desenvolvido por nosso grupo. Foram propostos e combinados modelos farmacofóricos para se propor uma série de modificações estruturais em tiossemicarbazonas que já apresentaram atividade inibitória sobre uma MP de B. pauloensis. Métodos de docagem molecular e de orbitais moleculares semiempíricos foram utilizados em um estudo da interação dos compostos com a MP e a PLA2 de serpente a fim de se avaliar os efeitos das mudanças propostas, incluindo resultados das séries com configurações E e Z. A maior parte os compostos das duas séries apresentou perfis de interação favoráveis nas duas enzimas; o ligante TmF-B, nas configurações E e Z, se mostrou o mais promissor, tendo valores de entalpia de interação mais favoráveis nas enzimas PLA2 e MP que inibidores de referência. Os compostos mais promissores serão sintetizados a avaliados experimentalmente para se verificar se há inibição dual sobre MP e PLA2 de serpentes.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subject-pt_BR
dc.subjectAntivenenopt_BR
dc.subjectAcidente ofídicopt_BR
dc.subjectInibidores enzimáticospt_BR
dc.subjectModelagem molecularpt_BR
dc.subjectMetaloproteases (MP)pt_BR
dc.subjectFosfolipases A2 (PLA2)pt_BR
dc.subjectSnakebite envenomationen
dc.subjectMolecular modelingen
dc.subjectMetalloproteases (MP)en
dc.subjectPhospholipases A2 (PLA2)en
dc.titlePlanejamento por modelagem molecular de possíveis inibidores duais de fosfolipase a2 e metaloprotease de peçonha de serpentept_BR
dc.title.alternativeDesign by molecular modeling of possible dual inhibitors of serpent venom phospholipase a2 and metalloproteaseen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherThe search for drugs with antivenom action can significantly contribute to the treatment of victims of snakebites. Given the complexity of the mechanism of toxic action of snake venoms, enzymatic inhibitors with multi-target action seem to be the most promising for this purpose. This work aimed to design, through molecular modeling methods, compounds that are candidates for dual inhibitors of two of the main types of enzymes present in Brazilian snake venoms, metalloproteases (MP) and phospholipases A2 (PLA2). A previous study of molecular docking and semi-empirical molecular orbitals allowed us to identify important pharmacophoric elements for the interaction of indole compounds with known inhibitory activity on human PLA2. A study with the crystallographic structure of PLA2 from Bothrops jararacussu indicated that the conformation was not appropriate to an interaction study. A model of PLA2 from B. jararacussu was constructed using human PLA2 as a template, which produced a model with a more adequate conformation to interact with the ligands. As the objective is the development of ligands with dual action, a study was also carried out with a model of MP from B. pauloensis, previously developed by our group. Pharmacophoric models were proposed and combined to propose a series of structural changes in thiosemicarbazones that already showed inhibitory activity on a B. pauloensis MP. Molecular docking and semi-empirical molecular orbital methods were used in a study of the interaction of compounds with snake MP and PLA2 in order to evaluate the effects of the proposed changes, including results from the series with E and Z configurations. Compounds of the two series showed favorable interaction profiles in the two enzymes; the TmF-B ligand, in the E and Z configurations, showed to be the most promising, having more favorable interaction enthalpy values with PLA2 and MP enzymes than reference inhibitors. The most promising compounds will be synthesized and evaluated experimentally to verify if there is dual inhibition on snake MP and PLA2.en
dc.contributor.advisor1Sant'Anna, Carlos Mauricio Rabello de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-1989-5038pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2087099684752643pt_BR
dc.contributor.referee1Sant'Anna, Carlos Mauricio Rabello de-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-1989-5038pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2087099684752643pt_BR
