Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/20268
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDias, Ricardo de Castro-
dc.date.accessioned2025-03-07T19:17:57Z-
dc.date.available2025-03-07T19:17:57Z-
dc.date.issued2022-12-16-
dc.identifier.citationDIAS, Ricardo de Castro. Potencial e eficiência da utilização de rochas silicáticas como fonte de potássio na agricultura. 2022. 136 f. Tese (Doutorado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20268-
dc.description.abstractO Brasil é um grande importador de fertilizantes, especialmente de fertilizantes potássicos. Diante deste cenário, a busca por fontes alternativas aos fertilizantes convencionais solúveis cresceu muito nas últimas duas décadas. O uso de pó de rocha silicática como fonte alternativa de potássio é atualmente recomendada por muitos técnicos, entretanto existem muitas incertezas quanto a eficiência destas fontes no meio científico. Desta maneira, o presente trabalho teve como objetivo avaliar o potencial de diferentes resíduos provenientes da mineração de rochas silicáticas como fonte de potássio na agricultura brasileira. Para tanto, foi dividida em quatro capítulos. No capítulo I foi realizada a revisão sistemática da literatura seguida de meta-análise com o intuito de apresentar o estado da arte sobre a eficiência de pós de rochas silicáticas como fonte de potássio para plantas cultivadas. De maneira geral, o efeito da aplicação de pó de rocha foi superior em relação a não aplicação de K e inferior com relação à aplicação de fertilizante solúvel. Apenas doses acima de 5 Mg ha-1 proporcionaram efeitos significativos ou expressivos. Não foi observado benefício em decorrência da aplicação de pó de rocha em granulometria superior à 2 mm. Estudos de longa duração apresentaram resultado semelhante ao de estudos de curta duração, evidenciando não haver efeito residual na aplicação de pó de rochas silicáticas. No capítulo II, foram realizados ensaios de cinética de liberação de potássio a partir de resíduos da mineração de rocas silicática utilizando diferentes extratores. Os resultados mostraram haver maior proporção de K solúvel no resíduo de serpentinito (SER), rico em filossilicatos, após 48 h de extração. Em geral, a liberação de K dos resíduos foi relativamente rápida nas primeiras 4 h, se tornando praticamente estável após este período. O capítulo III teve como objetivo determinar a curva de resposta da produção de massa seca e acúmulo de potássio em plantas de milho. Para tanto, foi realizado experimento em casa de vegetação para definir a adubação corretiva, assim como modelar matematicamente a produção de matéria seca e acúmulo de K em plantas do milho em função da adubação potássica. O melhor ajuste para produção de matéria seca foi obtido por meio do modelo raiz quadrático, que indicou a necessidade de 163 mg kg-1 de K para atingir 90% da produtividade máxima de matéria seca. O acúmulo de K apresentou comportamento quadrático em função do aumento da dose. O Capítulo IV teve por objetivo avaliar a eficiência de resíduos da mineração de rochas silicáticas como fonte de K. Foi realizado experimento em casa de vegetação para definir a eficiência dos resíduos, comparativamente ao KCl, na produção de matéria seca da parte aérea de plantas de milho, adotando o tratamento sem aplicação de K como controle negativo. Os resíduos foram aplicados em três granulometrias distintas (Ø < 103 µm, Ø < 300 µm e Ø < 4.800 µm), de maneira incorporada ou em superfície. Após dois cultivos sucessivos, a produção de matéria seca obtida pela aplicação do RSE (Ø < 300 µm) proporcionou produção de matéria seca equivalente à obtida pela aplicação de KCl. O acúmulo de K proporcionado pela aplicação de maneira incorporada do RSE em granulometria inferior a 103 µm foi equivalente ao proporcionado pela aplicação de KCl. Os demais resíduos proporcionaram valores de matéria seca e acúmulo de K significativamente inferiores aos proporcionados pela aplicação de KCl. A aplicação dos resíduos em granulometria classificada como farelada (Ø < 4.800 µm) implicou em decréscimo significativo do desempenho.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectAdubaçãopt_BR
dc.subjectFertilidade do solopt_BR
dc.subjectRemineralizadorpt_BR
dc.subjectFertilizationpt_BR
dc.subjectSoil fertilitypt_BR
dc.subjectRemineralizerpt_BR
dc.titlePotencial e eficiência da utilização de rochas silicáticas como fonte de potássio na agriculturapt_BR
dc.title.alternativePotential and efficiency of the use of silicate rocks as a source of potassium in agricultureen
dc.typeTesept_BR
