Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/20381
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastor Neto, Thayanne Caroline-
dc.date.accessioned2025-03-17T12:43:53Z-
dc.date.available2025-03-17T12:43:53Z-
dc.date.issued2022-08-30-
dc.identifier.citationCASTOR NETO, Thayanne Caroline. Sensibilidade da espécie Terminalia catappa L. desenvolvida em ambiente urbano de intensa atividade siderúrgica. 2022. 71 f. Tese (Doutorado em Ciências Ambientais e Florestais) -Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20381-
dc.description.abstractAs árvores conseguem interceptar e acumular eficientemente os elementos que estão em suspensão no ar e/ou em deposição no solo através de suas estruturas. O presente estudo teve como objetivos avaliar o crescimento de árvores da espécie T. catappa desenvolvidas em ambiente urbano de intensa atividade siderúrgica e determinar as concentrações dos metais acumulados em sua madeira, nos diferentes períodos do crescimento e em suas cascas. Pelo menos duas amostras de madeira foram obtidas de cada árvore com o auxílio de um trado de incremento, no sentido casca-medula, através de uma incisão no tronco a 1,30 m de altura em relação ao solo. Os elementos Al, As, Cd, Pb, Cu, Cr, Ni, Fe, Mn e Zn foram quantificados por espectrofotometria de absorção atômica. A análise dendrocronológica de T. catappa indicou sensibilidade aos índices de precipitação e temperatura em área mais exposta à poluição, visto que ocorreram diferenças no crescimento. Após análise química, foi identificado que o arsênio e o chumbo foram os elementos que apresentaram maiores concentrações na madeira e na casca, respectivamente. Portanto, a possibilidade de analisar os anéis de crescimento da espécie T. catappa contribui para a realização de estudos dendrocronológicos futuros, em diversas escalas regionais. Além disso, os resultados das concentrações dos elementos são importantes para inferir a respeito dos níveis passados e atuais de poluição atmosférica.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectDendrocronologiapt_BR
dc.subjectDendroquímicapt_BR
dc.subjectPoluição atmosféricapt_BR
dc.subjectArborização urbanapt_BR
dc.subjectDendrochronologypt_BR
dc.subjectDendrochemistrypt_BR
dc.subjectAtmospheric pollutionpt_BR
dc.subjectUrban afforestationpt_BR
dc.titleSensibilidade da espécie Terminalia catappa L. desenvolvida em ambiente urbano de intensa atividade siderúrgicapt_BR
dc.title.alternativeSensitivity of Terminalia catappa L. tree developed in an urban environment under intensive steel industry activityen
dc.typeTesept_BR
dc.description.abstractOtherTrees can efficiently intercept and accumulate elements that are suspended in the air and/or deposited on the ground through their structures. The present study aimed to evaluate the growth of trees of the species T. catappa developed in an urban environment of intense steelmaking activity and to determine the concentrations of metals accumulated in their wood, in the different periods of growth and in their bark. At least two wood samples were obtained from each tree with the aid of an increment auger, in the bark- medulla direction, through an incision in the trunk at a height of 1.30 m in relation to the ground. The elements Al, As, Cd, Pb, Cu, Cr, Ni, Fe, Mn, and Zn were quantified by atomic absorption spectrophotometry. The dendrochronological analysis of T. catappa indicated sensitivity to precipitation and temperature in an area most exposed to pollution since there were differences in growth. After chemical analysis, it was identified that arsenic and lead were the elements with the highest concentrations in wood and bark, respectively. Therefore, the possibility of analyzing the growth rings of the species T. catappa contributes to the realization of future dendrochronological studies, at different regional scales. In addition, the results of element concentrations are important for inferring past and current levels of air pollution.en
dc.contributor.advisor1Latorraca, João Vicente de Figueiredo-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-5969-5199pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9612404360795583pt_BR
dc.contributor.referee1Latorraca, João Vicente de Figueiredo-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-5969-5199pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/9612404360795583pt_BR