dc.contributor.referee2Romeiro, Nelilma Correia-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5103876509322346pt_BR
dc.contributor.referee3Kümmerle, Arthur Eugen-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5598000938584486pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-4762-2072pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5739147936183473pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Químicapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Químicapt_BR
dc.relation.referencesABD-ELMAGEED, A.A.I. et al. Synthesis, characterization and DFT molecular modeling of doped poly (para-nitroaniline-co-para-toluidine) thin film for optoelectronic devices applications. Optical Materials, v. 99, 109593, 2020. ADERINWALE, T. et al. Real-time structure search and structure classification for AlphaFold protein models. Communications Biology, v. 5 (316), 2022. ALBULESCU, L. et al. A therapeutic combination of two small molecule toxin inhibitors provides broad preclinical efficacy against viper snakebite, Nature Communications, v. 11, 6094, 2020. ANDRICOPULO, A.D.; SALUM, L.B.; ABRAHAM, D. J. Structure-based Drug Design Strategies in Medicinal Chemistry. Current Topics in Medicinal Chemistry, v. 9, p. 771–790, 2009. AOKI-SHIOI, N., MODAHL, M.C. Snakebite Therapeutics Based on Endogenous Inhibitors from Vipers. Medical Toxicology, IntechOpen, 2019. ARSHADI, A.K. et al. Artificial Intelligence for COVID-19 Drug Discovery and Vaccine Development. Frontiers in Artificial Intelligence,v.18, 2020. AUKUBUGWO, E.I. et al. The Role of Calcium on the Active Site of Snake Venom Phospholipase A2: Molecular Dynamics Simulations. Computational Biology and Bioinformatics, v. 4(1), p. 10-14, 2016. BARBOSA, V.N. et al. A new case of envenomation by neotropical opisthoglyphous snake Philodryas olfersii (Lichtenstein, 1823) in Recife, State of Pernambuco, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 53, 2020. BARREIRO, E.J. et al. Modelagem Molecular: Uma Ferramenta para o Planejamento Racional de Fármacos em Química Medicinal. Química Nova, v. 20(3), 1997. BAUDOU, F.G. et al. South American snake venoms with abundant neurotoxic componentes. Composition and toxicological properties. A literature review. Acta Tropica, v. 224, 106119, 2021. BENNACER, A. BOUKHALFA-ABIB, H. LARABA-DJERABI, F. Computational and Fuctional Characterization of a Hemorrhagic Metalloproteinases Purified from Cerastes cerastes Venom. The Protein Journal, v. 40 (4), p. 589-599, 2021. BERG, O. G. GELB, M. D.T. JAIN,M.K. Interfacial Enzymology: The Secreted Phospholipase A2-Paradigm. Chemical Reviews, v.101, p.2613–2654, 2001. BIASINI, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, v.42, p.W252-W258, 2014. BJARNASON, J.B. TU, A.T. Hemorrhagic toxins from Western diamondback rattlesnake (Crotalus atrox) venom: isolation and characterization of five toxins and the role of zinc in hemorrhagic toxin e. Biochemistry, v. 17(16), p. 3395-404, 1978. BRASIL. Ministério da saúde. 19/9 – Dia Internacional de Atenção aos Acidentes Ofídicos. In: Biblioteca Virtual em Saúde, 18 set. 2019. Disponível em: 85 http://bvsms.saude.gov.br/ultimas-noticias/3034-19-9-dia-internacional-de-atencao-aos- acidentes-ofidicos-2. Acesso em: 03 de maio de 2022 BRASIL. Ministério da Saúde. Acidentes por animais peçonhentos: o que fazer e como evitar. In: Ministério da Saúde, Saúde de A a Z. 2021 Disponível em: https://antigo.saude.gov.br/saude-de-a-z/acidentes-por-animais-peconhentos. Acesso em: 20 de abril de 2022. BRASIL. Ministério da saúde. Brasil copatrocinou resolução para o problema dos acidentes ofídicos no mundo. In: Ministério da Saúde. OMS, com alterações. 2018. Disponível em: https://antigo.saude.gov.br/noticias/svs/43413-brasil-copatrocinou- resolucao-para-o-problema-dos-acidentes-ofidicos-no-mundo. Acesso em: 07 de maio de 2022. BRASIL. Ministério da Saúde. Caderno 14: Acidentes por Animais Peçonhentos. In: Ministério da Saúde. Ministério da Saúde. Secretaria de Vigilância em Saúde. Guia de vigilância epidemiológica. 7th ed. Brasília: Ministério da Saúde; 2009. BRASIL. Ministério da Saúde. In: Departamento de Informática do Sistema Único de Saúde do Brasil (DATASUS). Acidentes por animais peçonhentos – Notificações registradas no sistema de informação de agravo e notificação - Brasil. 