Please use this identifier to cite or link to this item: https://rima.ufrrj.br/jspui/handle/20.500.14407/20642
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTorchia, Danielle França de Oliveira-
dc.date.accessioned2025-03-27T12:35:20Z-
dc.date.available2025-03-27T12:35:20Z-
dc.date.issued2023-02-27-
dc.identifier.citationTORCHIA, Danielle França de Oliveira. Desenvolvimento de um organomineral regenerador de solo com tecnologia de microcarbonos e liberação lenta de K. 2023. 161 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2023.pt_BR
dc.identifier.urihttps://rima.ufrrj.br/jspui/handle/20.500.14407/20642-
dc.description.abstractA agricultura desenvolvida em solos frágeis, como no estado do RJ, precisa de tecnologias que promovam a regeneração do solo e ao mesmo tempo disponibilize os nutrientes necessários para desenvolvimento vegetal. Neste contexto, o objetivo do presente trabalho é gerar as bases tecnológicas para a elaboração de organominerais inteligentes baseados em tecnologia multi- target (multipropósito) e de distribuição baseada em micro-C (micro-carbonos) direcionada para as especificações dos solos frágeis e pobres, compostos por C-recalcitrante (Biochar) para o aumento da matéria orgânica, C-húmico (SH) para o estímulo do sistema radicular e liberação lenta de potássio, em consonância com o modelo da FAO “Climate Smart Agriculture”. No Capítulo I foi realizada a caracterização de Biochars artesanais produzidos na região através de técnicas químicas e estruturais. As características químicas e estruturais tiveram variação entre os Biochars. Os teores de nutrientes dos Biochars não foram suficientes a ponto de mostrar potencial de suprir o desenvolvimento vegetal. Dentre os Biochars artesanais analisados, o B1 apresentou uma estrutura mais aromática, portanto, com maior recalcitrância. No Capítulo II foram testados os Biochars artesanais no cultivo de arroz para avaliar a influência na germinação e no crescimento em material do horizonte superficial de solo Planossolo de textura arenosa. A aplicação de todos os Biochars não atendeu as exigências das plantas de arroz, sendo necessária suplementação aos 20 dias. Essa exigência foi notada na análise de fluorescência transiente da clorofila a aos 26 dias. No Capítulo III foram produzidos e caracterizados Biochars de maravalha de eucalipto, cavaco de eucalipto e lodo de esgoto, em três temperaturas, 300, 400 e 500 °C. Os resultados mostram que o aumento da temperatura de pirólise afeta o rendimento de Biochar, a quantidade de compostos voláteis, cinzas e carbono fixo. A estrutura do Biochar é substancialmente modificada de uma característica alifática para uma estrutura mais aromática e mais hidrofóbica, principalmente com o aumento da temperatura de pirólise. No Capítulo IV os Biochars produzidos foram utilizados como base para o desenvolvimento de um organomineral que atue na regeneração de solos arenosos do estado do Rio de Janeiro e também promova a liberação lenta de K ao solo. Os ORSK-L possuem maiores concentrações de macro e micronutrientes, os ORSK apresentaram valores significativos de COT. Os ORSK estão dentro dos padrões de garantia de fertilizante organomineral potássico determinados pelo MAPA. ORSK-M500, ORSK-C500 e ORSK-L500 apresentaram estrutura mais aromática com predomínio de estruturas CAr-H,R e CAr-O, enquanto ORSK-M300, ORSK-C300 e ORSK- L300 estruturas mais alifáticas e maior presença de grupos carboxílicos. Mostraram tamanho de partículas e dispersão diferentes, sendo ORSK-L500 o de maior diâmetro de partículas, maior dureza e menor quantidade de partículas em suspensão, entretanto mostrou dissolução inicial rápida, aumentando a condutividade elétrica da solução. No Capítulo V foram aplicados os ORSK produzidos e caracterizados no capítulo anterior, visando verificar a eficiência das bases utilizadas (Biochar e AH) na regeneração de solo arenoso e na disponibilidade mais eficaz de potássio para o cultivo de plantas de arroz. Cada ORSK obtido de Biochar de diferentes biomassas produziu efeitos também diferentes quando aplicados ao solo no cultivo de arroz. Resultados mostram que as bases utilizadas para a construção desse organominerais possuem efeitos potenciais para uso tanto na regeneração do solo, quanto na liberação mais lenta de K.pt_BR
