Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/20378
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tejero, Tatiane Nicola | - |
dc.date.accessioned | 2025-03-14T15:27:21Z | - |
dc.date.available | 2025-03-14T15:27:21Z | - |
dc.date.issued | 2023-07-25 | - |
dc.identifier.citation | TEJERO, Tatiane Nicola. Proposta de modelo cinético de oxidação de hidrocarbonetos e compostos orgânicos sulfurados na troposfera. 2023. 111 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023. | pt_BR |
dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/20378 | - |
dc.description.abstract | Nas últimas décadas, diversos programas têm sido desenvolvidos com o ensejo de realizar o cálculo de coeficientes de velocidade de reações uni e bimoleculares, como por exemplo os programas MULTIWELL e o POLYRATE sendo o segundo mais utilizado. Apesar do excelente desempenho desses programas no cálculo dos coeficientes de velocidade, a necessidade de investigar casos especiais como reações de dissociação e mecanismos complexos instigam ao desenvolvimento de novos programas. O KINPRO, é um pacote composto por diversos códigos computacionais afim de realizar cálculos de parâmetros cinéticos com base na teoria do estado de transição convencional ou variacional. Inclui facilidades de pré-processamento KINP além de outros programas como KDIS, KUNI e MULTI, além do KCVT, que é o programa para o cálculo do coeficiente de velocidades canônico. Os mecanismos obtidos através de cálculos teóricos da reação do 1-penteno + radical OH e da oxidação do dimetilsulfeto e seus possíveis produtos foram utilizados para a validação desses programas. Para a descrição dos mecanismos foram utilizados os programas GAUSSIAN 09 e ORCA. A adição de radicais OH ao 1-penteno, descrita em nível M06- 2X/aug-cc-pVDZ, permitiu estudar um sistema pequeno, porém complexo do ponto de vista da multiplicidade dos confôrmeros e dos caminhos de reação, e explicar o comportamento não- Arrhenius dos coeficientes de velocidade globais observados experimentalmente. Uma vez que o dimetilsulfeto entra na troposfera, ele reage com oxidantes atmosféricos, como por exemplo o radical OH ou O3, sendo descrito o primeiro como preferencial, devido à sua maior reatividade. Esta oxidação leva a formação de diversos produtos sulfurados que agem com formadores de núcleos de condensação de nuvens e irão interferir diretamente na temperatura da região. Por isso há um grande interesse de estudos que envolvam previsão com precisão de eventos climatológicos e apesar de haver diversos trabalhos experimentais, não há uma alta gama de trabalhos teóricos nesta área. Este trabalho tem o objetivo de desenvolver um mecanismo para as reações entre DMS e o radical OH e os demais compostos sulfurados que são formados e desenvolver a parte cinética destas reações. Para criar este modelo foram selecionadas cerca de 64 reações para tal e cálculos teóricos em nível de teoria M06-2X/aug- cc-pVTZ foram feitos. Dentre estas há diversas reações uni e bimoleculares o que abre espaço para um número volumoso de testes. Os resultados sugerem que as implementações computacionais foram bem-sucedidas, gerando resultados de qualidade superior aos que já haviam sido calculados. O pacote é finalmente recomendado para a pesquisa em Cinética Química Teórica. | pt_BR |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
dc.subject | KINPRO | pt_BR |
dc.subject | coeficientes de velocidade | pt_BR |
dc.subject | Reações com radical OH | pt_BR |
dc.subject | Dimetilsulfeto | pt_BR |
dc.subject | 1- penteno | pt_BR |
dc.subject | rate coefficients | pt_BR |
dc.subject | OH radical reactions | pt_BR |
dc.subject | Dimethylsulfide | pt_BR |
dc.subject | 1-pentene | pt_BR |
dc.title | Proposta de modelo cinético de oxidação de hidrocarbonetos e compostos orgânicos sulfurados na troposfera | pt_BR |
dc.title.alternative | Proposal for a kinetic model of oxidation of hydrocarbons and organic sulfur compounds in the troposphere | en |
dc.type | Tese | pt_BR |
dc.description.abstractOther | In recent decades, several programs have been developed with the aim of calculating rate coefficients for uni and bimolecular reactions, such as the Multiwell and POLYRATE programs, being the second the most used. Despite the excellent performance of these programs in the calculation of rate coefficients, the need to investigate special cases such as dissociation reactions and complex mechanisms instigate the development of new programs. KINPRO is a package composed of several computational codes in order to perform calculations of kinetic parameters based on the conventional or variational transition state theory. It includes KINP pre-processing facilities plus other programs like KDIS, KUNI and MULTI, as well as KCVT, which is the canonical rate coefficients calculation program. The mechanisms obtained through theoretical calculations of the reaction of 1-pentene + OH radical and the oxidation of dimethylsulfide and its possible products were used to validate these programs. For the description of the mechanisms, GAUSSIAN 09 and ORCA programs were used. The addition of OH radicals to 1-pentene, described at the M06-2X/aug-cc-pVDZ level, allowing the study a small but complex system from the point of view of the multiplicity of conformers and reaction pathways, and to explain the non-Arrhenius behavior of experimentally observed