2022. Disponível em: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/animaisbr.def; Acesso em 10 de maio de 2022. BROOIJMANS, N. KUNTZ, I. Molecular Recognition and Docking Algorithms. Annual Review of Biophysics and Biomolecular Structure, v. 32, p. 335-373, Jan. 2003. BURKE, J.E. DENNIS, E.A. Phospholipase A2 structure/function, mechanism and signaling. Journal of Lipid Research, v. 50, S237-S242, 2009. CALVETE, J. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Review of Proteomics, v. 8(6), p. 739-58, 2011. CARVALHO, I. et al. Introdução a Modelagem Molecular de Fármacos no Curso Experimental de Química Farmacêutica. Química Nova, v. 26 (3), p. 428-438, 2003. CAVALCANTE, J.S. et al. A fingerprint of plasma proteome alteration after local tissue damage induced by Bothrops leucurus snake venom in mice. Proteomics, v. 253 (20), 104464, 2022. CAVALCANTE, J.S. et al. Pain modulated by Bothrops snake venoms: Mechanism of nociceptive signaling and therapeutic perspectives. Toxicon, v.201, p. 105-114, 2021. CAVASOTTO, C.N., SHARANGDHAR, S. P. Homology modeling in drug Discovery: current trends and applications. Drug Discovery Today, v. 14(13-14), p. 676-83, 2009. CCDC (The Cambridge Crystallographic Data Centre) - What is the difference between the GoldScore, ChemScore, ASP and ChemPLP scoring functions provided with GOLD?. Support and Resources, 2021. Disponível em: https://www.ccdc.cam.ac.uk/support-and-resources/support/case/?caseid=5d1a2fc0- c93a-49c3-a8e2-f95c472dcff0. Acesso em: 01 de maio de 2022. 86 CHEN, J. SEE, K.C. Artificial Intelligence for COVID-19: Rapid Review. Journal of Medical Internet Research, v. 22(10), e:21476, 2020. CHENG, X. ZHANG, X. The Analysis of the Treatment of Rhabdomyolysis by Snake Bites. Yangtze Medicine, v.2, p. 89-94, 2018. CHOTHIA, C. LESK, A.M. The relation between the divergence of sequence and structure in proteins. The EMBO Journal, v. 5, p. 823-36, 1986. CHOWDHURY, A. et al. The Relative Efficacy of Chemically Diverse Small-Molecule Enzyme-Inhibitors Against Anticoagulant Activities of African Spitting Cobra(Naja Species) Venoms. Frontiers in Immunology, v. 12, 752442, 2021. CITELI, N.Q.K.et al. Lista dos Polos de Soro para Atendimento de Acidentes Ofídicos no Brasil. SINITOX, 2018. Disponível em www.sinitox.icict.fiocruz.br. Acesso em: 15 de abril de 2022. CLARE, R. H. et al. Small Molecule Drug Discovery for Neglected Tropical Snakebite. Trends in Pharmacological Sciences, v. 42 (5), 2021. COHEN, N. C. et al. Molecular modeling software and methods for medicinal chemistry. Journal of Medicinal Chemistry, v. 33, p. 883-894, 1990. COHEN, N. C. Guidebook on molecular modeling in drug design. San Diego: Academic Press, 1996. COSTA, M. M. R. et al. Acidentes ofídicos: perfil epidemiológico na mesorregião do sertão Pernambucano, Brasil. Brazilian Journal of Health Review, v. 1, n. 1, p. 245– 251, 2018. CREER, S., et al. Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDITOF-MS) and isoelectric focusing. Journal of Molecular Evolution, v. 56, p. 317–329, 2003. CUNHA, L. E. R Soros Antiofídicos: História, Evolução E Futuro. Journal Health NPEPS, v.2, p. 1-4, 2017. D’AMÉLIO, F. et al. Bothrops moojeni venom and its componentes – an overview. Journal of Venom Research, v. 11, p. 26-33, 2021. DA SILVA, A. R. et al. Design, synthesis and effect of triazole derivatives against some toxic activities of Bothrops jararaca venom. Medicinal Chemistry Research, v.30, p.182-195, 2021. DALTRY, J. C. WÜSTER, W. THORPE, R.S. Diet and snake venom evolution. Nature, v. 379, p. 537-540, 1996. DE OLIVEIRA et al. Acidentes de trabalho por animais peçonhentos entre trabalhadores do campo, floresta e águas, Brasil 2007 a 2017. In: BRASIL. Ministério da saúde. Secretária de Vigilância em Saúde. Boletim Epidemiológico. v.50, n.11.2019. 