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Rural do Rio de Janeiropt_BR
dc.subjectAcúmulo de carbonopt_BR
dc.subjectFertilizantes potássicospt_BR
dc.subjectLiberação lentapt_BR
dc.subjectRegeneração de solopt_BR
dc.subjectCarbon accumulationpt_BR
dc.subjectPotassium fertilizerspt_BR
dc.subjectSlow releasept_BR
dc.subjectSoil regenerationpt_BR
dc.titleDesenvolvimento de um organomineral regenerador de solo com tecnologia de microcarbonos e liberação lenta de Kpt_BR
dc.title.alternativeDevelopment of a soil regenerating organomineral with microcarbon technology and slow release of Ken
dc.typeTesept_BR
dc.description.abstractOtherAgriculture developed in fragile soils, as in the state of RJ, needs technologies that promote soil regeneration and at the same time provide the necessary nutrients for plant development. In this context, the objective of this work is to generate the technological bases for the elaboration of intelligent organominerals based on multi-target technology (multipurpose) and distribution based on micro-C (micro-carbons) directed to the specifications of fragile and poor soils, composed of recalcitrant-C (Biochar) to increase organic matter, humic-C (SH) to stimulate the root system and slow release of potassium, in line with the FAO model “Climate Smart Agriculture”. In Chapter I, the characterization of artisanal Biochars produced in the region through chemical and structural techniques was carried out. Chemical and structural characteristics varied between Biochars. The nutrient contents of the Biochars were not enough to show potential to support plant development. Among the analyzed artisanal Biochars, B1 presented a more aromatic structure, therefore, with greater recalcitrance. In Chapter II, artisanal Biochars were tested in rice cultivation to evaluate the influence on germination and growth in material from the surface horizon of a Planossolo with sandy texture. The application of all Biochars was not sufficient for the requirements of the rice plants, requiring supplementation at 20 days. This requirement was noted in the transient fluorescence analysis of chlorophyll a at 26 days. In Chapter III, Biochars of eucalyptus shavings, eucalyptus chips and sewage sludge were produced and characterized at three temperatures, 300, 400 and 500 °C. The results show that increasing the pyrolysis temperature affects the Biochar yield, the amount of volatile compounds, ash and fixed carbon. The Biochar structure is substantially modified from an aliphatic characteristic to a more aromatic and hydrophobic structure, mainly with the increase of the pyrolysis temperature. In Chapter IV, the produced Biochars were used as a basis for the development of an organomineral that acts in the regeneration of sandy soils in the state of Rio de Janeiro and also promotes the slow release of K to the soil. The ORSK-L have higher concentrations of macro and micronutrients, the ORSK showed significant TOC values. The ORSK are within the potassic organomineral fertilizer guarantee standards determined by MAPA. ORSK-M500, ORSK-C500 and ORSK-L500 showed a more aromatic structure with a predominance of CAR-H,R and CAR-O structures, while ORSK-M300, ORSK-C300 and ORSK-L300 structures were more aliphatic and with a greater presence of groups carboxylic. They showed different particle size and dispersion, with ORSK-L500 having the largest particle diameter, the highest hardness and the lowest amount of particles in suspension, however it showed rapid initial dissolution, increasing the electrical conductivity of the solution. In Chapter V, apply the ORSK produced and characterized in the previous chapter, aiming to verify the efficiency of the bases used (Biochar and AH) in the regeneration of sandy soil and in the more effective availability of potassium for the cultivation of rice plants. Each ORSK obtained from Biochar of different biomasses also produced different effects when applied to the soil in rice cultivation. Results show that the bases used for the construction of these organominerals have potential effects to be used both in soil regeneration and in the slower release of K.en