global rate coefficients. Once dimethylsulfide enters the troposphere, it reacts with atmospheric oxidants, such as the OH or O3 radical, the former being described as preferential, due to its higher reactivity. This oxidation leads to the formation of various sulfur products that act as cloud condensation nuclei formers and will directly interfere with the temperature of the region. Therefore, there is a great interest in studies involving accurate forecasting of climatological events and, although there are several experimental works, there is not a wide range of theoretical works in this area. This work aims at developing a mechanism for the reactions between DMS and the OH radical and other sulfur compounds that are formed and to develop the kinetics of these reactions. To create this model, around 64 reactions were selected and theoretical calculations at the M06-2X/aug-cc-pVTZ theory level were made. Among these there are several uni and bimolecular reactions which opens space for a large number of tests. The results suggest that the computational implementations were successful, generating higher quality results than those that had already been calculated. The package is finally recommended for research in Theoretical Chemical Kinetics. | en |
dc.contributor.advisor1 | Bauerfeldt, Glauco Favilla | - |
dc.contributor.advisor1ID | https://orcid.org/0000-0001-5906-7080 | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/1876040291299143 | pt_BR |
dc.contributor.referee1 | Bauerfeldt, Glauco Favilla | - |
dc.contributor.referee1ID | https://orcid.org/0000-0001-5906-7080 | pt_BR |
dc.contributor.referee1Lattes | http://lattes.cnpq.br/1876040291299143 | pt_BR |
dc.contributor.referee2 | Costa, Lucas Modesto da | - |
dc.contributor.referee2ID | https://orcid.org/0000-0001-7759-0094 | pt_BR |
dc.contributor.referee2Lattes | http://lattes.cnpq.br/1748072023209944 | pt_BR |
dc.contributor.referee3 | Wanderlind, Eduardo Hillmann | - |
dc.contributor.referee3ID | https://orcid.org/0000-0002-0534-5898 | pt_BR |
dc.contributor.referee3Lattes | http://lattes.cnpq.br/2228599765138274 | pt_BR |
dc.contributor.referee4 | Baptista, Leonardo | - |
dc.contributor.referee4ID | https://orcid.org/0000-0001-9433-3313 | pt_BR |
dc.contributor.referee4Lattes | http://lattes.cnpq.br/2182432135517042 | pt_BR |
dc.contributor.referee5 | Rocha, Alexandre Braga da | - |
dc.contributor.referee5ID | https://orcid.org/0000-0003-3862-1761 | pt_BR |
dc.contributor.referee5Lattes | http://lattes.cnpq.br/9723021003007022 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/7476565069981977 | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Instituto de Química | pt_BR |
dc.publisher.initials | UFRRJ | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Química | pt_BR |
dc.relation.references | ABBATT, J. P. D.; FENTER, F. F.; ANDERSON, J. G. High-pressure discharge flow kinetics study of OH + CH3SCH3, CH3SSCH3 → products from 297 to 368 K. Journal of Physical Chemistry, v. 96, n. 4, p. 1780–1785, 1992. ALBU, M. et al. Rate coefficients for the gas-phase reaction of OH radicals with dimethyl sulfide: Temperature and O2 partial pressure dependence. Physical Chemistry Chemical Physics, v. 8, n. 6, p. 728–736, 2006. ALBU, M. Kinetic and Product Studies of the Hydroxyl Radical Initiated Oxidation of Dimethyl Sulfide in the Temperature Range 250 - 300 K. [s.l.] Bergische Universität Wuppertal, 2008. ANDERSON, J. W. Assimilation of inorganic sulfate into cysteine. In: P.K.STUMPF; CONN, E. E. (Eds.). . The Biochemistry of Plants, Vol 5. New York: Academic Press, 1980. p. 203–223. ANDRADE JÚNIOR, D. R. DE et al. Os radicais livres de oxigênio e as doenças pulmonares. Jornal Brasileiro de Pneumologia, v. 31, n. 1, p. 60–68, 2005. ANDREAE, M. O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry, v. 30, p. 1–29, 1990. ARRIGO, K. R. Carbon cycle: Marine manipulations. Nature, v. 450, p. 491–492, 2007. ASHER, E. C. et al. High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophysical Research Letters, v. 38, n. 23, p. 1–5, 2011. ATKINSON, R. Kinetics and Mechanisms of the Gas-Phase Reactions of the NO3 Radical with Organic Compounds. Journal of Physical and Chemical Reference Data, v. 20, n. 3, p. 459–507, 1991. ATKINSON, R. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I - gas phase reactions of Ox, HOx, NOx and SOx species. Atmospheric Chemistry and Physics, v. 4, n. 6, p. 1461–1738, 2004. ATKINSON, R.; PERRY, R. A.; PITTS JR, J. N. Rate Constants For The Reaction Of OH Radicals With Ethylene Over The Temperature Range 299–425 K. The Journal of Chemical Physics, v. 66, p. 1197–1201, 1977. ATKINSON, R.; PITTS, J. N. Rate Constants For The Reaction Of OH Radicals With Propylene And The Butene Over The Temperature Range 297-425 K. The Journal Chemical Physics, v. 63, p. 3591–3595, 1975. AYALA, P. Y.; SCHLEGEL, H. B. J. Identification and treatment of internal rotation in normal mode vibrational analysis. The Journal of Chemical Physics, v. 108, p. 2314, 1998. AYERS, G. P.; CAINEY, J. M. The CLAW hypothesis: A review of the major developments. Environmental Chemistry, v. 4, p. 366–374, 2007. AYERS, G. P.; GILLETT, R. W. DMS and its oxidation products in the remote marine atmosphere: Implications for climate and atmospheric chemistry. Journal of Sea Research, v. 43, n. 3–4, p. 275–286, 2000. BAO, J. L.; TRUHLAR, D. G. Variational transition state theory: theoretical framework and recent developments. Chemical Society Reviews, v. 43, p. 7548–7596, 2017. BAPTISTA, L.; DA SILVA, E. C.; ARBILLA, G. Oxidation mechanism of dimethyl sulfoxide (DMSO) by OH radical in liquid phase. Physical Chemistry Chemical Physics, v. 10, n. 45, p. 6867–6879, 2008a. BAPTISTA, L.; DA SILVA, E. C.; ARBILLA, G. Theoretical investigation of the gas phase oxidation mechanism of dimethyl sulfoxide by OH radical. Journal of Molecular Structure: THEOCHEM, v. 851, p. 1–14, 2008b. BARBOSA, T. D. S. et al. Theoretical calculations of the kinetics of the OH reaction with 2- methyl-2-propen-1-ol and its alkene analogue†. Royal Society of Chemistry Advances, v. 4, p. 20830–20840, 2014. 