dc.contributor.referee2Castro, Jonnys Paz-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-0807-1802pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3857362490028485pt_BR
dc.contributor.referee3Lousada, José Luis Penetra Cerveira-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5905247610778283pt_BR
dc.contributor.referee4Fontana, Cláudia-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4807253046658169pt_BR
dc.contributor.referee5Carmo, Jair Figueiredo do-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/1292311614965781pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-9740-1665pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6667969524192169pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Florestaspt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciências Ambientais e Florestaispt_BR
dc.relation.referencesABBASSI, Y.; AHMADIKIA, H.; BANIASADI, E.. Impact of wind speed on urban heat and pollution islands. Urban Climate, v. 44, p. 101200, 2022. AGUDELO-CASTAÑEDA, D. M. et al. Exposure to polycyclic aromatic hydrocarbons in atmospheric PM1.0 of urban environments: Carcinogenic and mutagenic respiratory health risk by age groups. Environmental pollution, v. 224, p. 158-170, 2017. ALMEIDA, E. S.; SILVA, L. A.; SOUSA, R. M.; RICHTER, E. M.; FOSTER, C. W.; BANKS, C. E.; MUNOZ, R. A. Organic-resistant screen-printed graphitic electrodes: Application to on- site monitoring of liquid fuels. Analytica Chimica Acta, v.934, p.1-8, 2016. ALTERIO, E. et al. Preserving air pollution forest archives accessible through dendrochemistry. Journal of environmental management, v. 264, p. 110462, 2020. ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meterologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. ALVES, E. S.; TRESMONDI, F.; LONGUI, E. L. Análise estrutural de folhas de Eugenia uniflora L. (Myrtaceae) coletadas em ambientes rural e urbano, SP, Brasil. Acta Botanica Brasilica, v. 22, p. 241-248, 2008. ANTONIADIS, V. et al. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Reviews, v. 171, p. 621-645, 2017. ANTONIADIS, V.; ROBINSON, J. S.; ALLOWAY, B. J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 71, 759-764, 2008. ANTUNES, G. A.; SANTOS, H. S. DOS; SILVA, Y. P. DA; SILVA, M. M.; PIATNICKI, C. M. S.; SAMIOS, D. Determination of iron, copper, zinc, aluminum, and chromium in biodiesel by flame atomic absorption spectrometry using a microemulsion preparation method. Energy Fuels, v.31, p.2944-2950, 2017. ARAGÃO, J. R. V.; GROENENDIJK, P.; LISI, C. S. Dendrochronological potential of four neotropical dry-forest tree species: Climate-growth correlations in northeast Brazil. Dendrochronologia, v. 53, p. 5-16, 2019. ATSDR. Agency for Toxic Substances and Disease Registry – ATSDR. ATSDR’s Substance Priority List. 2022. Disponível em: < https://www.atsdr.cdc.gov/spl/index.html>. Acesso em: 25 julho 2022. AUSTRUY, A. et al. Evaluation of historical atmospheric pollution in an industrial area by dendrochemical approaches. Chemosphere, v. 220, p. 116-126, 2019. 45 BALI, A. S.; SIDHU, G. P. S. Arsenic acquisition, toxicity, and tolerance in plants-From physiology to remediation: A review. Chemosphere, v. 283, p. 131050, 2021. BALLIKAYA, P.; MARSHALL, J.; CHERUBINI, P. Can tree-ring chemistry be used to monitor atmospheric nanoparticle contamination over time?. Atmospheric Environment, v. 268, p. 118781, 2022. BANG, J., HESTERBERG, D. Dissolution of trace element contaminants from two coastal plain soils as affected by pH. Journal of Environmental Quality 33, 891-901, 2004. BARTENS, J. et al. Evaluating the potential for dendrochronological analysis of live oak (Quercus virginiana Mill.) from the urban and rural environment—An explorative study. Dendrochronologia, v. 30, n. 1, p. 15-21, 2012. BATTIPAGLIA, G. et al. Traffic pollution affects tree-ring width and isotopic composition of Pinus pinea. Science of the total Environment, v. 408, n. 3, p. 586-593, 2010. BELKACEM, I. et al. Road traffic nanoparticle characteristics: Sustainable environment and mobility. Geoscience Frontiers, v. 13, n. 1, p. 101196, 2022. BINDA, G.; DI IORIO, A.; MONTICELLI, D. The what, how, why, and when of dendrochemistry:(paleo) environmental information from the chemical analysis of tree rings. Science of the Total Environment, v. 758, p. 143672, 2021. BRIENEN, R. J. W.; SCHÖNGART, J.; ZUIDEMA, P. A. Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. Tropical tree physiology, p. 439-461, 2016. BRIENEN, R. J. W.; ZUIDEMA, P. A. Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia, v. 146, n. 1, p. 1-12, 2005. BRIFFA, K. R.; JONES, P. D. Basic chronology statistics and assessment. 1990. BRIGNOLE, D. et al. Chemical and magnetic analyses on tree bark as an effective tool for biomonitoring: A case study in Lisbon (Portugal). Chemosphere, v. 195, p. 508-514, 2018. BROKBARTOLD, M.; GRUPE, M.; MARSCHNER, B. Effectiveness of different soil amendments to reduce the Pb and Zn extractability and plant uptake in soils contaminated by anticorrosion paints beneath pylons. Journal of Plant Nutrition and Soil Science, 175, 443- 455, 2012. BURAS, A. A comment on the expressed population signal. Dendrochronologia, v. 44, p. 130- 132, 2017. CARMONA, E. R.et al. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicology and Industrial Health, 1–15. 2015. 46 CARRERAS, H. A.; PIGNATA, M. L. Biomonitoring of heavy metals and air quality in Cordoba city, Argentina, using transplanted lichens. Environmental Pollution, Amherst, v. 117, p. 77-87. 2002. CATINON, M. et al. Atmospheric inorganic contaminants and their distribution inside stem tissues of Fraxinus excelsior L. Atmospheric environment, v. 42, n. 6, p. 1223-1238, 2008. CATINON, M. et al. The anthropogenic atmospheric elements fraction: a new interpretation of elemental deposits on tree barks. Atmospheric environment, v. 43, n. 5, p. 1124-1130, 2009. CATINON, M. et al. Tree bark suber-included particles: a long-term accumulation site for elements of atmospheric origin. Atmospheric environment, v. 45, n. 5, p. 1102-1109, 2011. CHAGAS, M. P. Caracterização dos anéis de crescimento e dendrocronologia de árvores de Grevillea robusta A. Cunn, Hovenia dulcis Thunb., Persea americana Mill., Tabebuia pentaphylla Hemsl. e Terminalia catappa L. nos municípios de Piracicaba e Paulínia, SP. 2009. 144 f. Dissertação (Mestrado Ciências) – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, 2009. CHAGAS, M. P. Anéis de crescimento do lenho de árvores como monitores ambientais: avaliação temporal e espacial da poluição atmosférica na cidade de Paulínia, São Paulo. 2013. 158 f. Tese (Doutorado em Ciências) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, 2013. CHAPARRO, M. A. E. et al. Fine air pollution particles trapped by street tree barks: In situ magnetic biomonitoring. Environmental Pollution, v. 266, p. 115229, 2020. CHEN, J. et al. The concentrations and reduction of airborne particulate matter (PM10, PM2.5, PM1) at shelterbelt site in Beijing. Atmosphere, v. 6, n. 5, p. 650-676, 2015. COCOZZA, C. et al. Integrated biomonitoring of airborne pollutants over space and time using tree rings, bark, leaves, and epiphytic lichens. Urban forestry & urban greening, v. 17, p. 177-191, 2016. COCOZZA, C. et al. Monitoring air pollution close to a cement plant and in a multi-source industrial area through tree-ring analysis. Environmental Science and Pollution Research, v. 28, n. 38, p. 54030-54040, 2021. COOK, E. R.; HOLMES, R. L. Guide for computer program ARSTAN. In H.D. GRISSINO- MAYER, R. L. HOLMES, AND H. C. FRITTS (Ed.) The international tree-ring Data Bank Program Library version 2.0 user’s manual. pp 75–87. University of Arizona.Tucson.1996. COSTA, V. B. S. et al. Influência da Poluição Atmosférica em Terminalia catappa L. em Áreas Urbanizadas. Revista Brasileira de Geografia Física, v. 8, n. 02, p. 236-252, 2015. CUTTER, B. E.; GUYETTE, R. P. Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies. Journal of Environmental Quality, v. 22, n. 3, p. 611-619, 1993. 47 DAVIES JR, F. T. et al. Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. Journal of Plant Nutrition, v. 25, n. 11, p. 2389-2407, 2002. DE CARVALHO MARIA, T. R. B. et al. Evaluation of Terminalia catappa street trees: A case study in Itanhaém–São Paulo, Brazil. Urban Forestry & Urban Greening, v. 66, p. 127373, 2021. DE RIDDER, M. et al. A tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa. Trees, v. 27, n. 5, p. 1225-1238, 2013. DOUCET, A. et al. Combining tree-ring metal concentrations and lead, carbon, and oxygen isotopes to reconstruct peri-urban atmospheric pollution. Tellus B: Chemical and Physical Meteorology, v. 64, n. 1, p. 19005, 2012. DRAVA, G. et al. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark. Atmospheric Environment, v. 144, p. 370-375, 2016. EEA, European Environmental Agency; Guidelines, 2000. EL-HASAN, T. et al. Cypress tree (Cupressus semervirens L.) bark as an indicator for heavy metal pollution in the atmosphere of Amman City, Jordan. Environment International, v. 28, n. 6, p. 513-519, 2002. ERCAL, N. et al. Toxic metals and oxidative stress part I: mechanisms involved in metal- induced oxidative damage. Current topics in medicinal chemistry, v. 1, n. 6, p. 529-539, 2001. FANG, K. et al. Influence of non-climatic factors on the relationships between tree growth and climate over the Chinese Loess Plateau. Global and Planetary Change, v. 132, p. 54-63, 2015. FLORES, E. M. Terminalia catappa L.: tropical tree seed manual. Species Descriptions, 2p, 2003. FONTANA, C. et al. Dendrochronology and climate in the Brazilian Atlantic Forest: Which species, where and how. Neotropical Biology and Conservation, v. 13, n. 4, p. 321-333, 2018. FRITTS, H. C.; SWETNAM, T. W. Dendroecology: a tool for evaluating variations in past and present forest environments. In: Advances in ecological research. Academic Press. p. 111-188, 1989. FRITTS, H. Tree rings and climate. New York: Academic Press. 1976. FUZZI, S. et al. Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric chemistry and physics, v. 15, n. 14, p. 8217-8299, 2015. GASPARD, D. T. et al. Tree ring responses to climate variability of xerophytic thickets from South Soalara, Madagascar. Dendrochronologia, v. 49, p. 57-67, 2018. 48 GERALDO, S.M.; CANTERAS, F.B; MOREIRA, S. Biomonitoring of environmental pollution using growth tree rings of Tipuana tipu: Quantification by synchrotron radiation total reflection X-ray fluorescence. Radiation Physics and Chemistry. v. 95, p. 346–348, 2014. GILLNER, S.; BRÄUNING, A.; ROLOFF, A. Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees, v. 28, n. 4, p. 1079-1093, 2014. GIODA, A. et al. Evaluation of air quality in Volta Redonda, the main metallurgical industrial city in Brazil. J. Braz. Chem. Soc., São Paulo, v.15, n.6, p. 856- 864, 2004. GRANTZ, D. A.; GARNER, J. H. B.; JOHNSON, D. W. Ecological effects of particulate matter. Environment international, v. 29, n. 2-3, p. 213-239, 2003. GRATANI, L.; CRESCENTE, M. F.; VARONE, L. Long-term monitoring of metal pollution by urban trees. Atmospheric Environment, 42, 8273–8277, 2008. GRISSINO-MAYER, H. D. Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. 2001. HAMMER, Ø. et al. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, v. 4, n. 1, p. 9, 2001. HAN, D. et al. A review on particulate matter removal capacity by urban forests at different scales. Urban Forestry & Urban Greening, v. 48, p. 126565, 2020. HOLMES, R.L.; ADAMS, R.K.; FRITTS, H.C. Tree-ring chronologies of western North America: California, eastern Oregon, and northern Great Basin, with procedures used in the chronology development work. Tucson: University of Arizona, 1986 (Chronology Series VI). HUGHES, M. F. et al. Arsenic exposure and toxicology: a historical perspective. Toxicological sciences, v. 123, n. 2, p. 305-332, 2011. INTERNATIONAL AGENCY FOR RESEARCH ON CANCER - IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to humans: Arsenic, metals, fibres, and dusts.; IARC Press: Leon, France, Volume 100C, pp. 41–48, 2012. INTERNATIONAL AGENCY FOR RESEARCH ON CANCER. Beryllium, cadmium, mercury, and exposures in the glass. Apresentado em: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Beryllium, Lyon, 1993. IQBAL, M. et al. Foliar characteristics, cambial activity, and wood formation in Azadirachta indica A. Juss. as affected by coal–smoke pollution. Flora-Morphology, Distribution, Functional Ecology of Plants, v. 205, n. 1, p. 61-71, 2010a. IQBAL, Muhammad et al. Behavioral responses of leaves and vascular cambium of Prosopis cineraria (L.) Druce to different regimes of coal-smoke pollution. Journal of Plant Interactions, v. 5, n. 2, p. 117-133, 2010b. 49 ISINKARALAR, K. The large-scale period of atmospheric trace metal deposition to urban landscape trees as a biomonitor. Biomass Conversion and Biorefinery, p. 1-10, 2022. IVANI, S. D. A.; SILVA, B. M. D. S.; OLIVEIRA, C. D.; MÔRO, F. V. Morfologia de frutos, sementes e plântulas de castanheira (Terminalia catappa L.- combretaceae). Revista Brasileira de Fruticultura, v. 30, n. 2, p. 517-522, 2008. JIN, Ling et al. Airborne particulate matter pollution in urban China: a chemical mixture perspective from sources to impacts. National Science Review, v. 4, n. 4, p. 593-610, 2017. JOMOVA, K. et al. Arsenic: toxicity, oxidative stress, and human disease. Journal of Applied Toxicology, v. 31, n. 2, p. 95-107, 2011. KASHEM, M. A.; SINGH, B. R. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems, 61, 247-255, 2001. KERBAUY, G. B. Fisiologia Vegetal. Rio de Janeiro: Guanabara Koogan, p. 165-181, 2004. KRISHNAMURTI, G. S. R.; HUANG, P. M. KOZAK, L. M. Sorption and desorption kinetics of cadmium from soils: influence of phosphate. Soil Science 164, 888-898, 1999. KUKARSKIH, V. V. et al. Radial growth of Scots pine in urban and rural populations of Ekaterinburg megalopolis. Dendrochronologia, p. 125974, 2022. LANZACO, B. L. et al. Elemental composition of PM0.25 collected in an urban site of Argentina: A first case study. Spectrochimica Acta Part B: Atomic Spectroscopy, v. 161, p. 105712, 2019. LARUE, C. et al. Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. Journal of hazardous materials, v. 264, p. 98-106, 2014. LEE, S. H.; LEE, J. S.; CHOI, Y. J.; KIM, J. G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77, 1069-1075, 2009. LEONELLI, G. et al. Climatic isotope signals in tree rings masked by air pollution: A case study conducted along the Mont Blanc Tunnel access road (Western Alps, Italy). Atmospheric Environment, v. 61, p. 169-179, 2012. LEPP, N.W. The potential of tree-ring analysis for monitoring heavy metal pollution patterns. Environmental Pollution, v. 9, 1975. LI, Q.; LI, Y.; ZHU, L.; XING, B.; CHEN, B. Dependence of plant uptake and diffusion of polycyclic aromatic hydrocarbons on the leaf surface morphology and micro-structures of cuticular waxes. Scientific Reports, 7:46235, 2017. LIU, Yu et al. Elements content in tree rings from Xi'an, China, and environmental variations in the past 30 years. Science of the Total Environment, v. 619, p. 120-126, 2018. 50 LOCOSSELLI, G. M. et al., Tree rings reveal the reduction of Cd, Cu, Ni and Pb pollution in the central region of São Paulo, Brazil. Environmental Pollution, v. 242, p. 320-328, 2018. LOCOSSELLI, G. M.; DE CAMARGO, E. P.; MOREIRA, T. C. L.; TODESCO, E.; DE FÁTIMA ANDRADE, M.; DE ANDRÉ, C. D. S.; ... & BUCKERIDGE, M. S. The role of air pollution and climate on the growth of urban trees. Science of the Total Environment, v. 666, p. 652-661, 2019. LOCOSSELLI, G. M. et al. Spatial-temporal variability of metal pollution across an industrial district, evidencing the environmental inequality in São Paulo. Environmental Pollution, v. 263, p. 114583, 2020. LÓPEZ, L.; VILLALBA, R. Climate-growth relationships for Aspidosperma tomentosum Mart. in South American tropical dry forests. Annals of Forest Science, v. 77, n. 4, p. 1-11, 2020. LORENZI, Harri. Árvores exóticas no Brasil: madeireiras, ornamentais e aromáticas. Institituto Plantarum de Estudos da Flora, 2003. LUO, X. S.; YU, S.; LI, X. D. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: implications for assessing the risk to human health. Environ. Pollut. 159, 1317-1326, 2011. LUO, X.; BING, H.; LUO, Z.; WANG, Y.; JIN, L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. Environmental Pollution, p. 113138, 2019. MA, T. et al. Air pollution characteristics and their relationship with emissions and meteorology in the Yangtze River Delta region during 2014–2016. Journal of Environmental Sciences, v. 83, p. 8-20, 2019. MANDAL, B. K.; SUZUKI, K. T. Arsenic round the world: a review. Talanta, v. 58, n. 1, p. 201-235, 2002. MANES, F.; INCERTI, G.; SALVATORI, E.; VITALE, M.; RICOTTA, C.; COSTANZA, R. Urban ecosystem services: tree diversity and stability of tropospheric ozone removal. Ecol. Appl. 22, 349–360, 2012. MARĆ, M. et al. Current air quality analytics and monitoring: A review. Analytica Chimica Acta, v. 853, p. 116-126, 2015. MARCELO-PEÑA, J. L. et al. Characterizing growth rings in the trees of Perú: A wood anatomical overview for potential applications in dendroecological-related fields. Dendrochronologia, v. 62, p. 125728, 2020. MARQUES, D. M. et al. Root morphology and leaf gas exchange in Peltophorum dubium (Spreng.) Taub. (Caesalpinioideae) exposed to copper-induced toxicity. South African Journal of Botany, v. 121, p. 186-192, 2019. MARTIN, J. A. R. et al. Wood and bark of Pinus halepensis as archives of heavy metal pollution in the Mediterranean Region. Environmental Pollution, v. 239, p. 438-447, 2018. 51 MEDEIROS, J. G. S. et al. Tree-ring characterization of Araucaria columnaris Hook and its applicability as a lead indicator in environmental monitoring. Dendrochronologia, v. 26, n. 3, p. 165-171, 2008. MEERTS, P. Mineral nutrient concentrations in sapwood and heartwood: a literature review. Annals of Forest Science, v. 59, n. 7, p. 713-722, 2002. MENDIOLA, J. et al. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study. Environmental Health, v. 10, n. 1, p. 1-7, 2011. MÉRIAN, P.; PIERRAT, J.; LEBOURGEOIS, F. Effect of sampling effort on the regional chronology statistics and climate–growth relationships estimation. Dendrochronologia, v. 31, n. 1, p. 58-67, 2013. MONTINE, P. S. M. et al. Seasonality of epigaeic ant communities in a Brazilian Atlantic rainforest. Sociobiology, v. 61, n. 2, p. 178-183, 2014. MOREIRA, T. C. L. et al. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources. Environment International, v. 91, p. 271-275, 2016. MOREIRA, T. C. L. et al. The use of tree barks to monitor traffic related air pollution: a case study in São Paulo–Brazil. Frontiers in Environmental Science, v. 6, p. 72, 2018. MUÑOZ, A. A. et al. Multidecadal environmental pollution in a mega-industrial area in central Chile registered by tree rings. Science of the Total Environment, v. 696, p. 133915, 2019. NABAIS, C.; FREITAS, H.; HAGEMEYER, J. Dendroanalysis: a tool for biomonitoring environmental pollution?. Science of the total environment, v. 232, n. 1-2, p. 33-37, 1999. NAGAJYOTI, P. C; LEE, K. D; SREEKANTH, T. V. M. Heavy metals, occurrence, and toxicity for plants: a review. Environmental chemistry letters, v. 8, n. 3, p. 199-216, 2010. NOWAK, David J. et al. Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environmental pollution, v. 178, p. 395-402, 2013. ODABASI, M. et al. Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components. Science of the Total Environment, v. 550, p. 1010-1021, 2016. PALMEIRA, A. F. A nova face da “Cidade do Aço”: crise do capital, Trabalho e Hegemonia em Volta Redonda (1992-2008). 2012. Dissertação (Mestrado em História Social) – Instituto de Ciências Humanas e Filosofia, Universidade Federal Fluminense, Niterói, 2012. PAOLETTI, E. Ozone and urban forests in Italy. Environmental pollution, v. 157, n. 5, p. 1506-1512, 2009. 52 PEITER, P; TOBAR, C. Poluição do ar e condições de vida: uma análise geográfica de riscos à saúde em Volta Redonda, Rio de Janeiro, Brasil. Cadernos de saúde pública, v. 14, p. 473- 485, 1998. PERONE, A. et al. Oak tree-rings record spatial-temporal pollution trends from different sources in Terni (Central Italy). Environmental Pollution, v. 233, p. 278-289, 2018. PIERANGELI, M. A. P. et al. Adsorção e dessorção de cádmio, cobre e chumbo por amostras de Latossolos pré-tratadas com fósforo. Revista Brasileira de Ciência do Solo, v. 28, p. 377- 384, 2004. PIQUERAS, S. et al. Understanding the formation of heartwood in larch using synchrotron infrared imaging combined with multivariate analysis and atomic force microscope infrared spectroscopy. Frontiers in Plant Science, v. 10, p. 1701, 2020. PRAJAPATI, S. K. Ecological effect of airborne particulate matter on plants. Environmental Skeptics and Critics. 1, pp. 12–22, 2012. PRETZSCH, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Scientific reports, v. 7, n. 1, p. 1-10, 2017. PRITCHETT, W. L.; FISCHER, R. F. Tropical Forest Soils. Properties and Management of Forest Soils, Wiley Sons J. (Ed.), 2nd ed., New York, p. 308-328, 1987. RADHA, J.; SRIVASTAVA, S.; MADAN, V. Influence of chromium on growth and cell division of sugarcane. Indian Journal of Plant Physiology, v. 5, n. 3, p. 228-231, 2000. RAI, P. K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and environmental safety, v. 129, p. 120-136, 2016. REHMAN, A. U. et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. Journal of Molecular Liquids, v. 321, p. 114455, 2021. RIBEIRO, R. T. M.; MARQUET, N.; LOIOLA, M. I. B. Combretaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Disponível em: <https://floradobrasil2020.jbrj.gov.br/reflora/floradobrasil/FB6913>. Acesso em: 17 Jun. 2022. RICO, C. M.; MAJUMDAR, S.; DUARTE-GARDEA, M.; PERALTA-VIDEA, J. R.; GARDEA-TORRESDEY, J. L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem, 59:3485−3498, 2011. ROCHA, N. L. T.; GUIMARÃES, C. S. Estudo da qualidade do ar e a atividade siderúrgica na cidade de Volta Redonda. Cadernos UniFOA, v. 12, n. 33, p. 25-36, 2017. ROELAND, S. et al. Towards an integrative approach to evaluate the environmental ecosystem services provided by urban forest. Journal of Forestry Research, p. 1-16, 2019. RUWANPATHIRANA, N. D. Use of wood characters in the Identification of Terminalia spp in Sri Lanka. Journal of Tropical Forestry and Environment, v. 4, n. 2, 2014. 