dc.contributor.advisor1Calderín García, Andrés-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-5963-3847pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8896375232574274pt_BR
dc.contributor.advisor-co1Zonta, Everaldo-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-8106-0504pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/3943601345963141pt_BR
dc.contributor.referee1Calderín García, Andrés-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-5963-3847pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/8896375232574274pt_BR
dc.contributor.referee2Berbara, Ricardo Luiz Louro-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-3649-9443pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8529910145308595pt_BR
dc.contributor.referee3Rezende, Fabiana Abreu de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1286373157817100pt_BR
dc.contributor.referee4Magalhães, Marcio Osvaldo Lima-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2983090572389946pt_BR
dc.contributor.referee5Tavares, Orlando Carlos Huertas-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/6517289620714369pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5563595706020944pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInstituto de Agronomiapt_BR
dc.publisher.initialsUFRRJpt_BR
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopt_BR
dc.relation.referencesABBAS, A.; YASEEN, M.; KHALID, M.; NAVEED, M.; AZIZ, M.; HAMID, Y.; SALEEM, M. Effect of Biochar-amended urea on nitrogen economy of soil for improving the growth and yield of wheat (Triticum Aestivum L.) under field condition. Journal of Plant Nutrition, v. 40, n. 16, p. 2303–2311, 2017. ABD EL-MAGEED, T. A.; SEMIDA, W. M. Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.). Agricultural Water Management, v. 159, p. 1–10, 2015. ADAMS, C.; FRANTZ, J.; BUGBEE, B. Macro- and micronutrient-release characteristics of three polymer-coated fertilizers: Theory and measurements. Journal of Plant Nutrition and Soil Science, v. 176, n. 1, p. 76–88, 2013. ADEBAYO, A. G.; AKINTOYE, H. A.; SHOKALU, A. O.; OLATUNJI, M. T. Soil chemical properties and growth response of Moringa oleifera to different sources and rates of organic and NPK fertilizers. International Journal of Recycling of Organic Waste in Agriculture, v. 6, n. 4, p. 281–287, 2017. AGEGNEHU, G.; BASS, A. M.; NELSON, P. N.; BIRD, M. I. Benefits of Biochar, compost and Biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, v. 543, p. 295–306, 2016. AGEGNEHU, G.; SRIVASTAVA, A. K.; BIRD, M. I. The role of Biochar and Biochar- compost in improving soil quality and crop performance: A review. Applied Soil Ecology, v. 117, p. 156-170, 2017. AGHBASHLO, M.; TABATABAEI, M.; NADIAN, M. H.; DAVOODNIA, V.; SOLTANIAN, S. Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. Fuel, v. 253, p. 189–198, 2019. AHMAD, M.; RAJAPAKSHA, A. U.; LIM, J. E.; ZHANG, M.; BOLAN, N.; MOHAN, D.; VITHANAGE, M.; LEE, S. S.; OK, Y. S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, v. 99, p. 19–33, 2014. AL-FAIYZ, Y. S. S. CPMAS 13 C NMR characterization of humic acids from composted agricultural Saudi waste. ARABIAN JOURNAL OF CHEMISTRY, v. 10, p. S839–S853, 2017. ALHO, C. F. B. V.; AUCCAISE, R.; NOVOTNY, E. H.; MAIA, C. M. B. DE F. Using Solid- State 13 C NMR to Study Pyrolysis Final Temperature Effects on Biochar Stability. Em: XU, J.; WU, J.; HE, Y. (Eds.). . Functions of Natural Organic Matter in Changing Environment. Netherlands: Elsevier, 2013. p. 1007–1011. ALI, E. F.; AL-YASI, H. M.; KHEIR, A. M. S.; EISSA, M. A. Effect of Biochar on CO2 Sequestration and Productivity of Pearl Millet Plants Grown in Saline Sodic Soils. Journal of soil science and plant nutrition, v. 21, p. 897–907, 2021. ALVAREZ-CAMPOS, O.; LANG, T. A.; BHADHA, J. H.; MCCRAY, J. M.; GLAZ, B.; DAROUB, S. H. Biochar