dc.description.abstractOtherBrazil is a major importer of fertilizers, especially potassium fertilizers. Given this scenario, the search for alternative sources to conventional soluble fertilizers has grown a lot in the last two decades. The use of silicate rock powder as an alternative source of potassium is currently recommended by many technicians, however there are many uncertainties regarding the efficiency of these sources in the scientific community. Thus, the present work aimed to evaluate the potential of different residues from the mining of silicate rocks as a source of potassium in Brazilian agriculture. Therefore, it was divided into four chapters. In chapter I, a systematic review of the literature was carried out followed by a meta-analysis in order to present the state of the art on the efficiency of silicate rock powders as a source of potassium for cultivated plants. In general, the effect of the application of rock powder was superior in relation to the non-application of K and inferior in relation to the application of soluble fertilizer. Only doses above 5 Mg ha-1 provided significant or expressive effects. No benefit was observed as a result of the application of rock dust in granulometry greater than 2 mm. Long-term studies showed results similar to those of short-term studies, showing that there is no residual effect in the application of silicate rock powder. In chapter II, assays were carried out on the kinetics of potassium release from silicate rock mining residues using different extractors. The results showed that there was a higher proportion of soluble K in the serpentinite residue (SER), rich in phyllosilicates, after 48 h of extraction. In general, the release of K from the residues was relatively fast in the first 4 h, becoming practically stable after this period. Chapter III aimed to determine the response curve of dry mass production and potassium accumulation in corn plants. For this purpose, an experiment was carried out in a greenhouse to define corrective fertilization, as well as to mathematically model dry matter production and K accumulation in maize plants as a function of potassium fertilization. The best fit for dry matter production was obtained using the root-square model, which indicated the need for 163 mg kg-1 of K to reach 90% of maximum dry matter yield. The accumulation of K showed a quadratic behavior as a function of increasing the dose. Chapter IV aimed to evaluate the efficiency of residues from the mining of silicate rocks as a source of K. An experiment was carried out in a greenhouse to define the efficiency of the residues, comparatively to KCl, in the production of dry matter of the aerial part of plants of maize, adopting the treatment without application of K as negative control. The residues were applied in three different particle sizes (Ø < 103 µm, Ø < 300 µm and Ø < 4,800 µm), incorporated or on the surface. After two successive cultivations, the dry matter production obtained by the application of RSE (Ø < 300 µm) provided a dry matter production equivalent to that obtained by the application of KCl. The accumulation of K provided by the incorporated application of RSE in granulometry smaller than 103 µm was equivalent to that provided by the application of KCl. The other residues provided values of dry matter and K accumulation significantly lower than those provided by the application of KCl. The application of residues in granulometry classified as mash (Ø < 4,800 µm) resulted in a significant decrease in performance.en
dc.contributor.advisor1Zonta, Everaldo-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-8106-0504pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3943601345963141pt_BR
dc.contributor.advisor-co1Teixeira, Paulo César-
dc.contributor.advisor-co1Lattes-pt_BR
dc.contributor.referee1Teixeira, Paulo César-
dc.contributor.referee1Lattes-pt_BR
dc.contributor.referee2Monte, Marisa Bezerra de Mello-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0449404086225701pt_BR
dc.contributor.referee3Cantarutti, Reinaldo Bertola-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9311831258524170pt_BR
dc.contributor.referee4Benites, Vinicius de Melo-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-2602-0750pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/0982975035780621pt_BR
dc.contributor.referee5Stafanato, Juliano Bahiense-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/9835778584120254pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1167182108255818pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Agronomiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopt_BR
dc.relation.referencesACKELLO-OGUTU, C.; PARIS, Q.; WILLIAMS, W. A. Testing a von Liebig Crop Response Function against Polynomial Specifications. American Journal of Agricultural Economics, v. 67, n. 4, p. 873-880, 1 1985. ADELEKE, R.; NWANGBURUKA, C.; OBOIRIEN, B. Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, v. 108, p. 393-406, 2017. AGUINIS, H.; GOTTFREDSON, R. K.; WRIGHT, T. A. Best-practice recommendations for estimating interaction effects using meta-analysis. Journal of Organizational Behavior, v. 32, n. 8, p. 1033-1043, 2011. AL RAWASHDEH, R. World peak potash: An analytical study. Resources Policy, v. 69, p. 101834, 2020. ALOVISI, A. A.; MAUAS, M.; ALOVISI, A. M. T.; TOKURA, L. K.; SILVA, R.S.; GOMES, C.F.; RICIERI, R.P.; SIQUEIRA, J.A.C.; OLIVEIRA, G.B.; LIMA, B.F.; ARAÚJO, W.A. Chemical Attributes of Soil and Response of Wheat to Serpentinite in Direct Seeding System. Journal of Agricultural Science, v. 11, n. 6, 2019. ANDERSEN, T. K.; FONG, D. D.; MARKS, L. D. Pauling’s rules for oxide surfaces. Surface Science Reports, v. 73, n. 5, p. 213-232, 2018. ANDERSON, R. L.; NELSON, L. A. A Family of Models Involving Intersecting Straight Lines and Concomitant Experimental Designs Useful in Evaluating Response to Fertilizer Nutrients. Biometrics, v. 31, n. 2, p. 303, 1975. ANGHINONI, I.; VEZZANI, F. M. Systemic Soil Fertility as product of system self organization resulting from management. Revista Brasileira de Ciência do Solo, v. 45, 2021. ARNON, D. I.; STOUT, P. R. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiology, v. 14, n. 2, p. 371–375, 1939. ARNOTT, A. GALAGEDARA, L.; THOMAS, R.; CHEEMA, M.; SOBZE, J. M. The potential of rock dust nanoparticles to improve seed germination and seedling vigor of native species: A review. Science of the Total Environment, v. 775, p. 145139, 2021. AUGUSTO, L.; TURPAULT, M. P.; RANGER, J. Impact of forest tree species on feldspar weathering rates. Geoderma, v. 96, n. 3, p. 215–237, 2000. BAKKEN, A. K.; GAUTNEB, H.; SVEISTRUP, T.; MYHR, K. Crushed rocks and mine tailings applied as K fertilizers on grassland. Nutrient Cycling in Agroecosystems, v. 56, n. 1, p. 53–57, 2000. BAKKEN, A. K.; GAUTNEB, H.; MYHR, K. Plant available potassium in rocks and mine tailings with biotite, nepheline and K-feldspar as K-bearing minerals. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, v. 47, n. 3, p. 129–134, 1997. BARBOSA, J. Z.; HUNGRIA, M.; PRIOR, S. A.; MOURA, M. C.; POGGERE, G.; MOTTA, A. C. V. Improving yield and health of legume crops via co-inoculation with rhizobia and Trichoderma: A global meta-analysis. Applied Soil Ecology, v. 176, n. January, p. 104493, 2022. 113 BASAK, B. B.; SARKAR, B.; BISWAS, D.R.; SARKAR, S.; SANDERSON, P.; NAIDU, R. Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities. In: SPARKS, D. L. (Ed.). Advances in Agronomy. 1. ed.: Academic Press Inc., 2017. v. 141p. 115–145. BASAK, B. B. Waste Mica as Alternative Source of Plant-Available Potassium: Evaluation of Agronomic Potential Through Chemical and Biological Methods. Natural Resources Research, v. 28, n. 3, p. 953-965, 2019. BEGG, C. B.; MAZUMDAR, M. Operating Characteristics of a Rank Correlation Test for Publication Bias. Biometrics, v. 50, n. 4, p. 1088, 1994. BENITES, V. M.; CARVALHO, M. C. S.; RESENDE, A. V.; POLIDORO, J.C.; BERNARDI, A. C. C.; OLIVEIRA, F. A. O potássio, o cálcio e o magnésio na agricultura brasileira. In: PROCHNOW, L. I.; CASARIN, V.; STIPP, S. R. (Eds.). Boas práticas para uso eficiente de fertilizantes. 1. ed.: International Plant Nutrition Institute, 2010. p. 100-130. BERCK, P.; GEOGHEGAN, J.; STOHS, S. A Strong Test of the von Liebig Hypothesis. American Journal of Agricultural Economics, v. 82, n. 4, p. 948-955, 2000. BIAN, Z.; KAWI, S. Preparation, characterization and catalytic application of phyllosilicate: A review. Catalysis Today, v. 339, p. 3–23, 2020. BLEAM, W. F. Clay Mineralogy and Clay Chemistry. In: BLEAM, W. F. (Ed.). Soil and Environmental Chemistry. Academic Press, 2012. p. 85–116. BLOOM, P. R.; NATER, E. A. Kinetics of dissolution of oxide and primary silicate minerals. In: SPARKS, D. L.; SUAREZ, D. L. (Eds.). Rates of Soil Chemical Processes. Soil Science Society of America, 1991. p. 151–189. BLOUIN, M.; BARRERE, J.; MEYER, N.; LARTIGUE, S.; BAROT, S.; MATHIEU, J. Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development, v. 39, n. 4, 2019. BOBICKI, E. R.; LIU, Q.; XU, Z.; ZENG, H. Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, v. 38, n. 2, p. 302–320, 2012. BOLDRIN, P. F.; SOUTO, H. F.; SALLES, L. S.; FURTINI NETO, A. E. Alternative sources of potassium for maize cultivation. Ciência e Agrotecnologia, v. 43, 2019. BOLLAND, M. D. A.; BAKER, M. J. Powdered granite is not an effective fertilizer for clover and wheat in sandy soils from Western Australia. Nutrient Cycling in Agroecosystems, v. 56, n. 1, p. 59–68, 2000a. BORENSTEIN, M.; HEDGES, L. V.; HIGGINS, J. P. T.; ROTHSTEIN, H. R. Introduction to meta-analysis. 1. ed. Padstow: John Wiley and Sons Ltd, 2009. BRANTLEY, S. L.; OLSEN, A. A. Reaction Kinetics of Primary Rock-Forming Minerals under Ambient Conditions. In: HOLLAND, H. D.; TUREKIAN, K. K. (Eds.). Treatise on Geochemistry: Second Edition, 2 ed.: Elsevier, 2014. v. 7p. 69–113. BRASIL. INSTRUÇÃO NORMATIVA N° 5, DE 10 DE MARÇO DE 2016. Ministério da Agricultura, Pecuária e Abastecimento, , 2016. 114 CAMA, J.; GANOR, J. Dissolution Kinetics of Clay Minerals. In: TOURNASSAT, C.; STEEFEL C. I.; BOURG, I. C.; BERGAYA, F. (Eds.). Developments in Clay Science. Elsevier, 2015. v. 6. p. 101–153. CHAPIN, F. S.; MATSON, P. A.; MOONEY, H. A. Principles of Terrestrial Ecosystem Ecology. 