53 SANDERS, T. et al. Neurotoxic effects and biomarkers of lead exposure: a review. Reviews on environmental health, v. 24, n. 1, p. 15-46, 2009. SÄUMEL, I. et al. How healthy is urban horticulture in high traffic areas? Trace metal concentrations in vegetable crops from plantings within inner city neighbourhoods in Berlin, Germany. Environmental Pollution, v. 165, p. 124-132, 2012. SAWIDIS, T. et al. Trees as bioindicator of heavy metal pollution in three European cities. Environmental pollution, v. 159, n. 12, p. 3560-3570, 2011. SCHARNWEBER, T. et al. Common trends in elements? Within-and between-tree variations of wood-chemistry measured by X-ray fluorescence—A dendrochemical study. Science of the Total Environment, v. 566, p. 1245-1253, 2016. SCHULZ, M. et al. Atmospheric transport and deposition of mineral dust to the ocean: Implications for research needs. Environmental science & technology, v. 46, n. 19, p. 10390- 10404, 2012. SENSUŁA, B. et al. Variations of tree ring width and chemical composition of wood of pine growing in the area nearby chemical factories. Geochronometria, v. 44, n. 1, p. 226-239, 2017. SGRIGNA, G.; BALDACCHINI, C.; DREVECK, S.; CHENG, Z.; CALFAPIETRA, C. Relationships between air particulate matter capture efficiency and leaf traits in twelve tree species from an Italian urban-industrial environment. Science of The Total Environment, v. 718, p. 137310, 2020. SHAHID, M. et al. EDTA-enhanced phytoremediation of heavy metals: a review. Soil and Sediment Contamination: An International Journal, v. 23, n. 4, p. 389-416, 2014. SHIRAIWA, Manabu et al. Aerosol health effects from molecular to global scales. Environmental Science & Technology, v. 51, n. 23, p. 13545-13567, 2017. SICARD, P.; AGATHOKLEOUS, E.; ARAMINIENE, V.; CARRARI, E.; HOSHIKA, Y.; DE MARCO, A.; PAOLETTI, E. Should we see urban trees as effective solutions to increasing ozone levels in cities? Environmental Pollution., 243, 163–176, 2018. SILVA, G. C. As relações entre a saúde e a exposição aos resíduos siderúrgicos: o conflito socioambiental no Volta Grande IV, a partir dos seus moradores. 2019. Dissertação (Mestrado em Saúde Pública) - Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, 2019. SINGH, M. K.; SHARMA, M. B.; SHARMA, C. L. Wood anatomical variations in some Terminalia species of Assam. International Journal of Botany and Research, v. 3, n. 2, p. 13-18, 2013. SOUZA, M.S.P.A. et al. Poincianella pluviosa as biomonitor of heavy metals in the municipality of Volta Redonda, RJ, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental-Agriambi, v. 23, n. 1, 2019. SPEER, J. H. Fundamentals of tree-ring research. University of Arizona Press, 2010. 54 STAHLE, D. W. et al. Management implications of annual growth rings in Pterocarpus angolensis from Zimbabwe. Forest Ecology and Management, v. 124, n. 2-3, p. 217-229, 1999. STANKOVIC, S.; KALABA, P.; STANKOVIC, A.R. Biota as toxic metal indicators. Environmental Chemistry Letters, v. 12, p. 63–84, 2014. STEWART, C. M. Excretion and Heartwood Formation in Living Trees: The death of many cells in secondary tissues seems to result from the accumulation of waste metabolites. Science, v. 153, n. 3740, p. 1068-1074, 1966. SUKREEYAPONGSE, O. et al. pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils. Journal of Environmental Quality, 31,1901-1909, 2002. SUZUKI, K. Characterization of airborne particulates and associated trace metals deposited on tree bark by ICP-OES, ICP-MS, SEM-EDX and laser ablation ICP-MS. Atmospheric Environment, v. 40, n. 14, p. 2626-2634, 2006. SYTAR, O. et al. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta physiologiae plantarum, v. 35, n. 4, p. 985-999, 2013. SZCZEPANIAK, K.; BIZIUK, M. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution. Environmental research, v. 93, n. 3, p. 221-230, 2003. TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. 4 ed. Porto Alegre: Artmed, 679 p., 2013. TAKEBAYASHI, H.; SENOO, M. Analysis of the relationship between urban size and heat island intensity using WRF model. Urban climate, v. 24, p. 287-298, 2018. THOMSON, L.A.J; EVANS, B. Terminalia catappa (tropical almond). Species Profiles for Pacific Island Agroforestry, v. 2, p. 1-20, 2006. TOMAZELLO FILHO, M.; BOTOSSO, P. C.; LISI, C. S. Análise e aplicação dos anéis de crescimento das árvores como indicadores ambientais: dendrocronologia e dendroclimatologia. Indicadores ambientais: conceitos e aplicações. São Paulo: Educ, p. 117-143, 2001. TROUET, V.; ESPER, J.; BEECKMAN, H. Climate/growth relationships of Brachystegia spiciformis from the miombo woodland in south central Africa. Dendrochronologia, v. 28, n. 3, p. 161-171, 2010. TSAI, J. et al. Chemical constituents in particulate emissions from an integrated iron and steel facility. Journal of hazardous materials, v. 147, n. 1-2, p. 111-119, 2007. UKPEBOR, E. E.et al. Delonix regia and Casuarina equisetifolia as passive biomonitors and as bioaccumulators of atmospheric trace metals. Journal of Environmental Sciences, v.22, p.1073-1079, 2010. 