67 BARBOSA, T. D. S. et al. Rate coefficients for the reaction of OH radicals with cis-3-hexene: an experimental and theoretical study†. Physical Chemistry Chemical Physics, v. 17, p. 8714--8722, 2015. BARKER, J. Multiple‐Well, multiple‐path unimolecular reaction systems. I. MultiWell computer program suite. International Journal of Chemical Kinetics, v. 33, n. 4, p. 232– 245, 2001. BARKER, J. R. Energy transfer in master equation simulations: A new approach. International Journal of Chemical Kinetics, v. 41, n. 12, p. 748–76, 2009. BARKER, J. R. et al. MultiWell-2023 Software SuiteMichigan, USA, 2023. Disponível em: <http://clasp-research.engin.umich.edu/multiwell/> BARNES, I.; BASTIAN, V.; BECKER, K. H. Products and kinetics of the OH initiated oxidation of SO2, CH3SH, DMS, DMDS and DMSO. Phys. Chem. Behav. Atmos. Pollut. Proc. Eur. Symp. Anais...1987 BARNES, I.; BECKER, K. H.; PATROESCU, I. The tropospheric oxidation of dimethyl sulfide: A new source of carbonyl sulfide. Geophysical Research Letters, v. 21, n. 22, p. 2389–2392, 1994. BARNES, I.; HJORTH, J.; MIHALAPOULOS, N. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chemical Reviews, v. 106, n. 3, p. 940–975, 2006. BARONE, S. B.; TURNIPSEED, A. A.; RAVISHANKARA, A. R. Role of adducts in the atmospheric oxidation of dimethyl sulfide. Faraday Discussions, v. 100, p. 39–54, 1995. BATES, T. S. et al. Sulfur emissions to the atmosphere from natural sourees. Journal of Atmospheric Chemistry, v. 14, n. 1–4, p. 315–337, 1992. BERRESHEIM, H.; TANNER, D. J.; EISELE, F. L. Real-Time Measurement of Dimethyl Sulfoxide in Ambient Air. Analytical Chemistry, v. 65, n. 1, p. 84–86, 1993. BERUTTI NETO, R. INVESTIGAÇÃO TEÓRICA DE REAÇÕES UNIMOLECULARES DA FORMAMIDA EM FASE GASOSA. [s.l: s.n.]. BIRKHOLZ, A. B.; SCHLEGEL, H. B. Using bonding to guide transition state optimization. Journal of Computational Chemistry, v. 36, n. 15, p. 1157–1166, 2015. BLAKE, N. J.; BLAKE, D. R. TROPOSPHERIC CHEMISTRYAND COMPOSITION / VOCs: Overview. Encyclopedia of Atmospheric Sciences, n. 1998, p. 2438–2446, 2003. BLITZ, M. A. et al. An Experimental and Master Equation Study of the Kinetics of OH/OD + SO2: The Limiting High-Pressure Rate Coefficients. Journal of Physical Chemistry A, v. 121, n. 17, p. 3184–3191, 2017. BORISSENKO, D. et al. Experimental study of SO2 formation in the reactions of CH3SO radical with NO2 and O3 in relation with the atmospheric oxidation mechanism of dimethyl sulfide. Journal of Physical Chemistry A, v. 107, n. 8, p. 1155–1161, 2003. CAMPOLONGO, F. et al. The role of multiphase chemistry in the oxidation of dimethylsulphide (DMS). A latitude dependent analysis. Journal of Atmospheric Chemistry, v. 32, n. 3, p. 327–356, 1999. CAO, J. et al. Mechanism and thermodynamic properties of CH3SO3 decomposition. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, v. 29, n. 6, p. 1161–1167, 2013. CARSLAW, N. et al. Modeling OH , HO2 , and RO2 radicals in the marine boundary layer 1 . Model construction and comparison with field troposphere primarily through the photolysis of ozone + CO excited state oxygen atom with water vapor : + CH. Journal of Geophysical Research, v. 104, n. 2, p. 30241–30255, 1999. CHALLENGER, F.; SIMPSON, M. I. 320. Studies on biological methylation. Part XII. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2- carboxyethylsulphonium hydroxide and its salts. Journal of the Chemical Society (Resumed), v. 43, n. 78, p. 1591–1597, 1948. CHAMEIDES, W. L.; DAVIS, D. D. The free radical chemistry of cloud droplets and its impact upon the composition of rain. Journal of Geophysical Research, v. 87, n. C7, p. 68 4863–4877, 1982. CHARLSON, R. J. et al. Ocean phytoplankton, atmospheric sulfur, cloud albdeo and climate. Nature, v. 326, n. 6760, p. 655–661, 1987. Chemcraft. , 2021. Disponível em: <https://www.chemcraftprog.com/>. Acesso em: 29 out. 2021 CHEN, Q. et al. DMS oxidation and sulfur aerosol formation in the marine troposphere: A focus on reactive halogen and multiphase chemistry. Atmospheric Chemistry and Physics, v. 18, n. 18, p. 13617–13637, 2018. COX, R. A.; HYNES, R.; ROSSI, M. J. Evaluated kinetic and photochemical data for atmospheric chemistry (Part 1): gas phase reactions of Ox , HOx , NOx and SOx species. Atmospheric Chemistry and Physics Discussions, v. 3, p. 6179–6699, 2003. CRAMER, C. J. Essentials of Computational Chemistry: Theories and Models. West Sussex, England: New York: J. Wiley, 2002. CVETANOVIC, R. J. ELECTROPHILIC CHARACTER OF OXYGEN ATOMS. Can. J. Che~, v. 38, p. 1678–1687, 1960. DACEY, J. W. H.; WAKEHAM, S. G. Oceanic dimethylsulfide: Production during zooplankton grazing on