1. ed. New York: Springer, 2002. CHRISTENSON, H. K.; THOMSON, N. H. The nature of the air-cleaved mica surface. Surface Science Reports, v. 71, n. 2, p. 367–390, 1 jun. 2016. CIPRIANI, A.; GEDDES, J. Comparison of systematic and narrative reviews: the example of the atypical antipsychotics. Epidemiology and Psychiatric Sciences, v. 12, n. 3, p. 146–153, 2003. CORONEOS, C.; HINSINGER, P.; GILKES, R. J. Granite powder as a source of potassium for plants: a glasshouse bioassay comparing two pasture species. Fertilizer Research, v. 45, n. 2, p. 143–152, 1996. DAKORA, F. D.; PHILLIPS, D. A. Root exudates as mediators of mineral acquisition in low nutrient environments. Plant and Soil, v. 245, n. 1, p. 35–47, ago. 2002. DALMORA, A. C.; RAMOS, C. G.; PLATA, L. G.; COSTA, M. L.; KAUTZMANN, R. M.; OLIVEIRA, L. F. S. Understanding the mobility of potential nutrients in rock mining by products: An opportunity for more sustainable agriculture and mining. Science of the Total Environment, v. 710, p. 136240, 2020. DHAKAL, C.; LANGE, K. Crop yield response functions in nutrient application: A review. Agronomy Journal, v. 113, n. 6, p. 5222–5234, 2021. DIAS, R. DE C.; CASTRO, T. A. T.; GONÇALVES, R. G. M.; POLIDORO, J. C.; PEREIRA, M. G.; STRALIOTTO, R.; TEIXEIRA, P. C. Acúmulo de biomassa e potássio em gramíneas em função da fonte fertilizante e do solo. Brazilian Journal of Development, v. 6, n. 6, p. 33506–33518, 2020. DREVER, J. I.; STILLINGS, L. L. The role of organic acids in mineral weathering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 120, n. 1–3, p. 167–181, 1997. ECHEVARRIA, I. M.; WALKER, S. Start with a PICOT question to make your case. Nursing Critical Care, v. 10, n. 3, p. 14–16, 2015. EGGER, M.; SMITH, G. D.; SCHNEIDER, M.; MINDER, C. Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, v. 315, n. 7109, p. 629–634, 1997. FAGERIA, N. K.; BALIGAR, V. C. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Advances in Agronomy, v. 99, p. 345–399, 2008. FAGERIA, N. K.; NASCENTE, A. S. Management of Soil Acidity of South American Soils for Sustainable Crop Production. Advances in Agronomy, v. 128, p. 221–275, 2014. FARMER, G. L. Continental Basaltic Rocks. In: HOLLAND, H. D.; KARL K. TUREKIAN (Eds.). Treatise on Geochemistry: Second Edition. 2 ed.: Elsevier Inc., 2013. v. 4, p. 75–110. 115 Encontro nacional FEBRAPDP. https://febrapdp.org.br/enpdp . Acesso em: 11 ago. 2022. do plantio direto. Disponível em: FEENSTRA, A.; FRANZ, G. Regional Metamorphism. Reference Module in Earth Systems and Environmental Sciences. Elsevier, 2015. FERNANDES, F. R. C.; LUZ, A. B.; CASTILHOS, Z. B. Agrominerais para o Brasil. Rio de Janeiro: CETEM/MCT, 2010. FERNANDES, M. S.; SOUZA, S. R. DE; SANTOS, L. A. Nutrição Mineral de Plantas. 2. ed. Viçosa -MG: Sociedade Brasileira de Ciência do Solo, 2018. FERREIRA, E. B.; CAVALCANTI, P. P.; NOGUEIRA, D. A. ExpDes: An R Package for ANOVA and Experimental Designs. Applied Mathematics, v. 5, n. 9, 202014. Disponível em: https://cran.r-project.org/package=ExpDes.pt FERREIRA, I. E. P.; ZOCCHI, S. S.; BARON, D. Reconciling the Mitscherlich’s law of diminishing returns with Liebig’s law of the minimum. Some results on crop modeling. Mathematical Biosciences, v. 293, p. 29–37, 2017. FRANKE, W. A. The durability of rocks—Developing a test of rock resistance to chemical weathering. American Journal of Science, v. 309, n. 8, p. 711–730, 2009. FREIRE, L. R.; ZONTA, E.; CAMPOS, D. V. B.; BALIEIRO, F. C.; GUERRA, J. G. M.; POLIDORO, J. C.; FREIRE, L. R.; ANJOS, L. H. C.; LEAL, M. A. A.; PEREIRA, M. G.; FERREIRA, M. B. C. Manual de Calagem e Adubação do Estado do Rio de Janeiro. Seropédica - RJ: Editora Universidade Rural, 2013, 362 p. GHENT, E. D. Metamorphic Rock Systems. Encyclopedia of Physical Science and Technology. Elsevier, 2003. GISLASON, S. R.; WOLFF-BOENISCH, D.; STEFANSSON, A.; OELKERS, E. H.; GUNNLAUGSSON, E.; SIGURDARDITTIR, H.; SIGFUSSON, B.; BROECKER, W. S.; MATTER, J. M.; STUTE, M.; AXELSSON, G.; FRIDRIKSSON, T. Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control, v. 4, n. 3, p. 537–545, 2010. GISLASON, S. R.; OELKERS, E. H. Silicate Rock Weathering and the Global Carbon Cycle. In: HARMON, R.; PARKER, A. (Eds.). Frontiers in Geochemistry: Contribution of Geochemistry to the Study of the Earth. Blackwell Publishing, 2011. p. 84–103. GOLDICH, S. S. A Study in Rock-Weathering. The Journal of Geology, v. 46, n. 1, p. 17–58, 1938. GOMES, F. P. The Use of Mitscherlich’s Regression Law in the Analysis of Experiments with Fertilizers. Biometrics, v. 9, n. 4, p. 498, 1953. GROVE, T. L.; BROWN, S. M. Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited. American Journal of Science, v. 318, n. 1, p. 1–28, 2018. HALDAR, S. K. Geology and Geochemistry. In: HALDAR, K. S. (Ed.). Platinum-Nickel Chromium Deposits. Elsevier, 2017. p. 37–61. 116 HALDAR, S. K. Igneous rocks. In: HALDAR, S. K. (Ed.). Introduction to Mineralogy and Petrology. Elsevier, 2020a. p. 159–186. HALDAR, S. K. Basic petrology. In: HALDAR, S. K. (Ed.). Introduction to Mineralogy and Petrology. 2 ed.: Elsevier, 2020b. p. 145–158. HALDAR, S. K. Sedimentary rocks. In: HALDAR, S. K. (Ed.). Introduction to Mineralogy and Petrology. 2 ed.: Elsevier, 2020c. p. 187–268. HALDAR, S. K. Metamorphic rocks. In: HALDAR, S. K. (Ed.). Introduction to Mineralogy and Petrology. 2 ed. Elsevier, 2020d. p. 269–289. HALDAR, S. K.; TIŠLJAR, J. Basic Mineralogy. In: HALDAR, S. K.; TIŠLJAR, J. (Eds.). Introduction to Mineralogy and Petrology. Elsevier, 2014. p. 39–79. HALL, J. A.; ROSENTHAL, R. Interpreting and evaluating meta-analysis. Evaluation & the Health Professions, v. 18, n. 4, p. 393–407, 1995. HARLEY, A. D.; GILKES, R. J. Factors influencing the release of plant nutrient elements from silicate rock powders: A geochemical overview. Nutrient Cycling in Agroecosystems, v. 56, n. 1, p. 11–36, 2000a. HINSINGER, P.; BOLLAND, M. D. A.; GILKES, R. J. Silicate rock powder: effect on selected chemical properties of a range of soils from Western Australia and on plant growth as assessed in a glasshouse experiment. Fertilizer Research, v. 45, n. 1, p. 69–79, 1995. HYNDMAN, R. J. fpp: Data for “Forecasting: principles and practice”. 