87 DE OLIVEIRA, W. K. et al. Boletins epidemiológicos. In: BRASIL. Ministério da Saúde. Acidentes de trabalho por animais peçonhentos entre trabalhadores do campo, floresta e águas, Brasil 2007 a 2017. Secretaria de Vigilância em Saúde, v. 50, n.11. Mar. 2019. Disponível em: https://portalarquivos2.saude.gov.br/images/pdf/2019/marco/29/2018-059.pdf. Acesso em: 03 de maio de 2022. DENNIS, E. A. et al. Phospholipase A2 Enzymes: Physical Structure, Biological Function, Disease Implication, Chemical Inhibition and Therapeutic Invertention. Chemical Reviews, v. 111 (10), p. 6130-6185, 2011. FERNANDES, C. A.H. et al. Structural bases for a complete myotoxic mechanism: Crystal structures of two non-catalytic phospholipases A2-like from Bothrops brazili venom. Biochimica et Biophysica Acta, v. 1834 (12), p. 2772-2781, 2013. FERREIRA, F. B. et al. Structure-Based Discovery of Thiosemicarbazone Metalloproteinase Inhibitors for Hemorrhage Treatment in Snakebites. ACS Medicinal Chemistry Letters, v. 8, p. 1136-1141, 2017. FERREIRA, N. Diferença entre cobra e serpente. In: Equipe Perito Animal. Curiosidades do mundo animal, [S.I.], 2020. Disponível em: https://www.peritoanimal.com.br/diferenca-entre-cobra-e-serpente-20562.html. Acesso em: 13 de maio de 2022. FORSTER, M. J. Molecular modelling in structural biology. Micron, v. 33 (4), p. 365- 384, 2002. FOX, J. W. et al. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics, v. 8(4), p. 909-920, 2008. FOX, J. W. et al. Structural considerations of the snake venom metalloproteinases, key mebers of the M12 reprolysin Family of metalloproteinases. Toxicon, v. 45, p. 969-985, 2005. FRY, B. G. et al. Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: taxonomic and toxinological implications. Rapid Commun. Mass Spectrom, v. 16, p. 600–608, 2002. FRY, B. Snakebite: When the Human Touch Becomes a Bad Touch. Toxins, v. 10, n. 4, p. 170, 21 abr. 2018. GILSON, M. K.; HONIG, B. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins: Struct. Funct. Bioinf. v. 4, p. 7−18, 2004. GIORDANETTO, F. et al. Design of Selective sPLA2-X Inhibitor (-)-2-{2- [Carbamoyl-6-(trifluoromethoxy)-1H-indol-1-yl]pyridine-2-yl}propanoic Acid. ACS Medicinal Chemistry Letters, v. 9, p. 600-605,2018. GIUPPONI, G. The impacto f accelerator processors for high-troughput molecular modeling and simulation. Drug Discovery Today, v.13 (23-24), p. 1052-1058, 2008. 88 GOMES, A.A. S. et al. The allosteric activation mechanism of a phospholipase A2-like toxin from Bothrops jararacussu venom: a dynamic description. Scientific Reports, v. 10, 16252, 2020. GUEDES, I. A.; PEREIRA, F. S. S.; DARDENNE, L. E. Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges. Frontiers in Pharmacology, v. 9, 2018. GUEX, N. PEITSCH, M. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, v. 18 (15), p. 2714-2723, 1997. GUIDO, R. V. C.; ANDRICOPULO, A. D.; OLIVA , G. Planejamento de Fármacos, Biotecnologia e Química Medicinal: Aplicações em Doenças Infecciosas. Estudos Avançados, v. 24, p. 81-98, 2010. GURUNG, A. B. et al. An Updated Review of Computer-Aided Drug Design and Its Application to COVID-19. BioMed Research International, v.2021, 8853056, 2021. GUTIERRES, P. et al. Action of Varespladib (LY-315920), a phospholipase A2 inhibitor, on the enzymatic, coagulant and haemorrhagic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Frontiers in Pharmacology, v. 12, p. 1-9. 2022. GUTIERREZ, J. M. et al. Skeletal muscle degeneration induced by venom phospholipases A2: insights into the mechanisms of local and systemic myotoxicity. Toxicon, v. 42 (8), p. 915-931, 2003. GUTIERREZ, J. M., LOMONTE, B. Phospholipases A2 From Viperidae Snake Venoms: How do They Induce Skeletal Muscle Damage? Acta Chimica Slovenica, v.58, p.647–659, 2011. GUTIÉRREZ, J.; LOMONTE, B. Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon, v. 33, n. 11, p. 1405–1424, 1995. HATAKEYAMA et al. From birth to adulthood: An analysis of the Brazilian lancehead (Bothrops moojeni) venom at diferente life stages. Plos One, v. 16(6), e0253050, 2021. HENCKEL, J. G.; et al. Molecular modeling. In: FOYE, W. O.; LEMKE, T. L.; WILLIAMNS, D. A. Principles of medicinal chemistry. 4. ed., Williams & Wilkins, 1995. HOLLAND, J. H. Adaptation in Natural and Artificial Systems (The University of Michigan Press, Ann Arbor, 2a edição, 1992), 1975. HOWES, J.-M. et al. Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators, Toxicon, v. 49(5), p. 734-739, 2007. INADOMI, Y. et al. Definition of molecular orbitals in fragment molecular orbital method. Chemical Physics Letters, v.364(1-2), p. 139-143, 2002. JAY, W. et al. Role of Discovery Science in Toxinology: Examples in Venom Proteomics. In: MENEZ, A. (Ed.), Perspectives in Molecular Toxinology, John Wiley & Sons, UK, p. 97–108, 2002. 89 KHAN, M.I. HARIPRASAD, G. Human Secretary Phospholipase A2 Mutations and Their Clinical Implications. Journal of Inflammation Research, v. 13, p. 551-561, 2020. KIM, R.R. et al. Structural and Functional Aspects of Targeting the Secreted Human Group IIA Phospholipase A2. Molecules, v.25, n. 19, p. 4459, 2020. KINI,R.M. SIDHU, S.S. LAUSTSEN, A.H. Biosynthetic Oligoclonal Antivenom (BOA) for Snakebite and Next-Generation Treatments for Snakebite Victims. Toxins, v. 10 (12), p. 534, 2018. KISAKI, C. Y. et al. Bothrops Jararaca Snake Venom Modulates Key Cancer-Related Proteins in Breast Tumor Cell Lines. Toxins, v. 13(8), p. 519, 2021. KITCHEN, D. B. et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, v.3, p. 935-949, 2004. KLAMT, A.; SCHÜÜRMANN, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society, Perkin Transactions, v.2 (5), p. 799–805, 1993. KOKOTOU, M. G. et al., Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016). Expert Opinion on Therapeutic Patents, v.27, n. 2, p.217–225, 2016. KOLLMAN, P. Molecular Modeling. Annual Review of Physical Chemistry, v. 38 (1), p. 303-316, 1987. KOLLURI, S. et al. Machine Learning and Artificial Intelligente in Pharmaceutical Research and Development: a Review. The Official Journal of the American Association of Pharmaceutical Scientists, v. 24 (19), 2022. KRIEGER, E. NABUURS, S.B., VRIEND, G. Homology Modeling, Structural Bioinformatics, v. 44, p. 509-524, 2003. KULARATNE, S. A. M. SENANAYAKE, N. Venomous snake bites, Scorpions and spiders. In: AMINOFF, M. J.. et al. Neurologic Aspects of Systemic Disease Part II. Handbook of Clinical Neurology, 3a edição, v. 120, p. 987-1001, 2014. LAMBORA, A. et al. Genetic Algorithm - A Literature Review. In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA, CLOUD AND PARALLEL COMPUTING (Com-IT-Con), University Noida, India, 2019. Disponível em: 10.1109/COMITCon.2019.8862255. Acesso em: 20 de maio de 2022. LARRÉCHÉ, S. et al. Bleeding and Thrombosis: Insights into Pathophysiology of Bothrops Venom-Related Hemostasis Disorders. International Journal of Molecular Sciences, v. 22 (17), 9643, 2021. LEWIN, J. L. CRAMER, C.J. Rapid Quantum Mechanical Models for the Computational Estimation of C-H Bond Dissociation Energies as a Measure of Metabolic Stability. Molecular Pharmaceutics, v. 1(2), p. 128-135, 2004. 90 LEWIN, M. et al. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation, Toxins, v. 8(9), p. 248, 2016. LI, J. FU, A., ZHANG, L. An Overview of Scoring Functions Used for Protein-Ligand Interactions in Molecular Docking, Interdisciplinary Sciences: Computational Life Sciences, v. 11(2), p. 320-328, 2019. LI, L. et al. On the Dielectric “Constant” of Proteins: Smooth Dielectric Function for Macromolecular Modeling and Its Implementation in DelPhi, Journal of Chemical Theory Computation, v. 9, p. 2126−2136, 2013. LI, S. et al. Proteomic characterization of two snake venoms: Naja naja atra and Agkistrodon halys. Biochemical Journal, v. 384 (1), p. 119-127, 2004. LIPKOWITZ, K. B. et al. Reviews in Computational Chemistry, v.6. John Wiley & Sons, 504 p., 2009. LOOPO, J. B. et al. Treating the snakebitten child in North America: A study of pit viper bites. Journal of Pediatric Surgery, v. 33, p. 1593-1595, 1998. LOPES, J. R. et al. Desenvolvimento de fármacos para tratamento da COVID-19. Ulakes Journal of Medicine, v.1, p.118-124, 2020. MAGALHAES, S. F. V. Ofidismo na Amazônia Legal: descrição, fatores associados à gravidade e estudo de custos. 2020. 