Por favor, use este identificador para citar o enlazar este ítem: https://rima.ufrrj.br/jspui/handle/20.500.14407/20384
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.contributor.authorSilva, Thiago de Souza Dias-
dc.date.accessioned2025-03-17T14:38:31Z-
dc.date.available2025-03-17T14:38:31Z-
dc.date.issued2023-05-15-
dc.identifier.citationSILVA, Thiago de Souza Dias. Planejamento, síntese e avaliação anti-Trypanosoma cruzi de híbridos naftoimidazólicos, derivados da β-lapachona, com nitroimidazóis. 2023. 144 f. Dissertação (Mestrado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20384-
dc.description.abstractA doença de Chagas (DC) é uma infecção causada pelo protozoário Trypanosoma cruzi . Esta enfermidade é classificada pela Organização Mundial da Saúde como uma das doenças tropicais mais negligenciadas do mundo e acredita-se que cerca de 6 a 7 milhões de pessoas em todo o mundo estejam infectadas com T. Cruzi. Além disso, estima-se que menos de 1% dos pacientes portadores da DC recebe o tratamento antiparasitário, que é realizado através do uso de um dos dois fármacos nitro-heterocíclicos, que foram inseridos na terapêutica há mais de meio século, o benznidazol e o nifurtimox. Ambos são medicamentos eficazes quando administrados na fase aguda da DC, mas não apresentam atividade significativa na fase crônica da infecção. Além disso, estes dois fármacos apresentam efeitos colaterais severos e exigem um longo tempo de tratamento. Por se tratar de uma doença que afeta, primordialmente, populações vivendo em bolsões de pobreza, não há interesse por parte das grandes companhias farmacêuticas em desenvolver pesquisas buscando encontrar medicamentos com maior eficácia e menor toxicidade. Ou seja: existe demanda humanitária, mas não existe mercado. O uso de produtos naturais (PNs), em especial, os de origem vegetal, tem grande importância e contribuição na descoberta e desenvolvimento de novos fármacos. Diante da diversidade observada nos PNs, uma classe de substâncias se destaca: as quinonas. O lapachol e a β- lapachona são duas naftoquinonas, amplamente discutidas na literatura, e têm atraído grande atenção na pesquisa em química e farmacologia de quinonas. O lapachol é encontrado como constituinte de várias plantas e sua ocorrência é maior na família Bignoniaceae, particularmente no gênero Tabebuia. No Brasil, as espécies de Tabebuia são conhecidas popularmente como ipê ou pau d’arco. A β-lapachona pode ser obtida através da isomerização do lapachol na presença de ácido sulfúrico concentrado. A obtenção de compostos derivados da β-lapachona também tem sido explorada para a síntese de novos compostos com atividade tripanocida, sendo os derivados naftoimidazólicos os mais promissores. Até o momento da elaboração do referido projeto, segundo a literatura, o 6,6-dimetil-2-(p-toluil)-3,4,5,6-tetrahidrobenzo[7,8]cromeno [5,6-d]imidazol, obtido pela reação de condensação entre a β-lapachona, amônia e 4- metilbenzaldeído, é o naftoimidazol, derivado da β-lapachona, que apresentou maior atividade contra o T. cruzi e por esse motivo, foi escolhido para sofrer homologações de grupos farmacofóricos, de fármacos comerciais com atividade antiparasitária conhecida, como benznidazol e metronidazol, utilizando a estratégia de hibridação molecular, através da reação de cicloadição de alcino-azida, catalisada por cobre (I) (CuAAC). No planejamento molecular dos derivados obtidos neste trabalho, variou-se a posição do grupamento nitro presente