55 URBINATI, C. V. et al. Wood structural quantitative variation of the Terminalia ivorensis A. Chev., Combretaceae. Acta Botânica Brasilica, v. 17, p. 421-437, 2003. USMAN, A. R. A.; KUZYAKOV, Y.; STAHR, K. Sorption, desorption, and immobilization of heavy metals by artificial soil. MSc. thesis, University of Hohenhiem, Stuttgart, 2008. VAGANOV, E. A. et al. Dendroclimatology, developments in paleoenvironmental research. How well understood are the processes that create dendroclimatic records? A mechanistic model of the climatic control on conifer tree-ring growth dynamics, v. 11, p. 37-75, 2011. VALVERDE, M. C. et al. Urban climate assessment in the ABC Paulista Region of São Paulo, Brazil. Science of the Total Environment, v. 735, p. 139303, 2020. VAN VLIET, G. J. C. M. Wood anatomy of the Combretaceae. Blumea 25: 141-223, 1979. VASCONCELLOS, T. J. de; CUNHA, M. da; CALLADO, C. H. A comparative study of cambium histology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) under urban pollution. Environmental Science and Pollution Research, v. 24, n. 13, p. 12049-12062, 2017. VASCONCELLOS, T. J. de; TOMAZELLO-FILHO, M.; CALLADO, C. H.. Dendrochronology and dendroclimatology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) exposed to urban pollution in Rio de Janeiro city, Brazil. Dendrochronologia, v. 53, p. 104-113, 2019. VASCONCELLOS, T. J.; CALLADO, C. H. Wood anatomy of Ceiba speciosa (A. St.-Hil.) Ravenna under urban pollution. IAWA journal, v. 41, n. 1, p. 30-47, 2020. VIVES, A.E.S.; MOREIRA, S.; BRIENZA, S. M. B.; MEDEIROS, J. G. S.; TOMAZELLO FILHO, M.; ARAÚJO, O. M.; ZUCCHI, D.; NASCIMENTO FILHO, V. F. Species arboreal as a bioindicator of the environmental pollution. Nuclear Instruments and Methods in Physics, Amsterdam, v.579, p.494–498, 2006. VOLNÁ, V.; BLAŽEK, Z.; KREJČÍ, B. Assessment of air pollution by PM10 suspended particles in the urban agglomeration of Central Europe in the period from 2001 to 2018. Urban Climate, v. 39, p. 100959, 2021. WANG, J. H. C.; TSAI, C. T.; CHIANG, C. F. Screening procedure for airborne pollutants emitted from a high-techindustrial complex in Taiwan. Chemosphere, v.139, p. 268–275. 2015. WANG, P. et al. Nanotechnology: a new opportunity in plant sciences. Trends in plant science, v. 21, n. 8, p. 699-712, 2016. WATMOUGH, S.A., HUTCHINSON, T.C., EVANS, R.D. Application of laser ablation inductively coupled plasma-mass spectrometry in dendrochemical analysis. Environmental Science; Technology, v. 31, p. 114-118.1997. 56 WHO, World Health Organization; Air Quality Guidelines, 2nd Edition, Regional Office for Europe, 2000. WIGLEY, T. M. L.; BRIFFA, K. R.; JONES, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Applied Meteorology and Climatology, v. 23, n. 2, p. 201-213, 1984. XU, H. et al. Differences in quantity and composition of leaf particulate matter and morphological structures in three evergreen trees and their association in Harbin, China. Environmental Pollution, v. 252, p. 1772-1790, 2019. YUN, G. Y. et al. Predicting the magnitude and the characteristics of the urban heat island in coastal cities in the proximity of desert landforms. The case of Sydney. Science of The Total Environment, v. 709, p. 136068, 2020. ZAR, J.H. Biostatistical Analysis. Prentice Hall, New Jersey, 2010. 947 p. ZHANG, G. et al. The impact of air pollution on individual subjective well-being: Evidence from China. Journal of Cleaner Production, v. 336, p. 130413, 2022. ZHANG, X. The history of pollution elements in Zhengzhou, China recorded by tree rings. Dendrochronologia, v. 54, p. 71-77, 2019.pt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
dc.subject.cnpqRecursos Florestais e Engenharia Florestalpt_BR
Appears in Collections:Doutorado em Ciências Ambientais e Florestais

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2022 - Thayanne Caroline Castor Neto.pdf7.86 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.