149 f. Tese (Doutorado em Medicina Tropical) - Universidade de Brasília, Brasília, 2020. MAGRIOTI, V. KOKOTOS, G. Phospholipase A2 inhibitors for the treatment of inflammatory diseases: a patente review (2010 – present). Expert Opinion on Therapeutic Patents, v. 23 (3), p. 333-344, 2013 MENEZES, M. et al. Proteolytic Signaling in Health and Disease. In: ZELANIS, A. The puzzle of proteolytic effects in hemorrhage induced by Viperidae snake venom metalloproteinases. Academic Press, 2022. Capítulo 12, p. 251-283. MENZIES, S. K. et al. In vitro and in vivo venom-inhibition assays identify metalloproteinase-inhibiting drugs as potential treatments for snakebite envenoming by Dispholidus typus. Toxicon: X, v.14, p.100118, 2022. MEYER, E. F. SWANSON, S. M., WILLIAMS, J. A. Molecular modelling and drug design. Pharmacology & Therapeutics, v. 85(3), p. 113-121, 2000. MOLOO, A. Neglected tropical diseases: treating more than one billion people for the fifth consecutive year. In: WHO. Control of neglected diseases, Geneva: Department News, 2020. Disponível em: https://www.who.int/news/item/16-07-2020-neglected- tropical-diseases-treating-more-than-one-billion-people-for-the-fifth-consecutive-year. Acesso em: 14 de abril de 2022. MONARI, A. RIVAIL, J. ASSFELD, X. Theoretical Modeling of Large Molecular Systems. Advances in the Local Self Consistent Field Method for Mixed Quantum Mechanics/Molecular Mechanics Calculations. Accounts of Chemical Research, v. 46 (2), p. 596-603, 2013. 91 MOREIRA et al. Inflammatory Effects of Bothrops Phospholipases A2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins, v. 13 (12), p. 868, 2021. MOUCHLIS, V. D. et al. Development of Potent and Selective Inhibitors for Group VIA Calcium-Independent Phospholipase A2 Guided by Molecular Dynamics and Structure–Activity Relationships. Journal of Medicinal Chemistry, v. 59, n. 9, p. 4403–4414, 2016. MOURA, P. Isolamento, purificação e caracterização bioquimica e farmacologica de uma nova fosfolipase A2 (Bp12) do veneno de Bothrops pauloensis. 2008. 143 p. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciencias Medicas, Campinas, SP. Disponível em: http://repositorio.unicamp.br/jspui/bitstream/REPOSIP/310305/1/Moura_PriscilaRanda zzode_D.pdf. Acesso em: 17 de Abril de 2022. MURAKAMI, M. T, et al. Insights into metal ion binding in phospholipases A2: ultra high-resolution crystal structures of an acidic phospholipase A2 in the Ca2+ free and bound states. Biochimie, v. 88, n. 5, p. 543–549, 2006. MURAKAMI, M. et al. Regulatory Functions of Phospholipase A2. In: CHATUVERDI. V. K. Critical Reviews in Immunology, v. 37 (2-6), p. 127-195, 2017. MURAKAMI, M. SATO, H. TAKETOMI, Y. Updating Phospholipase A2 Biology. Biomolecules, v. 10(10), 1457, 2020. NANJARAJ, A. N. U. et al. Implications of phytochemicals in snakebite management: presente status and future prospective. Toxin Reviews, v.33 (3), p. 1-24, 2013. NAVES-DE-SOUZA, D. L. et al. Biochemical and enzymatic characterization of BpMP-I, a fibrinogenolytic metalloproteinase isolated from Bothropoides pauloensis snake venom. Comparative Biochemistry and Physiology, Part B, v. 161, p. 102-109, 2012. NAVES-DE-SOUZA, S. F. V. Ofidismo na Amazônia Legal: descrição, fatores associados à gravidade e estudo de custos. 2020. 149 f. Tese (Doutorado em Medicina Tropical) -Universidade de Brasília, Brasília, 2020. Disponível em: https://repositorio.unb.br/bitstream/10482/39223/1/2020_SamaraFreireValenteMagalh %c3%a3es.pdf. Acesso em: 14 de abril de 2022. NOTREDAME, C. HIGGINS, D.G., HERINGA, J. T-coffee: a novel method for fast and accurate multiple sequence alignment, Journal of Molecular Biology, v. 302(1), p. 205-217, 2000. ONG, W.-Y. et al. Synthetic and Natural Inhibitors of Phospholipases A2: Their Importance for Understanding and Treatmentof Neurological Disorders. ACS Chemical Neuroscience, v. 6(6), p. 814-831, 2015. PAIMAN, A. MOHAMMADI, A. REHMAN, M. Role of Computer Aided Drug Design in Modern Drug Discovery and Pharmacokinetic Prediction, Global Drug Design & Development Review, v. 2(1), p. 1-8, 2017. 92 PICCIRILLO, E. AMARAL, A.T. Busca virtual de compostos bioativos: conceitos e aplicações. Química Nova, v.41 (6), p. 662-677, 2018. PINHEIRO, A. C. Caracterização Funcional e Estrutural de uma Fosfolipase Tipo A2 Isolada da Secreção Cutânea do Anuro Pithecopus azureus (PHYLLOMEDUSA AZUREA). 2016. 