nos centros imidazólicos, com o objetivo de se investigar a relação dos diferentes potenciais de redução de cada espécie 2-, 4-, 5-nitroimidazólicas, relacionando os potenciais de redução com as atividades biológicas observadas na célula do parasito, visto que o potencial de redução de cada espécie nitroimidazólica muda de acordo com a posição do grupo nitro no anel. Os resultados obtidos neste trabalho validaram o planejamento molecular utilizado, gerando moléculas híbridas otimizadas, ativas frente ao T. cruzi e com maior índice de seletividade (menor toxidez frente às células do hospedeiro).pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectTrypanosoma cruzipt_BR
dc.subjectnaftoimidazolpt_BR
dc.subjectnitroimidazóispt_BR
dc.subjectnaphthoimidazolept_BR
dc.subjectnitroimidazolespt_BR
dc.titlePlanejamento, síntese e avaliação anti-Trypanosoma cruzi de híbridos naftoimidazólicos, derivados da β-lapachona, com nitroimidazóispt_BR
dc.title.alternativePlanning, synthesis and anti-Trypanosoma cruzi evaluation of naphthoimidazole hybrids, derived from β-lapachone, with nitroimidazolesen
dc.typeDissertaçãopt_BR
dc.description.abstractOtherChagas disease (CD) is an infection caused by the protozoan Trypanosoma cruzi. It is classified by the World Health Organization as one of the most neglected tropical diseases in the world, and approximately 6 to 7 million people worldwide are believed to be infected with T. Cruzi. In addition, it is estimated that less than 1% of patients with CD receive antiparasitic treatment, which is performad using two nitroheterocyclic drugs introduced more than a century ago, benznidazole and nifurtimox. Both drugs are effective drugs when administered in the acute phase of CD and do not show significant activity in the chronic phase of the infection. However, these two drugs have adverse effects and can be long-term treatments. Since it is a disease that primarily affects populations living in pockets of poverty, there is no interest on the part of large pharmaceutical companies in developing research seeking to find drugs with greater efficacy and less toxicity. In other words, there is humanitarian demand, but there is no market. The use of natural products (NPs), especially those of plant origin, is of great importance and contribution to the discovery and development of new drugs. Faced with the diversity observed in NPs, one class of substances stands out: quinones. Lapachol and β- lapachone are two naphthoquinones widely reported in the literature and have attracted great attention in research on quinone chemistry and pharmacology. Lapachol is found as a constituent of several plants, and its occurrence is higher in the Bignoniaceae family, particularly in the genus Tabebuia. In Brazil, Tabebuia species are popularly known as ipê or pau d'arco. β-lapachone can be treated by isomerizing lapachol in the presence of concentrated sulfuric acid. Obtaining compounds derived from β-lapachone has also been widely explored for the synthesis of new compounds with trypanocidal activity, with naphthoimidazole derivatives being the most promising. Until the moment of elaboration of the mentioned project, according to the literature, 6,6-dimethyl-2-(p-toluyl)-3,4,5,6-tetrahydrobenzo[7,8]chromene [5,6-d] imidazole, obtained by the condensation reaction between β-lapachone, ammonia and 4-methylbenzaldehyde, is naphthoimidazole, derived from β-lapachone, which showed greater activity against T. cruzi and, for this