2013. Disponível em: https://cran.r-project.org/package=fpp JACKSON, T. A. Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment. Geoderma, v. 251–252, p. 78–91, 2015. JALALI, M.; KHANLARI, Z. V. Kinetics of Potassium Release from Calcareous Soils Under Different Land Use. Arid Land Research and Management, v. 28, n. 1, p. 1–13, 2013. KALINOWSKI, B. E.; SCHWEDA, P. Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1-4, room temperature. Geochimica et Cosmochimica Acta, v. 60, n. 3, p. 367–385, 1 fev. 1996. KASSAMBARA, A.; MUNDT, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Disponível em: https://cran.r-project.org/package=factoextra KLEIN, C.; DUTROW, B. Manual de Ciência dos Minerais. 23. ed. São Paulo: Artmed Editora S.A., 2012. KORCHAGIN, J.; CANER, L.; BORTOLUZZI, E. C. Variability of amethyst mining waste: A mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, v. 210, p. 749-758, 2019. KOUTSOS, T. M.; MENEXES, G. C.; DORDAS, C. A. An efficient framework for conducting systematic literature reviews in agricultural sciences. Science of The Total Environment, v. 682, p. 106–117, 2019. 117 LAJEUNESSE, M. J. Bias and correction for the log response ratio in ecological meta-analysis. Ecology, v. 96, n. 8, p. 2056-2063, 2015. LANGE, I. TORO, M.; ARVIDSON, R. S.; KURGANSKAIA, I.; LUTTGE, A. The role of crystal heterogeneity in alkali feldspar dissolution kinetics. Geochimica et Cosmochimica Acta, v. 309, p. 329-351, 2021. LARSEN, E. JOHANNESSEN, E E.; KOWALCZUK, P. B.; KLEIV, R. A. Selective flotation of K-feldspar from Na-feldspar in alkaline environment. Minerals Engineering, v. 142, p. 105928, 2019. LAVIKKO, S.; EKLUND, O. The role of the silicate groups in the extraction of Mg with the ÅA route method. Journal of CO2 Utilization, v. 16, p. 466-473, 2016. LAZO, D. E.; DYER, L. G.; ALORRO, R. D. Silicate, phosphate and carbonate mineral dissolution behaviour in the presence of organic acids: A review. Minerals Engineering, v. 100, p. 115-123, 2017. LEWIS, A. L.; SARKAR, B.; WADE, P.; KEMP, S. J.; HODSON, M. K.; TAYLOR, L. L.; YEONG, K. L.; DAVIES, K. NELSON, P. N.; BIRD, M. I.; KANTOLA, I. B.; MASTERS, M. D.; LUCIANA, E.; LEAKE, J. R.; BANWART, S. A.; BEERLING, D. J. Effects of mineralogy, chemistry and physical properties of basalts on carbon capture potential and plant-nutrient element release via enhanced weathering. Applied Geochemistry, v. 132, p. 105023, 2021. LI, J.; ZHANG, W.; LI, S.; LI, X.; LU, J. Effects of citrate on the dissolution and transformation of biotite, analyzed by chemical and atomic force microscopy. Applied Geochemistry, v. 51, p. 101-108, 2014. LI, T.; WANG, H.; WANG, J.; ZHOU, Z.; ZHOU, J. Exploring the potential of phyllosilicate minerals as potassium fertilizers using sodium tetraphenylboron and intensive cropping with perennial ryegrass. Scientific Reports, v. 5, n. 1, p. 1-7, 2015. LLOYD, S. L. Mining and manufacture of fertilizing materials and their relation to soils, by Strauss L. Lloyd. New York: D. Van Nostrand company, 1918. LUISE, L. K.; PAZ, S. P. A.; ANGÉLICA, R. S.; VALADARES, L. F.; SOUSA-SILVA, J. C.; MARCHI, G.; MARTINS, E. S. Successive off take of elements by maize grown in pure basalt powder. African Journal of Agricultural Research, v. 15, n. 2, p. 229-239, 2020. MA, J.; TAKAHASHI, E. Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil, v. 126, n. 1, p. 115–119, 1990. MA, J.; YOON, R.-H. CO2 Mineralization in Artificial Seawater. In: SHI, F.; BRYAN, M. (Eds.). Novel Materials for Carbon Dioxide Mitigation Technology. Elsevier, 2015. p. 363 385. MAITY, A.; SHARMA, J.; PAL, R. K. Novel potassium solubilizing bio-formulation improves nutrient availability, fruit yield and quality of pomegranate (Punica granatum L.) in semi-arid ecosystem. Scientia Horticulturae, v. 255, p. 14-20, 2019. MALMSTRÖM, M.; BANWART, S. Biotite dissolution at 25°C: The pH dependence of dissolution rate and stoichiometry. Geochimica et Cosmochimica Acta, v. 61, n. 14, p. 2779 2799, 1997. 118 MANCINI, L.; SALA, S. Social impact assessment in the mining sector: Review and comparison of indicators frameworks. Resources Policy, v. 57, p. 98-111, 2018. MANCUSO, M. A. C.; SORATO, R. P.; CRUSCIOL, C. A. C.; CASTRO, G. S. A. Effect of potassium sources and rates on arabica coffee yield, nutrition, and macronutrient export. Revista Brasileira de Ciência do Solo, v. 38, p. 1448-1456, 2014. MANGOLD, N.; SCHMIDT, M. E.; FISK, M. R.; FORNI, O.; McLENNAN, S.M.; MING, D. W.; SAUTTER, V.; SUMNER, D.; WILLIAMS, A.J.; CLEGG, S. M.; COUSIN, A.; GASNAULT, O.; GELLERT, R.; GROTZINGER, J.P. WIENS, R. C. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars. Icarus, v. 284, p. 1-17, 2017. MANNING, D. A. C.; BAPTISTA, J.; LOMON, M. S.; BRANDT, K. Testing the ability of plants to access potassium from framework silicate minerals. Science of the Total Environment, v. 574, p. 476-481, 2017. MANNING, D. A. C. C. Mineral sources of potassium for plant nutrition. A review. Agronomy for Sustainable Development, v. 30, n. 2, p. 281-294, 2010. MANNING, D. A. C. C. Innovation in Resourcing Geological Materials as Crop Nutrients. Natural Resources Research, v. 27, n. 2, p. 217-227, 2018. MARSCHNER, H.; CAKMAK, I. High Light Intensity Enhances Chlorosis and Necrosis in Leaves of Zinc, Potassium, and Magnesium Deficient Bean (Phaseolus vulgaris) Plants. Journal of Plant Physiology, v. 134, n. 3, p. 308-315, 1989. MARSH, B. D. Solidification fronts and magmatic evolution. Mineralogical Magazine, v. 60, n. 398, p. 5-40, 1996. MARSH, B. D. Magma Chambers. In: SIGURDSSON, H. (Ed.). The Encyclopedia of Volcanoes. 2 ed.: Academic Press, 2015. p. 185-201. MEIRA, L. D. RELEASE KINETICS IN VERMICULITE TAILINGSY A. DE S.; MACHADO, Á. O. D. V.; LEITE, J. Y. P. Potassium release kinetics in vermiculite tailings. XXVII International Mineral Processing Congress. Anais, Santiago: 2014. MOHAMMED, S. M. O.; BRANDT, K.; GRAY, N. D.; WHITE, M. L.; MANNING, D. A. C. Comparison of silicate minerals as sources of potassium for plant nutrition in sandy soil. European Journal of Soil Science, v. 65, n. 5, p. 653-662, 2014a. MOHER, D.; LIBERATI, A.; TETZLAFF, J.; ALTMAN, D. G.; THE PRISMA GROUP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine, v. 6, n. 7, 2009. MONTOYA, A.; HAYNES, B. S. Energy profiles of hydrogen migration in the early stages of lizardite dehydroxylation. Computational Materials Science, v. 98, p. 435-445, 2015. MORAES, A.; CARVALHO, P. C. F.; ANGHINONI, I.; LUSTOSA, S. B. C.; COSTA, S. E. V. G. A.; KUNRATH, T. R. Integrated crop-livestock systems in the Brazilian subtropics. European Journal of Agronomy, v. 57, p. 4-9, 2014. MULUGETA, D.; TEKALIGN, M.; SHELEME, B.; SELAMYIHUN, K. Potassium critical level in soil for Teff (Eragrostis tef (Zucc.) Trotter) grown in the central highland soils of Ethiopia. SN Applied Sciences, v. 1, n. 9, p. 1-9, 2019. 119 MURRELL, T. S.; MIKKELSEN, R. L.; SULEWSKI, G.; NORTON, R. THOMPSON, M. L. Improving Potassium Recommendations for Agricultural Crops. Cham: Springer, 2021. NADERIZADEH, Z.; KHADEMI, H.; AROCENA, J. M. Organic matter induced mineralogical changes in clay-sized phlogopite and muscovite in alfalfa rhizosphere. Geoderma, v. 159, n. 3-4, p. 296303, 2010. NATER, E. A.; BOUABID, R. Micromorphology of the Initial Weathering Products of Feldspars. Developments in Soil Science, v. 19, n. C, p. 525-530, 1990. NISHANTH, D.; BISWAS, D. R. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresource Technology, v. 99, n. 9, p. 3342-3353, 2008. NOVAIS, R. F.; ALVAREZ, V.H.; BARROS, N. F.; FONTES, R. L. F.; CANTARUTTI, R. B.; NEVES, J. C. L. Fertilidade do Solo. 1 ed. Viçosa - MG: Sociedade Brasileira de Ciência do Solo, 2007. OELKERS, E. H.; SCHOTT, J. Does organic add adsorption affect alkali-feldspar dissolution rates? Chemical Geology, v. 151, n. 1-4, p. 235-245, 1 out. 1998. OGASAWARA, E. S.; KULAIF, Y.; FERNANDES, F. R. C. A indústria brasileira de fertilizantes (cadeia NPK, enxofre, rocha fosfática e potássio) - Projeções de 2010 a 2030. In: FERNANDES, F. R. C.; LUZ, A. B. DA; CASTILHOS, Z. C. (Eds.). Agrominerais para o Brasil. Rio de Janeiro: CETEM/MCT, 2010. p. 145-168. OKRUSCH, M.; FRIMMEL, E. H. An Introduction to Minerals, Rocks and Mineral Deposits. 1 ed. Springer, 2020. OLIVEIRA, R. H.; ROSOLEM, C. A.; TRIGUEIRO, R. M. Importância do fluxo de massa e difusão no suprimento de potássio ao algodoeiro como variável de água e potássio no solo. Revista Brasileira de Ciência do Solo, v. 28, n. 3, p. 439–445, 2004. PANDEY, G. K.; MAHIWAL, S. Role of Potassium: An Overview Introduction. In: PANDEY, G. K.; MAHIWAL, S. (Eds.). Role of Potassium in Plants. Cham: Springer, 2015. p. 1-7. PARIS, Q. The von Liebig Hypothesis. American Journal of Agricultural Economics, v. 74, n. 4, p. 1019-1028, 1992. PARKER, D. R.; REICHMAN, S. M.; CROWLEY, D. E. Metal chelation in the rhizosphere. In: ZOBEL, R. W.; WRIGHT, S. F. (Eds.). Roots and Soil Management: Interactions between Roots and the Soil. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 2015. p. 57-93. PATINO, C. M.; FERREIRA, J. C. Intervalos de confiança: uma ferramenta útil para estimar o tamanho do efeito no mundo real. Jornal Brasileiro de Pneumologia, v. 41, n. 6, p. 565-566, 2015. PAULING, L. The principles determining the structure of complex ionic crystals. Journal of the American Chemical Society, v. 51, n. 4, p. 1010-1026, 1929. PENN, C. J.; CAMBERATO, J. J. A critical review on soil chemical processes that control how soil ph affects phosphorus availability to plants. Agriculture, v. 9, n. 6, p. 120, 2019. 