73f. Dissertação (Mestrado em Biologia Animal). Fundação Universidade de Brasília, Brasília, 2016. RAMOS, O. H. P. SELISTRE-DE-ARAUJO, H.S. Comparative analysis of the catalytic domain of hemorrhagic and non-hemorrhagic snake venom metallopeptidases using bioinformatic tools. Toxicon, v. 44 (5), p. 529-538, 2004. RIBEIRO, L. A. et al. Óbitos por serpentes peçonhentas no Estado de São Paulo: avaliação de 43 casos. Revista da Associação Médica Brasileira, v. 44(4), 1998. RODRIGUES, 2001. Processos Modernos no Desenvolvimento de Fármacos: Modelagem Molecular. Cadernos Temáticos de Química Nova na Escola, no3, 2001. SACHETT, J. A. G. et al. Snakebites Accidents and Renal Complications. In: BEZERRA, G. et al., Tropical Nephrology, Springer Cham, p. 27-39, 2020. SALES, T. A. et al. Can Inhibitors of Snake Venom Phospholipases A2 Lead to New Insights into Anti-Inflammatory Therapy in Humans? A Theoretical Study, Toxins, v. 9 (11), p. 341, 2017. SALVADOR, G. H. M. et al. The synthetic varespladib molecule is a multi-functional inhibitor for PLA2 and PLA2-like ophidic toxins, Biochimica et Biophysica Acta – General Subjects, v. 1865 (7), 2021. SANDER, C. SCHNEIDER, R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins, v. 9, p. 56-68, 1991. SANT’ANNA, C. M. R. Métodos de Modelagem Molecular para Estudo e Planejamento de Compostos Bioativos: Uma Introdução. Revista Virtual de Química, v. 1, p. 49-57, 2009. SANT’ANNA, C. M. R. Uma introdução a modelagem molecular aplicada à química medicinal. In: BARREIRO, E. J.; FRAGA, C. A. M. Química Medicinal: As bases moleculares da ação dos fármacos. 3. ed., 2015. Cap. 5, p. 231-248. SANTOS FILHO, O.A.S. ALENCASTRO, R.B. Modelagem de proteínas por homologia. Química Nova [online], v.26 (2), p. 253-259, 2003. SCHALOSKE, R. H. DENNIS, E. A. The phospholipase A2 superfamily and its group numbering system. Biochimica et Biophysica Acta – Molecular and Cell Biology of Lipids, v. 1761 (11), p. 1246-1259, 2006. SCHWEDE, T. et al. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, v. 31 (13), p. 3381-3385, 2003. SCOTT, K. F. et al. Emerging roles for phospholipase A2 enzymes in cancer, Biochimie, v. 92 (6), p. 601-10, 2010. 93 SERRANO, S.M. et al. A multifaceted analysis of viperid snake venoms by two- dimensional gel electrophoresis: an approach to understanding venom proteomics. Proteomics, v. 5(2), 501-10, 2005. SILVA, A. R. et al. Design, synthesis and effect of triazole derivatives against some toxic activities of Bothrops jararaca venom. Medicinal Chemistry Research, v.30, p.182-195, 2021. SILVA-CARVALHO, R. et al. In vivo treatment with varespladib, a phospholipase A2 inhibitor, prevents the peripheral neurotoxicity and systemic disorders induced by Micrurus corallinus (coral snake) venom in rats. Toxicology Letters, v. 356, p. 54-63, 2022. SILVA, G. M. et al. Synergistic effect of serine protease inhibitors and a bothropic antivenom in reducing local hemorrhage and coagulopathy caused by Bothrops jararaca venom. Toxicon, v. 199, p. 87-93, 2021. SILVA, H. A.; RYAN, N. M.; SILVA, H. J. Adverse reactions to snake antivenom, and their prevention and treatment. British Journal of Clinical Pharmacology, v. 81, n. 3, p. 446–452, 2015. SINAN. Acidentes por animais peçonhentos. 2019. Disponível em: https://antigo.saude.gov.br/images/pdf/2019/outubro/16/1--Dados-Epidemiologicos- SiteSVS--Setembro-2019-OFIDISMO-CASOS.pdf. Acesso em: 14 de abril de 2022. SINGH, S.; MALIK, B. K.; SHARMA, D. K. Molecular drug targets and structure based drug design: A holistic approach. Bioinformation, v.1, n.8,p. 314-320, 2006. STEWART, J. J. P. An examination of the nature of localized molecular orbitals and their value in understanding various phenomena that occur in organic chemistry. Journal of Molecular Modeling, v. 25(1), 2018. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, p. 1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n.1, p. 1-32, 2013. SUKUMAR et al. Applications of Genetic Algorithms in QSAR/QSPR Modeling. In: VALADI, J. et al. Applications of Metaheuristics in Process Engineering, Cap. 13, p. 315-324, 2014. TAMBOURGI, D. V. Envenenamento por Serpentes: Doença Negligenciada Afetando Países em Desenvolvimento. In: Anais da 62a Reunião Anual da SBPC, Natal - RN, 2010. Disponível em: http://www.sbpcnet.org.br/livro/62ra/conferencias/CO%20Denise%20V%20Tambourgi .pdf. Acesso em: 14 de Abril de 2022. 