phytoplankton. Science, v. 233, n. 4770, p. 1314–1316, 1986. EDTBAUER, A. et al. A new marine biogenic emission: Methane sulfonamide (MSAM), dimethyl sulfide (DMS), and dimethyl sulfone (DMSO2) measured in air over the Arabian Sea. Atmospheric Chemistry and Physics, v. 20, n. 10, p. 6081–6094, 2020. EL-NAHAS, A. M. et al. Hydrogen abstraction from dimethyl ether (DME) and dimethyl sulfide (DMS) by OH radical: A computational study. Journal of Molecular Structure: THEOCHEM, v. 722, n. 1–3, p. 9–19, 2005. ENAMI, S. et al. Reactions of Cl atoms with dimethyl Sulfide: A theoretical calculation and an experimental study with cavity ring-down spectroscopy. Journal of Physical Chemistry A, v. 108, n. 39, p. 7785–7789, 2004. ENAMI, S. et al. “Sizing” Heterogeneous Chemistry in the Conversion of Gaseous Dimethyl Sulfide to Atmospheric Particles. [s.l: s.n.]. v. 50 EVANS, M.; POLANYI, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc., v. 31, p. 875– 894, 1935. EVERSE, J.; EVERSE, K. E.; GRISHAM, M. B. Peroxidases in Chemistry and Biology. New York: CRC Press, 1991. EYRING, H. The activated complex in chemical reactions. The Journal of Chemical Physics, v. 3, p. 107–115, 1935. FALBE-HANSEN, H. et al. Atmospheric gas-phase reactions of dimethylsulphoxide and dimethylsulphone with OH and NO3 radicals, Cl atoms and ozone. Atmospheric Environment, v. 34, n. 10, p. 1543–1551, 2000. FERNÁNDEZ-RAMOS, A. et al. Symmetry numbers and chemical reaction rates. Theoretical Chemistry Accounts, v. 118, p. 813–826, 2007. FINLAYSON-PITTS, B. J.; PITTS, J. N. J. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, v. 276, p. 1045–105, 1997. FINLAYSON-PITTS, B. J.; PITTS, J. N. J. Chemistry of the Upper and Lower Atmosphere. [s.l.] Elsevier, 2000. FONSECA, D. S.; BACIC, I. R. Enxofre. Economia Mineral do Brasil, v. 2, p. 126–141, 2009. FRISCH, M. J. et al. Gaussian 09, Revision C.01Wallingford, 2009. Disponível em: <http://gaussian.com/g09citation/>. Acesso em: 27 mar. 2023 FUKUI, K. A formulation of the reaction coordinate. Journal of Physical Chemistry, v. 74, n. 23, p. 4161, 1970. GARCIA, F. Formação de oxigênio singlete 02(1Δg) por fagócitos. [s.l: s.n.]. 69 GARCIA, M. B. INVESTIGAÇÃO TEÓRICA DA REAÇÃO DE ABSTRAÇÃO DE HIDROGÊNIO DO FOMALDEÍDO PELO ÁTOMO DE CLORO EM FASE GASOSA. [s.l.] Universidade Federal Rural do Rio de Janeiro, 2016. GaussView 6. , 2023. Disponível em: <https://gaussian.com/gaussview6/>. Acesso em: 27 mar. 2023 GERASOPOULOS, E. et al. Ozone Variability In The Marine Boundary Layer Of The eastern Mediterranean Based on 7-year Observations. Journal of Geophysical Research, v. 110, n. D15309, p. 12, 2005. GEYER, A. et al. Direct observations of daytime NO3: Implications for urban boundary layer chemistry. Journal of Geophysical Research Atmospheres, v. 108, n. 12, p. 1–11, 2003. GHAHREMANINEZHAD, R. et al. Dimethyl sulfide and its role in aerosol formation and growth in the Arctic summer - A modelling study. Atmospheric Chemistry and Physics, v. 19, n. 23, p. 14455–14476, 2019. GONZÁLEZ-GARCÍA, N.; GONZÁLEZ-LAFONT, À.; LLUCH, J. M. Electronic structure study of the initiation routes of the dimethyl sulfide oxidation by OH. Journal of Computational Chemistry, v. 26, n. 6, p. 569–583, 2005. GONZÁLEZ-GARCÍA, N.; GONZÁLEZ-LAFONT, À.; LLUCH, J. M. Kinetic study on the reaction of OH radical with dimethyl sulfide in the absence of oxygen. ChemPhysChem, v. 8, n. 2, p. 255–263, 2007. GONZÁLEZ-GARCÍA, N.; OLZMANN, M. Kinetics of the chemically activated HSO5 radical under atmospheric conditions - A master-Equation study. Physical Chemistry Chemical Physics, v. 12, n. 38, p. 12290–12298, 2010. GREEN, T. K.; HATTON, A. D. The CLAW hypothesis: A new perspective on the role of biogenic sulphur in the regulation of global climate. Oceanography and Marine Biology: An Annual Review, v. 52, n. September, p. 315, 2014. GREENWALD, E. et al. A Two Transition State Model for Radical-Molecule Reactions: A Case Study of the Addition of OH to C2H4. The Journal of Physical Chemistry A, v. 109, p. 6031, 2005. GROSJEAN, D.; WILLIAMS II, E. L. Environmental persistence of organic compounds estimated from structure-reactivity and linear free-energy relationships. Unsaturated aliphatics. Atmos. Environ. Part A, v. 26, p. 1395–1405, 1992. GROSS, H. et al. Time-resolved detection of reaction products in the infrared laser chemistry of sulfoxides: C2H4SO, (CH3)2SO, (CD3)2SO. Chemical Physics Letters, v. 213, n. 1–2, p. 122–130, 1993. HAO, Y. et al. Anharmonic effect of the rate constant of the reactions of CH3SCH2OO system in high-temperature combustion. Canadian Journal of Chemistry, v. 95, n. 10, p. 1064–1072, 2017. HERNDL, G. J.; MÜLLER-NIKLAS, G.; FRICK, J. Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean. Nature, v. 361, n. 6414, p. 717– 719, 1993. HERZBERG, G. Electronic spectra and electronic structure of polyatomic molecules. New York: Van Nostrand, 1966. HOFFMANN, E. H. et al. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry. Proceedings of the National Academy of Sciences of the United States of America, v. 113, n. 42, p. 11776–11781, 2016. HRATCHIAN, H. P.; SCHLEGEL, H. B. Accurate reaction paths using a Hessian based predictor-corrector integrator. Journal of Chemical Physics, v. 120, n. 21, p. 9918–9924, 2004. HRATCHIAN, H. P.; SCHLEGEL, H. B. Using Hessian Updating To Increase the Efficiency of a Hessian Based Predictor-Corrector Reaction Path Following Method. Journal of Chemical Theory and Computation, v. 1, n. 1, p. 61–69, 2005. 