reason, was chosen to undergo group approvals pharmacophoric of commercial drugs with known antiparasitic activity, such as benznidazole and metronidazole, using a molecular hybridization strategy through copper (I)- catalyzed alkyne-azide cycloaddition reaction (CuAAC). In our planning, we will vary the position of the nitro group present in the imidazole centers, seeking to investigate the relationship of the diferente risks of reduction of each species of 2-, 4- and 5-nitroimidazole and to relate it to the observed activities against parasite cell, since the reduction potential of each nitroimidazole species changes according to the position of the nitro group in the ring. The results obtained in this work validated the molecular design used, generating improved hybrid molecules that were active against T. cruzi and had a higher selectivity index (lower toxicity against host cells).en
dc.contributor.advisor1Lima, Marco Edilson Freire de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-0563-3483pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8392420706762318pt_BR
dc.contributor.advisor-co1Ferreira, Aurelio Baird Buarque-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5526484175547597pt_BR
dc.contributor.referee1Lima, Marco Edilson Freire de-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-0563-3483pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8392420706762318pt_BR
dc.contributor.referee2Chaves, Otávio Augusto-
dc.contributor.referee2IDhttps://orcid.org/0000-0001-6211-7659pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5839459732532799pt_BR
dc.contributor.referee3Lima, Debora Decote Ricardo de-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-8761-7641pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3572066508469025pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9419776714029084pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Químicapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Químicapt_BR
dc.relation.referencesALSTON, T. A.; ABELES, R. H. Enzymatic conversion of the antibiotic metronidazole to an analog of thiamine. Archives of Biochemistry and Biophysics, v. 257, n. 2, p. 357–362, 1987. ALVES, G. M. C. et al. Purificação e caracterização da beta-lapachona e estudo de estabilidade dos cristais em diferentes condições de armazenamento. Química Nova, v. 31, 2008. ARRÚA, E. C. et al. Nanocarriers for effective delivery of benznidazole and nifurtimox in the treatment of chagas disease: A review. Acta TropicaElsevier B.V., 1 out. 2019. ATANASOV, A. G. et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, v. 33, n. 8, p. 1582–1614, 1 dez. 2015. AUCAGNE, V. et al. Catalytic “Click” Rotaxanes: A Substoichiometric Metal-Template Pathway to Mechanically Interlocked Architectures. Journal of the American Chemical Society, v. 128, n. 7, p. 2186–2187, 1 fev. 2006. BARBOSA, T. P.; DINIZ NETO, H. Preparação de derivados do lapachol em meio ácido e em meio básico: uma proposta de experimentos para a disciplina de Química Orgânica Experimental. Química Nova, v. 36, n. 2, p. 331–334, 2013. BASKIN, J. M. et al. Copper-free click chemistry for dynamic in vivo imaging. Proceedings of the National Academy of Sciences, v. 104, n. 43, p. 16793–16797, 23 out. 2007. BEUCLER, N.; TORRICO, F.; HIBBERT, D. A tribute to cecilio romaña: Romaña’s sign in chagas disease. PLoS Neglected Tropical DiseasesPublic Library of Science, 1 nov. 2020. BINDER, W. H.; SACHSENHOFER, R. ‘Click’ Chemistry in