120 PLATA, L. G.; RAMOS, C. G.; OLIVEIRA, M. L. S.; OLIVEIRA, L. F. S. Release kinetics of multi-nutrients from volcanic rock mining by-products: evidences for their use as a soil remineralizer. Journal of Cleaner Production, v. 279, p. 123668, 2020. PRAMANIK, P.; KALITA, C. Evaluated potential of mica waste to release sufficient potassium to support the growth of plants in acidic tea-growing soil in Northeast India. Communications in Soil Science and Plant Analysis, v. 50, n. 10, p. 1258-1266, 2019. PRATES, F. B. DE S.; GENUNCIO, G. C.; FERRARI, A. C.; NASCIMENTO, E. C.; ALVEZ, G. Z.; PALERMO, D. P.; ZONTA, E. Acúmulo de nutrientes e produtividade de crambe em função da fertilização com torta de mamona e serpentinito. Ciência Rural, v. 44, n. 5, p. 810 816, 2014. PRIYONO, J.; GILKES, R. J. Dissolution kinetics of milled-silicate rock fertilizers in organic acid. Journal of Tropical Soils, v. 13, n. 1, p. 1-10, 2008a. PRIYONO, J.; GILKES, R. J. High-energy milling improves the effectiveness of silicate rock fertilizers: A glasshouse assessment. Communications in Soil Science and Plant Analysis, v. 39, n. 3-4, p. 358-369, 2008b. R CORE TEAM. R: A language and environment for statistical computing. Vienna, AustriaR Foundation for Statistical Computing, 2021. Disponível em: https://www.r project.org/ RACKLEY, S. A. Mineral carbonation. In: RACKLEY, S. A. (Ed.). Carbon Capture and Storage. 2 ed. Butterworth-Heinemann, p. 253-282. 2017. RAMEZANIAN, A; DAHLIN, A. S.; CAMPBELL, C. D.; HILLIER, S.; MANNERSTEDT FOGELFORS, B. ÖBORN, I. Addition of a volcanic rockdust to soils has no observable effects on plant yield and nutrient status or on soil microbial activity. Plant and Soil, v. 367, n. 1-2, p. 419-436, 2013a. RAO, B. K. Kinetics of potassium release in sweet potato cropped soils: a case study in the highlands of Papua New Guinea. Solid Earth, v. 6, p. 217-225, 2015. RESENDE, Á. V.; FONTOURA, S. M. V.; BORGHI, E.; SANTOS, F. C.; KAPPES, C.; MOREIRA, S. G.; OLIVEIRA JUNIOR, A.; BORIN, A. L. C. Solos de fertilidade construída: características, funcionamento e manejo: Informações Agronômicas. Piracicaba - SP: International Plant Nutrition Institute, 2016. Disponível em: http://brasil.ipni.net . Acesso em: 2 ago. 2022. ROSENBERG, M. S. The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, v. 59, n. 2, p. 464-468, 2005. ROSENTHAL, R. The file drawer problem and tolerance for null results. Psychological Bulletin, v. 86, n. 3, p. 638-641, 1979. ROSOLEM, C. A.; STEINER, F. Effects of soil texture and rates of K input on potassium balance in tropical soil. European Journal of Soil Science, v. 68, n. 5, p. 658-666, 2017. SANTANA, E. B.; DIAS, J. C. T. Phosphate solubilizing activity of native soil microorganisms from the rhizosphere of jatropha curcas and from phosphate-solubilizing bacteria inoculum. Genetics and Molecular Research, v. 18, n. 4, 2019. 121 SANTOS, D. R.; GATIBONI, L. C.; KAMINSKI, J. Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Ciência Rural, v. 38, n. 2, p. 576–586, 2008. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHLO, M. R.; ALMEIDA, J. A.; ARAÚJO FILHO, J. C. A.; CUNHA, T. J. F. Sistema Brasileiro de Classificação de Solos. 5 ed. Brasília, DF: EMBRAPA, 2018. SANTOS, W. O.; MATTIELLO, E. M.; VERGUTZ, L.; COSDTA, R. F. Production and evaluation of potassium fertilizers from silicate rock. Journal of Plant Nutrition and Soil Science, v. 179, n. 4, p. 547-556, 2016. SATTAR, A.; NAVEED, M.; ALI, M.; ZAHIR, Z. A.; NADEEM, S. M.; YASEEM, M.; MEENA, V. S.; FARAOOQ, M.; SINGH, R.; RAHMAN, M.; MEENA, H. N. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology, v. 133, p146-159, 2019. SCHALLER, J.; FAUCHERRE, S.; JOSS, H.; OBST, M.; GOECKEDE, M.; PLANER FRIEDRICH, B.; PEIFFER, S.; GILFEDDER, B.; ELBERLING, B. Silicon increases the phosphorus availability of Arctic soils. Scientific Reports, v. 9, n. 1, p. 1-11, 2019. SCHOEN, C.; AUMOND, J. J.; STÜRMER, S. L. Efficiency of the on-farm mycorrhizal inoculant and phonolite rock on growth and nutrition of Schinus terebinthifolius and Eucalyptus saligna. Revista Brasileira de Ciência do Solo, v. 40, 2016. SCHÖN, J. H. Rocks-Their Classification and General Properties. In: SCHÖN, J. H. (Ed.). Developments in Petroleum Science. Elsevier, 2015. v. 65, p. 1-19. SHIMIZU, G. D.; GONCALVES, L. S. A. AgroReg: Regression Analysis Linear and Nonlinear for Agriculture. 2021. Disponível em: https://cran.r-project.org/package=AgroReg SILVA, A.; SAMPAIO, J. A.; LUZ, A. B.; FRANÇA, S. C. A.; RONCONI, C. M. Modeling controlled potassium release from phlogopite in solution: exploring the viability of using crushed phlogopitite rock as an alternative potassium source in. Journal of the Brazilian Chemical Society, v. 24, n. 8, p. 1366-1372, 2013. SLATT, R. M. Basic sedimentary rock properties. In: SLATT, R. M. (Ed.). Developments in Petroleum Science. Elsevier, 2013. v. 61p. 39-93. SOARES, M. E. P.; CAVALCANNTE, A. C. P.; ANDRADE, G. A. V.; BARBOSA, I. R.; LIMA, N. J. C.; AQUINO, L. A. Productivity, cation absorption and severity of alternaria potato influenced by potassium fertilization. Scientia Plena, v. 16, n. 7, 2020. SORATTO, R. P.; CRUSCIOL, C. A. C.; CAMPOS, M.; COSTA, C. H. M.; GILABEL, A. P.; CASTRO, G. S. A.; FERRARI NETO, J. Silicate rocks as an alternative potassium fertilizer for upland rice and common bean crops. Pesquisa Agropecuaria Brasileira, v. 56, p. 1-10, 2021. SOUSA, M. R.; RIBEIRO, A. L. P. Revisão sistemática e meta-análise de estudos de diagnóstico e prognóstico: um tutorial. Arquivos Brasileiros de Cardiologia, v. 92, n. 3, p. 241-251, 2009. 