70 HSU, Y.-C.; CHEN, D.-S.; LEE, Y.-P. Rate Constant for the Reaction of OH Radicals with Dimethyl Sulfide. International Journal of Chemical Kinetics, v. 19, p. 1073–1082, 1987. HYNES, A. J.; WINE, P. H.; SEMMES, D. H. Kinetics and mechanism of OH reactions with organic sulfides. Journal of Physical Chemistry, v. 90, n. 17, p. 4148–4156, 1986. JACKSON, R. L. et al. Dimethylsulfide (DMS), marine biogenic aerosols and the ecophysiology of coral reefs. Biogeosciences, v. 17, n. 8, p. 2181–2204, 2020. JARDINE, K. et al. Dimethyl sulfide in the Amazon rain forest. Global Biogeochemical Cycles, v. 29, n. 3, p. 288–306, 2015. JIN, F.; ASATRYAN, R.; BOZZELLI, J. W. Thermodynamic and kinetic analysis on the reaction of dimethyl sulfide radical with oxygen. International Journal of Quantum Chemistry, v. 112, n. 8, p. 1945–1958, 15 abr. 2012. JOHNSON, D.; MARSTON, G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chemical Society Reviews, v. 37, n. 4, p. 699–716, 2008. JOHNSTON, H. S.; CANTRELL, C. A.; CALVERT, J. G. Unimolecular decomposition of NO3 to form NO and O2... Journal of Geophysical Research, v. 91, n. D4, p. 5159–5172, 1986. KAWAGUCHI, K. et al. Infrared spectroscopy of the NO3 radical. Chemical Physics, v. 231, p. 193–198, 1998. KELLER, M. D. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biological Oceanography, v. 6, n. 5–6, p. 375–382, 1988. KELLER, M. D.; BELLOWS, W. K.; GUILLARD, R. R. L. Dimethyl Sulfide Production in Marine Phytoplankton. In: ACS SYMPOSIUM SERIES (Ed.). . Biogenic Sulfur in the Environment. Washington, DC: American Chemical Society, 1989. p. 167–182. KHAN, M. A. H. et al. Night-time NO3 and OH radical concentrations in the United Kingdom inferred from hydrocarbon measurements. Atmospheric Science Letters, v. 9, n. 3, p. 140–146, 2008a. KHAN, M. A. H. et al. Night-time NO3 and OH radical concentrations in the United Kingdom inferred from hydrocarbon measurements. atmospheric science letters, v. 9, p. 140–146, 2008b. KIENE, P.; BATES, T. S. Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the equatorial Pacific Ocean. Journal of Geophysical Research, v. 101, n. C2, p. 3715– 3722, 1996. KIENE, R. P.; CAPONE, D. G. Microbial Transformations of Methylated Sulfur Compounds in Anoxic Salt Marsh Sediments Materials and Methods Sediments were collected from among stands of Spartina alterniflora in the salt marsh at Flax Additions of Methylated Sulfur Compounds. Microbial ecology, v. 15, p. 275–291, 1988. KIRST, G. O. et al. Dimethylsulfoniopropionate (DMSP) in icealgae and its possible biological role. Marine Chemistry, v. 35, n. 1–4, p. 381–388, 1 nov. 1991. KLOSTER, S. DMS cycle in the ocean-atmosphere system and its response to anthropogenic perturbationsReports on Earth System Science. [s.l: s.n.]. KLOSTER, S. et al. DMS cycle in the marine ocean-atmosphere system - A global model study. Biogeosciences, v. 3, n. 1, p. 29–51, 2006. KLOSTER, S. et al. Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. Journal of Geophysical Research: Biogeosciences, v. 112, n. 3, 2007. KOCSIS, M. G. et al. Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora: Evidence that S-methylmethionine and dimethylsulfoniopropylamine are intermediates. Plant Physiology, v. 117, n. 1, p. 273–281, 1998. KUCHITSU, K. (ED.). Structure of Free Polyatomic Molecules - Basic Data. Berlim: Springer, 1998. KUKUI, A. et al. Gas-Phase Reactions of OH Radicals with Dimethyl Sulfoxide and Methane Sulfinic Acid Using Turbulent Flow Reactor and Chemical Ionization Mass Spectrometry. 71 Journal of Physical Chemistry A, v. 107, n. 30, p. 5732–5742, 31 jul. 2003. KUMAR, M.; TRABELSI, T.; FRANCISCO, J. S. Can Urea Be a Seed for Aerosol Particle Formation in Air? Journal of Physical Chemistry A, v. 122, n. 12, p. 3261–3269, 2018. KURTÉN, T. et al. Nitrate radical addition–elimination reactions of atmospherically relevant sulfur-containing molecules. Physical Chemistry Chemical Physics, v. 12, n. 39, p. 12833– 12839, 29 set. 2010. LANA, A. et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles, v. 25, n. 1, p. 1–17, 2011. LAND, P. E. et al. Exploiting satellite earth observation to quantify current global oceanic DMS flux and its future climate sensitivity. Journal of Geophysical Research: Oceans, p. 7725–7740, 2014. LEE, P. A.; DE MORA, S. J.; LEVASSEUR, M. A review of dimethylsulfoxide in aquatic environments. Atmosphere - Ocean, v. 37, n. 4, p. 439–456, 1999. LEVASSEUR, M.; GOSSELIN, M.; MICHAUD, S. A new source of DMS for the Arctic atmosphere: ice diatoms. Marine Biology, v. 121, p. 381–387, 1994. LI, J. et al. Influence of Water on the Gas-Phase Reaction of Dimethyl Sulfidewith BrO in the Marine Boundary Layer. ACS Omega Omega, v. 6, p. 2410–2419, 2021. LIANG, S.