Polymer and Materials Science. Macromolecular Rapid Communications, v. 28, n. 1, p. 15–54, 5 jan. 2007. BOCK, V. D. et al. Click Chemistry as a Route to Cyclic Tetrapeptide Analogues: Synthesis of cyclo-[Pro-Val-ψ(triazole)-Pro-Tyr]. Organic Letters, v. 8, n. 5, p. 919–922, 2 mar. 2006. BOMBAÇA, A. C. S. et al. Novel N,N-di-alkylnaphthoimidazolium derivative of β-lapachone impaired Trypanosoma cruzi mitochondrial electron transport system. Biomedicine & Pharmacotherapy, v. 135, p. 111186, 2021. BOREN, B. C. et al. Ruthenium-Catalyzed Azide−Alkyne Cycloaddition: Scope and Mechanism. Journal of the American Chemical Society, v. 130, n. 28, p. 8923–8930, 1 jul. 2008. BRASIL. Guia de Vigilância em Saúde Ministério da Saúde 4a edição. Disponível em: <http://bvsms.saude.gov.br/bvs/publicacoes/guia_vigilancia_saude_4ed.pdf>. BRASIL. Doença de Chagas aguda - casos confirmados notificados no sistema de informação de agravos de notificação - Brasil. Disponível em: <http://tabnet.datasus.gov.br/cgi/deftohtm.exe?sinannet/cnv/Chagasbr.def>. BUCKNER, F. S. et al. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrobial Agents and Chemotherapy, v. 40, n. 11, p. 2592–2597, 1 nov. 1996. 93 CANÇADO, J. R. Criteria of Chagas disease cure. Memórias do Instituto Oswaldo Cruz, v. 94, 1999. CARVALHO, C. E. M. et al. Tautomerization in the ground and first excited singlet states of phenyl-lapimidazole. Journal of Luminescence, v. 109, n. 3, p. 207–214, 2004. CASCABULHO, C. M. et al. Antiparasitic and anti-inflammatory activities of ß-lapachone- derived naphthoimidazoles in experimental acute trypanosoma cruzi infection. Memorias do Instituto Oswaldo Cruz, v. 115, 2020. CASTRO, V.; RODRÍGUEZ, H.; ALBERICIO, F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS Combinatorial Science, v. 18, n. 1, p. 1–14, 11 jan. 2016. CHAWLA, A.; SHARMA, A.; SHARMA, A. K. review-a-convenient-approach-for-the- synthesis-of-imidazolederivatives-using-microwaves. Der Pharma Chemica, v. 4, n. 1, p. 116–140, 2012. CLARDY, J.; WALSH, C. Lessons from natural molecules. Nature 2004 432:7019, v. 432, n. 7019, p. 829–837, 15 dez. 2004. COURA, J. R. The main sceneries of chagas disease transmission. The vectors, blood and oral transmissions - A comprehensive review. Memorias do Instituto Oswaldo Cruz, v. 110, n. 3, p. 277–282, 2015. COURA, J. R.; DE CASTRO, S. L. A Critical Review on Chagas Disease ChemotherapyMem Inst Oswaldo Cruz, Rio de Janeiro. [s.l: s.n.]. CROSSLAND, R. K.; SERVIS, K. L. Facile synthesis of methanesulfonate esters. The Journal of Organic Chemistry, v. 35, n. 9, p. 3195–3196, 1 set. 1970. DA SILVA, A. M. et al. Synthesis and biological evaluation of N-alkyl naphthoimidazoles derived from β-lapachone against Trypanosoma cruzi bloodstream trypomastigotes. MedChemComm, v. 8, n. 5, p. 952–959, 2017. DA SILVA, A. R. et al. Synthesis of imidazole derivatives from β-lapachone and related compounds using microwave and supported reagents. Journal of the Brazilian Chemical Society, v. 19, n. 6, p. 1230–1233, 2008. DAI, Y.; CHEN, X.; ZHANG, X. Recent advances in stimuli-responsive polymeric micelles via click chemistry. Polymer Chemistry, v. 10, n. 1, p. 34–44, 2019. DE MOURA, K. C. G. et al. Trypanocidal activity of isolated naphthoquinones from Tabebuia and some heterocyclic derivatives: a review from an interdisciplinary study. Journal of the Brazilian Chemical Society, v. 12, n. 3, p. 325–338, jun. 2001. DE MOURA, K. C. G. et al. Studies on the trypanocidal activity of semi-synthetic pyran[b-4,3] naphtho[1,2-d]imidazoles from β-lapachone. European Journal of Medicinal Chemistry, v. 39, n. 7, p. 639–645, jul. 2004. DE SOUZA, W. Doenças negligenciadas. Academia Brasileira de Ciências, 2010. DEBETS, M. F. et al. Bioconjugation with Strained Alkenes and Alkynes. Accounts of Chemical Research, v. 44, n. 9, p. 805–815, 20 set. 2011. 