122 SOUZA, I. C. A. Influência do tamanho de partícula na dissolução do íon potássio da rocha flogopitito. 2013. 103p. Dissertação (Mestrado em Tecnologia de3 Processos Químicos e Bioquímicos) Universidade Federal do Rio de Janeiro, 2013. STAFANATO, J. B.; Aplicação de misturas granuladas NK e NS em cultivar de arroz (Oryza sativa). 2009, 67 f. Dissertação (Mestrado em Agronomia/Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro. SWOBODA, P.; DÖRING, T. F.; HAMER, M. Remineralizing soils? The agricultural usage of silicate rock powders: A review. Science of the Total Environment, v. 807, p. 150976, 10 fev. 2022. TAZAKI, K.; FYFE, W. S. Primitive clay precursors formed on feldspar. Canadian Journal of Earth Sciences, v. 24, n. 3, p. 506-527, 1987. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de Métodos de Análise de Solo. 3 ed. Brasília: Embrapa, 2017. TILGHMAN, R. A. Improvement in decomposing potash-feldspar for obtaining certain salts. United States, 4 dez. 1847. TSUKAGOSHI, S.; SHINOHARA, Y. Nutrition and nutrient uptake in soilless culture systems. In: KOZAI, T.; NIU, G.; TAKAGAKI, M. (Eds.). Plant Factory. 2 ed. Academic Press, 2019. p. 221-229. UNESP. Museu Heinz Ebert. Disponível em: https://museuhe.com.br/ . Acesso em: 18 ago. 2022. USEPA (United States Environmental Protection Agency). Method 3050b: Acid digestion of sediments, sludges, and soils. Revision 2, USEPA, 1996. VALADARES, A. P.; COELHO, R. M.; DE MEDEIROS OLIVEIRA, S. R. Preprocessing procedures and supervised classification applied to a database of systematic soil survey. Scientia Agricola, v. 76, n. 5, p. 439–447, 2019. VAN STRAATEN, P. Distribution of agromineral resources in space and time - a global geological perspective. Pesquisa Agropecuaria Brasileira, v. 57, p. 1-22, 2022. VELBEL, M. A. Surface Textures and Dissolution Processes of Heavy Minerals in the Sedimentary Cycle: Examples from Pyroxenes and Amphiboles. In: MANGE, M. A.; WRIGHT, D. T. (Eds.). Developments in Sedimentology. Elsevier, 2007. v. 58p. 113-150. VIECHTBAUER, W. Conducting meta-analyses in R with the metafor. Journal of Statistical Software, v. 36, n. 3, p. 1-48, 2010. VIERS, J.; OLIVA, P.; DANDURAND, J. L.; DUPRÉ, B.; GAILARDET, J. Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers. In: HOLLAND, H. D.; TUREKIAN, K. K. (Eds.). Treatise on Geochemistry. 2 ed. Pergamon, 2014. v. 7p. 1-25. VOLF, M. R.; GUIMARÃES, T. M.; SCUDELETTI, D.; CRUZ, I. V.; ROSOLEM, C. A. Potassium Dynamics in Ruzigrass Rhizosphere. Revista Brasileira de Ciência do Solo, v. 42, p. 170370, 2018. 123 VON WILPERT, K.; LUKES, M. Ecochemical effects of phonolite rock powder, dolomite and potassium sulfate in a spruce stand on an acidified glacial loam. Nutrient Cycling in Agroecosystems, v. 65, n. 2, p. 115-127, 2003. WALLANDER, H.; WICKMAN, T. Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza, v. 9, n. 1, p. 25 32, 1999. WANG, H.; ZHENG, J.; FAN, J.; ZHANG, F.; HUANG, C. Grain yield and greenhouse gas emissions from maize and wheat fields under plastic film and straw mulching: A meta-analysis. Field Crops Research, v. 270, p. 108210, 2021. WANG, H.; WANG, N.; QUAN, H.; ZHANG, F.; FAN, J.; FENG, H.; CHENG, M.; LIAO, Z.; WANG, X.; XIANG, Y. Yield and water productivity of crops, vegetables and fruits under subsurface drip irrigation: A global meta-analysis. Agricultural Water Management, v. 269, 2022. WHITE, A. F.; BLUM, A. L.; BULLEN, T. D.; VIVIT, D. A.; SCULZ, M.; FITZPATRICK, J. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochimica et Cosmochimica Acta, v. 63, n. 19-20, p. 3277-3291, 1999. WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag, 2016. WILLIAMSON, W. L. Summing Up: The Science of Reviewing Research (Book Review). Journal of Educational Statistics, v. 12, n. 3, p. 302-308, 1987. WINTER, J. D. Metamorphism, Metamorphic Rocks and Classification of Metamorphic Rocks. In: ALDERTON, D.; ELIAS, S. A. (Eds.). Encyclopedia of Geology. 2 ed. Elsevier, 2021. p. 345-353. WOLFF, J. A. Felsic Igneous Rocks. In: ALDERTON, D.; SCOTT A. ELIAS (Eds.). Encyclopedia of Geology. 2 ed. Academic Press, 2021. p. 145-169. XU, L.; TIAN, J.; WU, H.; FANG, S.; LU, Z.; MA, C.; SUN, W.; HU, Y. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals. Advances in Colloid and Interface Science, v. 256, p. 340–351, 2018. ZÁRUBA, Q.; MENCL, V. Weathering of Rocks. In: ZÁRUBA, Q.; MENCL, V. (Eds.). Developments in Geotechnical Engineering. 10 ed. Elsevier, 1976. p. 146-162. ZHAO, G. Metamorphism of Mafic Rocks. In: ALDERTON, D.; ELIAS, S. A. (Eds.). Encyclopedia of Geology. 2 ed. Academic Press, 2021. p. 457-464. ZHAO, K.; WANG, X.; YAN, W.; GU, G.; WANG, C.; WANG, Z.; XU, L.; PENG, T. Depression mechanism of pyrophyllite by a novel polysaccharide xanthan gum. Minerals Engineering, v. 132, p. 134-141, 2019a. ZHAO, X.; GAO, S.; LU, D.; WANG, H.; CHEN, X.; ZHOU, J.; ZHANG, L. Can potassium silicate mineral products replace conventional potassium fertilizers in rice–wheat rotation? Agronomy Journal, v. 111, n. 4, p. 2075-2083, 2019b.pt_BR
dc.subject.cnpqAgronomiapt_BR
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
RICARDO DE CASTRO DIAS.pdf5.71 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.