-M. et al. Distribution and physical–biological controls of dimethylsulfide in the western tropical Indian Ocean during winter monsoon. Frontiers in Marine Science, v. 10, n. March, p. 1–13, 2023. LIZOTTE, M. et al. Dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS) cycling across contrasting biological hotspots of the New Zealand subtropical front. Ocean Science Discussions, v. 13, n. 6, p. 961–982, 2017. LIZOTTE, M. et al. Phytoplankton and dimethylsulfide dynamics at two contrasting Arctic ice edges. Biogeosciences, v. 17, n. 6, p. 1557–1581, 2020. LOUREIRO, L. N. P. Panorâmica Sobre Emissões Atmosféricas Estudo De Caso: Avaliação Do Inventário Emissões Atmosféricas Da Região Metropolitana Do Rio De Janeiro Para Fontes Móveis. T. [s.l.] Universidade Federal do Rio de Janeiro, 2005. LOVELOCK, J. Gaia the Practical Science of Planetary Medicine. USA: Gaia Books, 1991. LOVELOCK, J. E.; RAPLEY, C. G. Ocean pipes could help the Earth to cure itself. Nature, v. 449, 2007. MAHOWALD, N. et al. Aerosol Impacts on Climate and Biogeochemistry. The Annual Review of Environment and Resources, v. 36, p. 45–74, 2011. MAI, T. V. T. et al. Ab initio kinetics of the HOSO2 + 3O2 → SO3 + HO2 reaction. Physical Chemistry Chemical Physics, v. 20, n. 9, p. 6677–6687, 2018. MARDYUKOV, A.; SCHREINER, P. R. Atmospherically Relevant Radicals Derived from the Oxidation of Dimethyl Sulfide. Accounts of Chemical Research, v. 51, n. 2, p. 475–483, 2018. MARTIN, D.; JOURDAIN, J. L.; LEBRAS, G. Kinetic study for the reactions of OH radicals with dimethylsulfide, diethylsulfide, tetrahydrothiophene, and thiophene. International Journal of Chemical Kinetics, v. 17, n. 12, p. 1247–1261, 1985. MARTINS, C. R.; DE ANDRADE, J. B. QUÍMICA ATMOSFÉRICA DO ENXOFRE (IV): EMISSÕES, REAÇÕES EM FASE AQUOSA E IMPACTO AMBIENTAL. Quimica Nova, v. 25, n. 2, p. 259–272, 2002. MATTOS, I. L. DE et al. PERÓXIDO DE HIDROGÊNIO: IMPORTÂNCIA E DETERMINAÇÃO. Quimica Nova, v. 3, p. 373–380, 2003. MCGILLEN, M. R. et al. Is hydrogen abstraction an important pathway in the reaction of alkenes with the OH radical? Physical Chemistry Chemical Physics, v. 9, p. 4349–4356, 2007. 72 MCPARLAND, E. L.; LEVINE, N. M. The role of differential DMSP production and community composition in predicting variability of global surface DMSP concentrations. Limnology and Oceanography, v. 64, n. 2, p. 757–773, 2019. MILLER, W. H. Unified statistical model for ’’complex’’ and ’’direct’’ reaction mechanisms. The Journal Chemical Physics, v. 65, p. 2216–2223, 1976. MOUSAVIPOUR, S. H.; EMAD, L.; FAKHRAEE, S. Theoretical study on the unimolecular dissociation of CH3SCH3 and CH3SCH2. Journal of Physical Chemistry A, v. 106, n. 11, p. 2489–2496, 2002. NAKANO, Y. et al. Temperature and pressure dependence of the rate constants of the reaction of NO3 radical with CH3SCH3. Journal of Physical Chemistry A, v. 110, n. 23, p. 7401–7405, 2006. NELSON, D. L.; COX, M. M. Lehninger Principles of Biochemistry. 5a edição ed. New York: [s.n.]. NIST. NIST CHEMISTRY WEBBOOK. Disponível em: <http://webbook.nist.gov/chemistry>. Acesso em: 27 mar. 2023. NOWAK, J. B. et al. Airbone observations of DMSO, DMS, and OH at marine tropical latitudes. Geophysical Research Letters, v. 28, n. 11, p. 2201–2204, 2001. NUNES-NETO, N. F.; DO CARMO, R. S.; EL-HANI, C. N. Uma conexão entre algas e nuvens: Fundamentos teóricos da hipótese claw e suas implicações para as mudanças climáticas. Oecologia Brasiliensis, v. 13, n. 4, p. 596–608, 2009. OLIVEIRA, R. C. D. M.; BAUERFELDT, G. F. Implementation of a variational code for the calculation of rate constants and application to barrierless dissociation and radical recombination reactions: CH3OH= CH3+ OH. International Journal of Quantum Chemistry, v. 112, n. 19, p. 3132–3140, 2012. P.J.NEALE; R.F.DAVIS; J.J.CULLEN. Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antartic phytoplankton. Nature, v. 392, n. 1996, p. 585–589, 1998. PAQUET, L. et al. Acccumulation of the compatible solute 3- dimethylsulfoniopropionate in sugarcane and its relatives, but not other gramineous crops. Australian Journal of Plant Physiology, v. 21, n. 1, p. 37–48, 1994. PARK, K. T. et al. Atmospheric DMS in the Arctic Ocean and Its Relation to Phytoplankton Biomass. Global Biogeochemical Cycles, v. 32, n. 3, p. 351–359, 2018. PEIRONE, S. et al. Comparative Kinetics of the 3-Buten-1-ol and 1-Butene Reactions with OH Radicals: A Density Functional Theory/RRKM Investigation. The Journal of Physical Chemistry A, v. 119, p. 3171–3180, 2015. QU, B.; GABRIC, A. J.; JACKSON, R. Simulated perturbation in the sea-to-air flux of dimethylsulfide and the impact on polar climate. Journal of Oceanology and Limnology, v. 39, n. 1, p. 110–121, 2021. RAINA, J. B. et al. DMSP biosynthesis by an animal and its role in coral thermal stress response. Nature, v. 502, n. 7473, p. 677–680, 2013. RAMÍREZ-ANGUITA, J. M.; GONZÁLEZ-LAFONT, À.; LLUCH, J. M. Formation Pathways of DMSO from DMS-OH in the Presence of O2 and NOx: A Theoretical Study. Journal of computational chemistry, v. 30, n. 2, p. 173–181, 2008a. RAMÍREZ-ANGUITA, J. M.; GONZÁLEZ-LAFONT, À.; LLUCH, J. M. Formation Pathways of DMSO2 in the Addition Channel of the OH-Initiated DMS Oxidation: A Theoretical Study. Journal of computational chemistry, v. 30, n. 9, p. 1477–1489, 2008b. RAMÍREZ-ANGUITA, J. M.; GONZÁLEZ-LAFONT, À.; LLUCH, J. M. A theoretical study of the DMS·OH scavenging reaction by OH. Its relevance in DMSO formation. Computational and Theoretical Chemistry, v. 965, n. 2–3, p. 249–258, 2011a. RAMÍREZ-ANGUITA, J. M.; GONZÁLEZ-LAFONT, À.; LLUCH, JOS. M. Variational Transition-State Theory Study of the Rate Constant of the DMS.OH Scavenging Reaction by 73 O2. Journal of computational chemistry, v. 32, p. 2104–2118, 2011b. RAY, A. et al. Kinetics of the Thermal Decomposition of the CH3SO2 Radical and Its Reaction with NO2 at 1 Torr and 298 K. Journal of Physical Chemistry, v. 