94 DEDOLA, S.; NEPOGODIEV, S. A.; FIELD, R. A. Recent applications of the CuI-catalysed Huisgen azide–alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Organic & Biomolecular Chemistry, v. 5, n. 7, p. 1006–1017, 2007. DELARMELINA, M. et al. Vibrational spectroscopy of lapachol, α- and β-lapachone: Theoretical and experimental elucidation of the Raman and infrared spectra. Vibrational Spectroscopy, v. 86, p. 311–323, 2016. DELARMELINA, M. et al. α- and β-Lapachone Isomerization in Acidic Media: Insights from Experimental and Implicit/Explicit Solvation Approaches. ChemPlusChem, v. 84, n. 1, p. 52– 61, 1 jan. 2019. DIAS, L. C. et al. Quimioterapia da doença de Chagas: estado da arte e perspectivas no desenvolvimento de novos fármacos. Química Nova, v. 32, 2009. DIAS P C J. The indeterminate form of human chronic Chagas’ disease a clinical epidemological review. Revista da Sociedade Brasileira de Medicina Tropical, v. 22, n. 3, p. 147–156, 1989. DÍAZ-BELLO, Z. et al. Ten-year follow-up of the largest oral Chagas disease outbreak. Laboratory biomarkers of infection as indicators of therapeutic failure. Acta Tropica, v. 222, 1 out. 2021. DNDI. Doença de Chagas. Disponível em: <https://www.dndial.org/doencas/doenca- chagas/>. DRAIN, B. A.; BECER, C. R. Synthetic approaches on conjugation of poly(2-oxazoline)s with vinyl based polymers. European Polymer Journal, v. 119, p. 344–351, 2019. ECHAVARRÍA, N. G. et al. Chagas Disease: Chronic Chagas Cardiomyopathy. Current Problems in CardiologyMosby Inc., 1 mar. 2021. ECHEVERRIA, L. E.; MORILLO, C. A. American Trypanosomiasis (Chagas Disease). Infectious Disease Clinics of North AmericaW.B. Saunders, 1 mar. 2019. EDWARDS, D. I. Mechanisms of selective toxicity of metronidazole and other nitroimidazole drugs. The British Journal of Venereal Diseases, v. 56, n. 5, p. 285, 1 out. 1980. EDWARDS, D. I. et al. Effects on DNA of Bioreducible Nitroimidazole and Benzotriazine Drugs. Em: ADAMS, G. E. et al. (Eds.). Selective Activation of Drugs by Redox Processes. Boston, MA: Springer US, 1990. p. 275–283. FARFÁN, R. A. et al. Asignación de Bandas de Infrarrojo del Lapachol mediante Estudios Comparativos Teóricos y Experimentales. Información tecnológica, v. 17, n. 5, p. 63–66, 2006. FERREIRA, I. DE L. M.; SILVA, T. P. T. E. Eliminação da transmissão da doença de Chagas pelo Triatoma infestans no Brasil: um fato histórico. Revista da Sociedade Brasileira de Medicina Tropical, 2006. FERREIRA, S. B. et al. ß-Lapachone: Medicinal chemistry significance and structural modifications. Revista Virtual de Química, v. 2, n. 2, 2010. 95 FINN, M. G.; FOKIN, V. V. Click chemistry: function follows form. Chemical Society Reviews, v. 39, n. 4, p. 1231–1232, 2010. FIOCRUZ. Propostas para explicar a fisiopatogenia da doença de Chagas. Disponível em: <http://chagas.fiocruz.br/doenca/patogenia/>. FLEMING, D. A.; THODE, C. J.; WILLIAMS, M. E. Triazole Cycloaddition as a General Route for Functionalization of Au Nanoparticles. Chemistry of Materials, v. 18, n. 9, p. 2327– 2334, 1 maio 2006. FONSECA, S. G. C.; BRAGA, R. M. C.; SANTANA, D. P. Lapachol – química farmacologia e métodos de dosagem. Revista Brasileira de Farmácia, v. 84, n. 1, p. 9–16, 2003. FOREZI, L. DA S. M. et al. Alternative Routes to the Click Method for the Synthesis of 1,2,3- Triazoles, an Important Heterocycle in Medicinal Chemistry. Current Topics in Medicinal Chemistry, v. 18, n. 17, p. 1428–1453, 26 nov. 2018. FREITAS, L. B. DE O. et al. A reação “click” na síntese de 1,2,3-triazóis: aspectos químicos e aplicações. Química Nova, v. 34, n. 10, p. 1791–1804, 2011. FU, R.; FU, G.