94 TASHIMA, A. K. et al. Peptidomics of Three Bothrops Snake Venoms: Insights Into the Molecular Diversification of Proteomes and peptidomes. Molecular and Cellular Proteomics, v. 11 (11), p. 1245-1262, 2012. TASOULIS, T. IBISTER, G.K. A Review and Database Of Snake Venom Proteomes. Toxins, v. 9(9), p. 290, 2017. TOMMASO, C. Not only in silico drug Discovery: Molecular modeling towards in silico delivery formulations. Journal of Controlled Release, v. 332 (10), p. 390-417, 2021. TOSTES, J. G. Estrutura Molecular: o conceito fundamental da química. Química Nova na Escola, no7, 1998. VAZ, V.H.S., BRAZIL, O.A.V., PAIXÃO, A.E.A. Propriedade intelectual do soro antiofídico: a efetividade a partir da correlação entre os investimentos do governo federal nos principais institutos responsáveis pela produção do soro e realização de pesquisas para o tratamento de acidentes ofídicos no brasil, com relação ao número de vítimas fatais dos acidentes. Caderno de Saúde Coletiva, v. 28, n. 3, p. 409-421, 2020. VYAS, V. K. et al. Homology Modeling a Fast Tool for Drug Design: Current Perspectives. Indian Journal of Pharmaceutical Sciences, v. 74 (1), p. 1-17, 2012. WANG, R.; WANG, S. How does consensus scoring work for virtual library screening? An idealized computer experiment. The Journal for Chemical Information and Computer scientists, n. 41, p. 1422–1426, 2001. WANG, Y. et al. Exploration of the Inhibitory Potential of Varespladib for Snakebite Envenomation. Molecules v. 23, n.2, p. 391, 2018. WARRELL, D.A. Snakebite. Lancet, v. 375, p.77–88, 2010. WERMUTH, C. G. The Practice of Medicinal Chemistry, San Diego: Academic Press, n. 2, p. n.p, 2007. WERY, J.P. et al. Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A2 at 2.2 Å resolution. Nature, v. 352, p.79-82, 1991. WHO. Control of neglected diseases. Health Topics. Snakebite envenoming. 2021. Disponível em: https://www.who.int/health-topics/snakebite#tab=tab_1. Acesso em: 14 de abril de 2022. WHO. Snakebite envenoming, 2019. Disponível em: http://www.who.int/mediacentre/factsheets/fs337/en/. Acesso em: 03 de maio de 2022. WILLIAMS, D. J. et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming, PLOS Neglected Tropical Diseases, v.13, n.2, 2019. WOUTERS, O.J. et al. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018. Jama, v. 323, p. 844-853, 2020. 95 XIANG, M. et al. Computer-Aided Drug Design: Lead Discovery and Optimization, Combinatory Chemistry & High Throughput Screening, v. 15, p. 328-337, 2012. XIE, C. et al. Varespladib Inhibits the Phospholipase A2 and Coagulopathic Activities of Venom Components from Hemotoxic Snakes, Biomedicines, v. 8(6), p. 165, 2020. XU, D. ZHANG, Y. Improving the Physical Realism and Structural Accuracy of Protein Models by a Two-Step Atomic-Level Energy Minimization. Biophysical Journal, v. 101 (10), p. 2525-2534, 2011. YOUNGMAN, N. J. et al. Efficacy and Limitations of Chemically Diverse Small- Molecule Enzyme-Inhibitors against the Synergistic Coagulotoxic Activities of Bitis Viper Venoms. Molecules, v. 27 (5), 1733, 2022. YU, L. DENNIS, E.A. Critical role of a hydrogen bond in the interaction of phospholipase A2 with transition-state and substrate analogues. Proceedings of the National Academy of Sciences, v. 88, p. 9325–9329, 1991. ZAMBELLI, V. O. et al. Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia. Toxins, v. 9(12), p. 406, 2016. ZELANIS, A. TASHIMA, A.K. Unraveling snake venom complexity with ‘omics’ approaches: Challenges and perspectives. Toxicon, v. 87, p. 131-134, 2014. ZHANG, Y. Why do we study animal toxins? Dongwuxue Yanjiu, v. 36(4), p. 183- 222, 2015. ZHONG, F. et al. Artificial intelligence in drug design. Science China Life Sciences, v. 61 (10), 2018. ZYCHAR, B. et al. Modulation of Adhesion Molecules Expression by Different Metalloproteases Isolated from Bothrops Snakes. Toxins, v. 13(11), p.803, 2021.pt_BR
dc.subject.cnpqQuímicapt_BR
Appears in Collections:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.