100, n. 21, p. 8895–8900, 1996. REINER, T.; ARNOLD, F. Laboratory flow reactor measurements of the reaction SO3 + H2O + M → H2SO4 + M: Implications for gaseous H2SO4 and aerosol formation in the plumes of jet aircraft. Geophysical Research Letters, v. 20, n. 23, p. 2659–2662, 1993. RESENDE, S. M. et al. Theoretical study of the role of adducts in the atmospheric oxidation of dimethyl sulfoxide by OH, O2 and O3 and the kinetics of the reaction DMSO + OH. Chemical Physics, v. 309, p. 283–289, 2005. ROSATI, B. et al. New Particle Formation and Growth from Dimethyl Sulfide Oxidation by Hydroxyl Radicals. ACS Earth and Space Chemistry, v. 5, p. 801–811, 2021. SALTA, Z. et al. Unraveling the role of additional OH-radicals in the H–Abstraction from Dimethyl sulfide using quantum chemical computations. Chemical Physics Letters, v. 739, p. 136963, 2019. SALTA, Z. et al. H-Abstraction from Dimethyl Sulfide in the Presence of an Excess of Hydroxyl Radicals. A Quantum Chemical Evaluation of Thermochemical and Kinetic Parameters Unveils an Alternative Pathway to Dimethyl Sulfoxide. ACS Earth and Space Chemistry, v. 4, n. 3, p. 403–419, 2020. SARKAR, S.; BANDYOPADHYAY, B. Singlet (1Δg) O2as an efficient tropospheric oxidizing agent: The gas phase reaction with the simplest Criegee intermediate. Physical Chemistry Chemical Physics, v. 22, n. 35, p. 19870–19876, 2020. SCHUMB, W. C.; SATTERFIELD, C. N.; WENTWORTH, R. L. Hydrogen Peroxide. New York: Reinhold, 1955. SCIARE, J.; KANAKIDOU, M.; MIHALOPOULOS, N. Diurnal and seasonal variation of atmospheric dimethylsulfoxide at Amsterdam Island in the southern Indian Ocean. Journal of Geophysical Research Atmospheres, v. 105, n. D13, p. 17257–17265, 2000. SEAKINS, P. W.; ORLANDO, J. J.; TYNDALL, G. S. Rate coefficients and production of vibrationally excited HCl from the reactions of chlorine atoms with methanol, ethanol, acetaldehyde and formaldehyde. Phys.Chem.Chem.Phys., v. 6, p. 2224–2229, 2004. SEINFELD, J. H.; PANDIS, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New Jersey: “A Wiley-Interscience publication” - John Wiley & Sons, Inc., 2006. v. 2 SEKUŠAK, S. et al. A general reaction path dual-level direct dynamics calculation of the reaction of hydroxyl radical with dimethyl sulfide. Journal of Physical Chemistry A, v. 104, n. 38, p. 8779–8786, 2000. SHEPHERD, J.; IGLESIAS-RODRIGUEZ, D.; YOOL, A. Geo-engineering might cause, not cure, problems SIR. Nature, v. 449, p. 781, 2007. SIMÓ, R.; PEDRÓS-ALLÓ, C. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature, v. 402, n. 6760, p. 396–399, 1999. SINGH, H. B. et al. Low ozone in the marine boundary layer of the tropical Pacific Ocean: Photochemical loss, chlorine atoms, and entrainment. Journal of Geophysical Research: Atmospheres, v. 101, n. D1, p. 1907–1917, 1996. SINGLETON, D. L.; CVETANOVIĆ, R. J. Temperature Dependence of the Reaction of Oxygen Atoms with Olefins. Journal of the American Chemical Society, v. 98, n. 22, p. 6812–6819, 1976. SKODJE, R. T.; TRUHLAR, D. G. Parabolic tunneling calculations. J. Phys. Chem., v. 85, p. 624–628, 1981. SPIRO, P. A. et al. Global Inventory of Sulfur Emissions With 1o x1o Resolution. Journal of Geophysical Research, v. 97, n. 5, p. 6023–6036, 1992. STEIFELD, J. I.; FRANCISCO, J. S.; HASE, W. L. Chemical Kinetics and Dynamics. 74 Upper Saddle River: [s.n.]. STIPP, S. R.; CASARIN, V. A Importância Do Enxofre Na Agricultura Brasileira. Informações agronômicas, v. 129, n. 1, p. 14–20, 2010. TAYLOR, B. F. Bacterial Transformations of Organic Sulfur Compounds in Marine Environments. Biogeochemistry of Global Change, p. 745–781, 1993. TEJERO, T. N.; BAUERFELDT, G. F. Multipath kinetics of the reaction of OH radical with 1-pentene. Arkivoc, n. 2, 2020. TRUHLAR, D. G.; GARRETT, B. C. Variational Transition State Theory. Annual Review Physical Chemistry, v. 35, p. 159–189, 1984. TRUHLAR, D. G.; ISAACSON, A. D.; GARRETT, B. C. Generalized Transition State Theory. In: BAER, M. (Ed.). . Theory of Chemical Reaction Dynamics. Boca Raton, FL: CRC Press, 1985. p. 65–137. TYNDALL, G. S.; RAVISHANKARA, A. R. Atmospheric oxidation of reduced sulfur species. International Journal of Chemical Kinetics, v. 23, n. 6, p. 483–527, 1991. Ubuntu. Disponível em: <https://www.ubuntu.com/>. Acesso em: 11 jul. 2023. UHER, G. et al. Photochemical oxidation of dimethylsulphide to dimethylsulphoxide in estuarine and coastal waters. Chemosphere, v. 186, p. 805–816, 2017. URBANSKI, S. P.; STICKEL, R. E.; WINE, P. H. Mechanistic and kinetic study of the gas- phase reaction of hydroxyl radical with dimethyl sulfoxide. Journal of Physical Chemistry A, v. 102, n. 51, p. 10522–10529, 1998. VAIRAVAMURTHY, A.; ANDREAE, M. O.; IVERSON, R. L. Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnology and Oceanography, v. 30, n. 1, p. 59–70, 1985. VALLINA, S. M.; SIMÓ, R. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science, v. 315, n. 5811, p. 506–508, 2007. VANDRESEN, S. A Reação Atmosférica entre Dimetil-sulfóxido e Radicais Cloro Relatório. [s.l.] Universidade Federal de Santa Catarina, 2004. VEREECKEN, L.; HARDER, H.; NOVELLI, A. The reaction of Criegee intermediates with NO, RO2, and SO 2, and their fate in the atmosphere. Physical Chemistry Chemical Physics, v. 14, n. 42, p. 14682–14695, 2012. VIEGAS, L. Multiconformer transition state theory rate constants for the reaction between OH and‐dimethoxyfluoropolyethers. International Journal of Chemical Kinetics, v. 51, n. 5, p. 1, 2019. VIEGAS, L. P. Exploring the Reactivity of Hydrofluoropolyethers toward OH through a Cost-Effective Protocol for Calculating Multiconformer Transition State Theory Rate Constants. Journal of Physical Chemistry A, v. 122, p. 9721, 2018. VIEIRA, G. S. S. et al. Assessment of Uni and Bimolecular Reaction Kinetics of Dimethoxymethane with the KINPRO Package. 