-D. Polymeric nanomaterials from combined click chemistry and controlled radical polymerization. Polymer Chemistry, v. 2, n. 3, p. 465–475, 2011. GIL, M. V.; ARÉVALO, M. J.; LÓPEZ, Ó. Click Chemistry - What’s in a Name? Triazole Synthesis and Beyond. Synthesis, v. 2007, n. 11, p. 1589–1620, 2007. GIRARD, M. et al. Mass spectral characterization of naphthoquinones related to lapachol. Journal of natural products (USA), 1988. GOMES, C. L. et al. Beta-lapachone: Natural occurrence, physicochemical properties, biological activities, toxicity and synthesis. Phytochemistry, v. 186, p. 112713, 2021. GONZAGA, D. T. G. et al. HUISGEN AND HIS ADVENTURES IN A PLAYGROUND OF MECHANISMS AND NOVEL REACTIONS. Química Nova, v. 44, 2021. GUARNER, J. Chagas disease as example of a reemerging parasite. Seminars in Diagnostic PathologyW.B. Saunders, 1 maio 2019. GUPTA, S. SEN et al. Accelerated Bioorthogonal Conjugation: A Practical Method for the Ligation of Diverse Functional Molecules to a Polyvalent Virus Scaffold. Bioconjugate Chemistry, v. 16, n. 6, p. 1572–1579, 1 nov. 2005. HALDÓN, E.; NICASIO, M. C.; PÉREZ, P. J. Copper-catalysed azide–alkyne cycloadditions (CuAAC): an update. Organic & Biomolecular Chemistry, v. 13, n. 37, p. 9528–9550, 2015. HALL, B. S.; WILKINSON, S. R. Activation of Benznidazole by Trypanosomal Type I Nitroreductases Results in Glyoxal Formation. Antimicrobial Agents and Chemotherapy, v. 56, n. 1, p. 115–123, 2012. HEIN, C. D.; LIU, X.-M.; WANG, D. Click Chemistry, A Powerful Tool for Pharmaceutical Sciences. Pharmaceutical Research, v. 25, n. 10, p. 2216–2230, 2008. 96 HEIN, J. E.; FOKIN, V. V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides. Chemical Society Reviews, v. 39, n. 4, p. 1302– 1315, 2010. HIMO, F. et al. Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates. Journal of the American Chemical Society, v. 127, n. 1, p. 210– 216, 1 jan. 2005. HOLLAND-NELL, K.; MELDAL, M. Maintaining Biological Activity by Using Triazoles as Disufide Bond Mimetics. Angewandte Chemie International Edition, v. 50, n. 22, p. 5204– 5206, 23 maio 2011. HOLUB, J. M.; KIRSHENBAUM, K. Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition. Chemical Society Reviews, v. 39, n. 4, p. 1325–1337, 2010. HUSSAIN, H. et al. Lapachol: an overview. Arkivoc, p. 145–172, 2007. ISHII, M. et al. Synthesis, molecular modeling and preliminary biological evaluation of a set of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazole as potential antibacterial, anti- Trypanosoma cruzi and antifungal agents. Bioorganic & Medicinal Chemistry, v. 19, n. 21, p. 6292–6301, 2011. JOHNSON, R. P.; JOHN, J. V; KIM, I. Recent developments in polymer–block–polypeptide and protein–polymer bioconjugate hybrid materials. European Polymer Journal, v. 49, n. 10, p. 2925–2948, 2013. KAUR, J.; SAXENA, M.; RISHI, N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjugate Chemistry, v. 32, n. 8, p. 1455–1471, 18 ago. 2021. KOLB, H. C.; FINN, M. G.; SHARPLESS, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition, 1 jun. 2001. LAHLOU, M. The Success of Natural Products in Drug Discovery. Pharmacology &amp; Pharmacy, v. 2013, n. 03, p. 17–31, 24 jun. 2013. LESSA, R. 1,2,3-Triazole Nucleus as a Versatile Tool for the Obtainment of Novel Biologically Active Compounds: an Overview. Revista Virtual de Quimica, v. 13, 11 nov. 2020. MANDOLI, A. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide- Alkyne Cycloaddition Reaction (CuAAC). Molecules, v. 21, n. 9, 2016. MANETSCH, R. et al. In Situ Click Chemistry: Enzyme Inhibitors Made to Their Own Specifications. Journal of the American Chemical Society, v. 126, n. 40, p. 12809–12818, 1 out. 2004. MARROCCHI, A. et al. Click-chemistry approaches to π-conjugated polymers for organic electronics applications. Chemical Science, v. 7, n. 10, p. 6298–6308, 2016. 97 MARTÍN-ESCOLANO, J. et al. An Updated View of the Trypanosoma cruzi Life Cycle: Intervention Points for an Effective Treatment. ACS Infectious Diseases, v. 8, n. 6, p. 1107– 1115, 10 jun. 2022. MELDAL, M.; TORNØE, C. W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chemical Reviews, v. 108, n. 8, p. 2952–3015, 1 ago. 2008. MELLO, J. et al. Farmacognosia da Planta ao Medicamento. 6th. ed. [s.l.] Editors of the UFSC and UFRGS, 1999. MENNA-BARRETO, R. F. S. et al. Effect of a β-lapachone-derived naphthoimidazole on Trypanosoma cruzi: identification of target organelles. Journal of Antimicrobial Chemotherapy, v. 56, n. 6, p. 1034–1041, 1 dez. 2005. MENNA-BARRETO, R. F. S. et al. Mitochondrial disruption and DNA fragmentation in Trypanosoma cruzi induced by naphthoimidazoles synthesized from β-lapachone. Parasitology Research, v. 101, n. 4, p. 895–905, set. 2007. MENNA-BARRETO, R. F. S. et al. A proteomic analysis of the mechanism of action of naphthoimidazoles in Trypanosoma cruzi epimastigotes in vitro. Journal of Proteomics, v. 73, n. 12, p. 2306–2315, 2010. MOREIRA, R. Y. O. et al. Antraquinonas e naftoquinonas do caule de um espécime de reflorestamento de Tectona grandi (Verbenaceae). Revista Brasileira de Farmacognosia, v. 16, 2006. MORETH, M. et al. Nitroimidazoles - a promising class of compounds for the treatment of Tuberculosis. Revista Virtual de Química, v. 2, n. 2, 2010. NEUMANN, S. et al. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromolecular Rapid Communications, v. 41, n. 1, p. 1900359, 1 jan. 2020. NEVES PINTO, C. et al. Chemical Reactivity Studies with Naphthoquinones from Tabebuia with Anti-trypanosomal EfficacyArzneim.-Forsch./Drug Res. [s.l: s.n.]. NEWMAN, D. J.; CRAGG, G. M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products, v. 83, n. 3, p. 770–803, 27 mar. 2020. NOVAES DOS REIS, R. C. et al. Potenciais aplicações medicinais de compostos 1,2,3- triazólicos: uma revisão. HU Revista, v. 48, p. 1–15, 11 ago. 2022. ORGUEIRA, H. A. et al. Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Letters, v. 46, n. 16, p. 2911–2914, 2005. PATAI, S.; RAPPOPORT, Z. The chemistry of the quinonoid compounds. [s.l.] Wiley, 1988. v. 2 PATTERSON, S.; WYLLIE, S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends in Parasitology, v. 30, n. 6, p. 289–298, 2014. 98 PELOZO, M. F. et al. Synthesis of New Hybrid Derivatives from Metronidazole and Eugenol Analogues as Trypanocidal Agents. Journal of Pharmacy & Pharmaceutical Sciences, v. 24, p. 421–434, 16 ago. 2021. PÉREZ-MOLINA, J. A.; MOLINA, I. Chagas disease. The LancetLancet Publishing Group, 6 jan. 2018. PINTO, A. V.; DE CASTRO, S. L. The trypanocidal activity of naphthoquinones: A review. Molecules, nov. 2009. PINTO, A. V. et al. Trypanocidal activity of synthetic heterocyclic derivatives of active quinones from Tabebuia sp. Arzneimittel-Forschung, v. 47, n. 1, p. 74–79, 1997. PRADO, A. G. S. Química verde, os desafios da química do novo milênio. Química Nova, v. 26, 2003. RAO, K. V; MCBRIDE, T. J.; OLESON, J. J. Recognition and Evaluation of Lapachol as an Antitumor Agent1,2. Cancer Research, v. 28, n. 10, p. 1952–1954, 1 out. 1968. RASSI, A.; RASSI, A.; MARIN-NETO, J. A. Chagas disease. The LancetElsevier B.V., 2010. ROSTOVTSEV, V. V et al. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition, v. 41, n. 14, p. 2596–2599, 15 jul. 2002. SANDHU, S. et al. Coumarin hybrids as novel therapeutic agents. Bioorganic & Medicinal Chemistry, v. 22, n. 15, p. 3806–3814, 2014. SANTOS, V. L. DOS A.; GONSALVES, A. DE A.; ARAÚJO, C. R. M. Resgate da reação de Debus-Radziszewski: ensino prático de reações multicomponentes na síntese da lofina. Química Nova, v. 43, 2020. SCHULZE, B.; SCHUBERT, U. S. Beyond click chemistry – supramolecular interactions of 1,2,3-triazoles. Chemical Society Reviews, v. 43, n. 8, p. 2522–2571, 2014. SMITH, M. B.; MARCH, J. March’s advanced organic chemistry: reactions, mechanisms, and structure. [s.l.] John Wiley & Sons, 2019. v. 8a Ed. SOUSA, E. T.; LOPES, W. A.; DE ANDRADE, J. B. Fontes, formação, reatividade e determinação de quinonas na atmosfera. Quimica Nova, v. 39, n. 4, p. 486–495, 1 maio 2016. SPITERI, C.; MOSES, J. E. Copper-Catalyzed Azide–Alkyne Cycloaddition: Regioselective Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles. Angewandte Chemie International Edition, v. 49, n. 1, p. 31–33, 4 jan. 2010. TEIMOURI, A.; CHERMAHINI, A. N. An efficient and one-pot synthesis of 2,4,5- trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed via solid acid nano-catalyst. Journal of Molecular Catalysis A: Chemical, v. 346, n. 1, p. 39–45, 2011. TORNØE, C. W.; CHRISTENSEN, C.; MELDAL, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, v. 67, n. 9, p. 3057–3064, 1 maio 2002. 99 TRON, G. C. et al. Click chemistry reactions in medicinal chemistry: Applications of the 1,3- dipolar cycloaddition between azides and alkynes. Medicinal Research Reviews, v. 28, n. 2, p. 278–308, 1 mar. 2008. VIEGAS JR, C.; BOLZANI, V. DA S.; BARREIRO, E. J. Os produtos naturais e a química medicinal moderna. Química Nova, v. 29, n. 2, p. 326–337, abr. 2006. WHITING, M. et al. Rapid Discovery and Structure−Activity Profiling of Novel Inhibitors of Human Immunodeficiency Virus Type 1 Protease Enabled by the Copper(I)-Catalyzed Synthesis of 1,2,3-Triazoles and Their Further Functionalization. Journal of Medicinal Chemistry, v. 49, n. 26, p. 7697–7710, 1 dez. 2006. WHO. Chagas disease (also known as American trypanosomiasis). Disponível em: <https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american- trypanosomiasis)>. WORRELL, B. T.; MALIK, J. A.; FOKIN, V. V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. Science, v. 340, n. 6131, p. 457–460, 26 abr. 2013. ZHONG, W. et al. Problems and Solutions in Click Chemistry Applied to Drug Probes. Scientific Reports, v. 6, n. 1, p. 35579, 2016.pt_BR
dc.subject.cnpqQuímicapt_BR
Aparece en las colecciones:Mestrado em Química

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
2023 - Thiago de Souza dias Silva.Pdf4.63 MBAdobe PDFVista previa
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.