10th European Combustion Meeting 2021, Virtual Edition. Anais...2021Disponível em: <www.ecm2021napoli.eu/> VITTI, G. C.; OTTO, R.; SAVIETO, J. Manejo do enxofre na agricultura. Informações Agronômicas-Internacional Plant Nutrition Institute, v. 52, p. 1–14, 2015. VRBASKI, T.; CVETANOVIC, R. J. Relative Rates of Reaction of Ozone With Olefins. Canadian Journal of Chemistry, v. 38, n. 1053–1062, 1967. WALLINGTON, T. J. et al. The reaction of OH radicals with dimethyl sulfide. International Journal of Chemical Kinetics, v. 18, n. 8, p. 837–846, 1986. WANG, H.; ZHANG, Y.; MU, Y. Temperature dependence of the absolute rate constant for the reaction of ozone with diethyl sulfide. Journal Of Environmental sciences, v. 19, p. 641–643, 2007. WANG, L.; ZHANG, J. Ab initio study of reaction of dimethyl sulfoxide (DMSO) with OH radical. Chemical Physics Letters, v. 356, n. 5–6, p. 490–496, 26 abr. 2002. WANG, Y. Y. et al. Detection of transient infrared absorption of SO3 and 1,3,2- 75 dioxathietane-2,2-dioxide [cyc -(CH2)O(SO2)O] in the reaction CH2OO+SO2. Journal of Chemical Physics, v. 148, n. 6, 2018. WELLINGTON, T. J. et al. Absolute rate constants for the gas-phase reactions of the NO3 radical with CH3SH, CH3SCH3, CH3SSCH3, H2S, SO2, and CH3OCH3 over the temperature range 280-350 K. Journal of Physical Chemistry, v. 90, n. 21, p. 5393–5396, 1986. WILLIAMS, M. B. et al. Experimental and Theoretical Studies of the Reaction of the OH Radical with Alkyl Sulfides: 1. Direct Observations of the Formation of the OH−DMS Adduct−Pressure Dependence of the Forward Rate of Addition and Development of a Predictive Expression at Low. The Journal of Physical Chemistry A, v. 111, n. 1, p. 89– 104, 2007. WILLIAMS, M. B. et al. Experimental and theoretical studies of the reaction of the OH radical with alkyl sulfides: 3. Kinetics and mechanism of the OH initiated oxidation of dimethyl, dipropyl, and dibutyl sulfides: reactivity trends in the alkyl sulfides and development of a p. Journal of Physical Chemistry A, v. 113, n. 24, p. 6697–6709, 2009. WILSON, A. K.; VAN MOURIK, T.; DUNNING, T. H. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. Journal of Molecular Structure: THEOCHEM, v. 388, n. 1–3, p. 339–349, 1996. WINE, P. H. et al. Kinetics of OH reactions with the atmospheric sulfur compounds H2S, CH3SH, CH3SCH3 and CH3SSCH3. The Journal of Physical Chemistry, v. 85, n. 18, p. 2660–2665, 1981. WINE, P. H. et al. Kinetics of the reaction OH + SO2 + M → HOSO2 + M. Temperature and pressure dependence in the falloff region. Journal of Physical Chemistry, v. 88, n. 10, p. 2095–2104, 1984. WOLLESEN DE JONGE, R. et al. Secondary aerosol formation from dimethyl sulfide – improved mechanistic understanding based on smog chamber experiments and modelling. Atmospheric Chemistry and Physics, n. February, p. 1–33, 2021. WOON, D. E.; DUNNING, T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. The Journal of Chemical Physics, v. 98, n. 2, p. 1358–1371, 1993. XU, X. et al. Multi-structural variational transition state theory: kinetics of the 1,5-hydrogen shift isomerization of the 1-butoxyl radical including all structures and torsional anharmonicity†. Physical Chemistry Chemical Physics, v. 14, p. 4204, 2012. YANG, Q. Q. et al. Production of dimethylsulfoniopropionate, dimethylsulfide and acrylic acid from marine microalgae. Journal of Sea Research, v. 190, n. October, p. 102299, 2022. YU, T.; ZHENG, J.; TRUHLAR, D. G. Multipath Variational Transition State Theory: Rate Constant of the 1,4-Hydrogen Shift Isomerization of the 2-Cyclohexylethyl Radical. J Phys Chem A, v. 116, p. 297, 2012. YVON, S. A. et al. Atmospheric sulfur cycling in the tropical Pacific marine boundary layer (12°S, 135°W): A comparison of field data and model results 1. Dimethylsulfide. Journal of Geophysical Research Atmospheres, v. 101, n. D3, p. 6899–6909, 1996. ZÁDOR, J.; JASPER, A. W.; MILLER, J. A. The reaction between propene and hydroxyl. Physical Chemistry Chemical Physics, v. 11, p. 11040–11053, 2009. ZHAO, Y.; TRUHLAR, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theoretical Chemistry Accounts, v. 120, n. 1–3, p. 215–241, 2008. ZHENG, G. et al. New particle formation in the remote marine boundary layer. Nature communications, v. 12, n. 527, p. 1–11, 2021. ZHENG, J. et al. Polyrate-version 2017-CMinneapolis, 2017. 76 ZHONG, J. et al. Mechanistic Insight into the Reaction of Organic Acids with SO3 at the Air– Water Interface. Angewandte Chemie - International Edition, v. 58, n. 25, p. 8351–8355, 2019. ZHU, L.; BOZZELLI, J. W. Kinetics of the multichannel reaction of methanethiyl radical (CH 3S ̇) with 3O 2. Journal of Physical Chemistry A, v. 110, n. 21, p. 6923–6937, 2006. | pt_BR |
dc.subject.cnpq | Química | pt_BR |
Appears in Collections: | Doutorado em Química |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023 - Tatiane Nicola Tejero.Pdf | 3.68 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.