and mill ash improve yields of sugarcane on a sand soil in Florida. Agriculture, Ecosystems and Environment, v. 253, n. July 2017, p. 122–130, 2018. AL-WABEL, M. I.; AL-OMRAN, A.; EL-NAGGAR, A. H.; NADEEM, M.; USMAN, A. R. A. Pyrolysis temperature induced changes in characteristics and chemical composition of 134 Biochar produced from conocarpus wastes. Bioresource Technology, v. 131, p. 374–379, 2013. AL-WABEL, M. I.; RAFIQUE, M. I.; AHMAD, M.; AHMAD, M.; HUSSAIN, A.; USMAN, A. R. A. Pyrolytic and hydrothermal carbonization of date palm leaflets: Characteristics and ecotoxicological effects on seed germination of lettuce. Saudi Journal of Biological Sciences, v. 26, n. 4, p. 665–672, 2019. AMALINA, F.; RAZAK, A. S. A.; KRISHNAN, S.; ZULARISAM, A. W.; NASRULLAH, M. A comprehensive assessment of the method for producing Biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review. Cleaner Materials, v. 3, p. 10045, 2022. AMOAKWAH, E.; ARTHUR, E.; FRIMPONG, K. A.; PARIKH, S. J.; ISLAM, R. Soil organic carbon storage and quality are impacted by corn cob Biochar application on a tropical sandy loam. Journal of Soils and Sediments, v. 20, n. 4, p. 1960–1969, 2020. AMONETTE, J. E.; JOSEPH, S. Characteristics of Biochar: microchemical properties. Em: LEHMANN, J.; JOSEPH, S. (Eds.). . Biochar for Envionmental Management. London: Earthscan, 2009. p. 35–52. AN, X.; WU, Z.; YU, J.; CRAVOTTO, G.; LIU, X.; LI, Q.; YU, B. Copyrolysis of Biomass, Bentonite, and Nutrients as a New Strategy for the Synthesis of Improved Biochar-Based Slow- Release Fertilizers. ACS Sustainable Chemistry and Engineering, v. 8, n. 8, p. 3181–3190, 2020. ANGHEL, S.; POPESCU, A. I. The use of Biochar as a means of soil regeneration. Magazine of hydraulics, pneumatics, tribology, ecology, mecgatronics, v. 3, p. 13-18, 2014. ANTO, S.; SUDHAKAR, M. P.; SHAN AHAMED, T.; SAMUEL, M. S.; MATHIMANI, T.; BRINDHADEVI, K.; PUGAZHENDHI, A. Activation strategies for Biochar to use as an efficient catalyst in various applications. Fuel, v. 285, n. May 2020, p. 119-205, 2021. ANTONANGELO, J. A.; ZHANG, H.; SUN, X.; KUMAR, A. Physicochemical properties and morphology of Biochars as affected by feedstock sources and pyrolysis temperatures. Biochar, v. 1, n. 3, p. 325–336, 2019. ARMYNAH, B.; TAHIR, D.; TANDILAYUK, M.; DJAFAR, Z.; PIARAH, W. H. Potentials of Biochars Derived from Bamboo Leaf Biomass as Energy Sources: Effect of Temperature and Time of Heating. International Journal of Biomaterials, v. 2019, p. 12–18, 2019. ASHLEY, M. K.; GRANT, M.; GRABOV, A. Plant responses to potassium deficiencies: A role for potassium transport proteins. Journal of Experimental Botany, v. 57, n. 2, p. 425- 436, 2006 ATKINSON, C. J.; FITZGERALD, J. D.; HIPPS, N. A. Potential mechanisms for achieving agricultural benefits from Biochar application to temperate soils: A review. Plant and Soil, v. 337, n. 1, p. 1–18, 2010. AYYAZ, A.; AMIR, M.; UMER, S.; IQBAL, M.; BANO, H.; GUL, H. S.; NOOR, Y.; KANWAL, A.; KHALID, A.; JAVED, M.; ATHAR, H. R.; ZAFAR, Z. U.; FAROOQ, M. A. Melatonin induced changes in photosynthetic efficiency as probed by OJIP associated with improved chromium stress tolerance in canola (Brassica napus L.). Heliyon, v. 6, n. 7, 1 jul. 2020. 135 BAHNG, M. K.; MUKARAKATE, C.; ROBICHAUD, D. J.; NIMLOS, M. R. Current technologies for analysis of biomass thermochemical processing: A review. Analytica Chimica Acta, v. 651, n. 2, p. 117–138, 2009. BAÍA, D. C.; OLIVARES, F. L.; ZANDONADI, D. B.; DE PAULA SOARES, C.; SPACCINI, R.; CANELLAS, L. P. Humic acids trigger the weak acids stress response in maize seedlings. Chemical and Biological Technologies in Agriculture, v. 7, n. 1, 2020. BALDOTTO, M. A.; BALDOTTO, L. E. B. Ácidos Húmicos. Revista Ceres, v. 61, p. 856– 881, 2014. BANIK, C.; LAWRINENKO, M.; BAKSHI, S.; LAIRD, D. A. Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of Biochars. Journal of Environmental Quality, v. 47, n. 3, p. 452–461, 2018. BATISTA, E. M. C. C.; SHULTZ, J.; MATOS, T. T. S.; FORNARI, M. R.; FERREIRA, T. M.; SZPOGANICZ, B.; DE FREITAS, R. A.; MANGRICH, A. S. Effect of surface and porosity of Biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports, v. 8, n. 1, p. 1–9, 2018. BENTO, L. R.; MELO, C. A.; FERREIRA, O. P.; MOREIRA, A. B.; MOUNIER, S.; PICCOLO, A.; SPACCINI, R.; BISINOTI, M. C. Humic extracts of hydrochar and Amazonian Dark Earth: Molecular characteristics and effects on maize seed germination. Science of the Total Environment, v. 708, p. 135000, 2020. BHADURI, D.; SAHA, A.; DESAI, D.; MEENA, H. N. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell Biochar during short-term incubation study. Chemosphere, v. 148, p. 86–98, 2016. BIAN, R.; JOSEPH, S.; CUI, L.; PAN, G.; LI, L.; LIU, X.; ZHANG, A.; RUTLIDGE, H.; WONG, S.; CHIA, C.; MARJO, C.; GONG, B.; MUNROE, P.; DONNE, S. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with Biochar amendment. Journal of Hazardous Materials, v. 272, p. 121–128, 2014. BIANCHINI, D. Estudo da imobilização de catalisadores metalocênicos sobre sílicas modificadas com silsesquioxanos. 2007. Tese (Doutorado) - Universidade Federal do Rio Grande do Sul, Instituto de Química, Programa de Pós Graduação em Química, Porto Alegre – RS, 2007. BIRD, M. I.; ASCOUGH, P. L.; YOUNG, I. M.; WOOD, C. V.; SCOTT, A. C. X-ray microtomographic imaging of charcoal. Journal of Archaeological Science, v. 35, n. 10, p. 2698–2706, 2008. BLANCO-CANQUI, H. Biochar and Soil Physical Properties. Soil Science Society of America Journal, v. 81, n. 4, p. 687–711, 2017. BONANOMI, G.; INCERTI, G.; CESARANO, G.; GAGLIONE, S. A.; LANZOTTI, V. Cigarette butt decomposition and associated chemical changes assessed by13C cpmas NMR. PLoS ONE, v. 10, n. 1, 2015. BONANOMI, G.; IPPOLITO, F.; CESARANO, G.; VINALE, F.; LOMBARDI, N.; CRASTO, A.; WOO, S. L.; SCALA, F. Biochar chemistry defined by 13C-CPMAS NMR explains opposite effects on soilborne microbes and crop plants. Applied Soil Ecology, v. 124, p. 351– 361, 2018. 136 BOPP, C.; CHRISTL, I.; SCHULIN, R.; EVANGELOU, M. W. H. Biochar as possible long- term soil amendment for phytostabilisation of TE-contaminated soils. Environmental Science and Pollution Research, v. 23, n. 17, p. 17449–17458, 2016. BORNØ, M. L.; MÜLLER-STÖVER, D. S.; LIU, F. Biochar properties and soil type drive the uptake of macro- and micronutrients in maize (Zea mays L.). Journal of Plant Nutrition and Soil Science, v. 182, n. 2, p. 149–158, 2019. BRASIL. Resolução Conama No 375, De 29 De Agosto De 2006. p. 1–32, 2006. BRASIL. Instrução normativa n 61 de 8 de julho de 2020, que estabelece as regras sobre definições, exigências, especificações, garantias, tolerâncias,registro, embalagem e rotulagem dos fertilizantes orgânicos e dos biofertilizantes, destinados à agricultura. 2020. Disponível em: <https://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-61-de-8-de-julho-de-2020- 266802148> BRINDHADEVI, K.; ANTO, S.; RENE, E. R.; SEKAR, M.; MATHIMANI, T.; THUY LAN CHI, N.; PUGAZHENDHI, A. Effect of reaction temperature on the conversion of algal biomass to bio-oil and Biochar through pyrolysis and hydrothermal liquefaction. Fuel, v. 285, n. April 2020, p. 119106, 2021. BRODOWSKI, S.; AMELUNG, W.; HAUMAIER, L.; ZECH, W. Black carbon contribution to stable humus in German arable soils. Geoderma, v. 139, n. 1–2, p. 220–228, 2007. BROWN, R. C. Biochar Production Technology. Em: LEHMANN, J.; JOSEPH, S. (Eds.). . Biochar for environmental management science and technology. London: Earthscan, 2009. p. 127–146. BROWNSORT, P.; MAŠEK, O. Biomass Pyrolysis Processes: Performance Parameters and their Influence on Biochar System Benefits. SchoolofGeoSciences, v. MSc., p. 84, 2009. BU, H.; YU, S.; DONG, W.; ZHANG, L.; XIA, Y. Analysis of the Effect of Bivariate Fertilizer Discharger Control Sequence on Fertilizer Discharge Performance. Agriculture, v. 12, n. 11, p. 1927, 2022. BUDAI, A.; RASSE, D. P.; LAGOMARSINO, A.; LERCH, T. Z.; PARUCH, L. Biochar persistence, priming and microbial responses to pyrolysis temperature series. Biology and Fertility of Soils, v. 52, n. 6, p. 749–761, 2016. BUDAI, A.; WANG, L.; GRONLI, M.; STRAND, L. T.; ANTAL, M. J.; JR.; ABIVEN, S.; DIEGUEZ-ALONSO, A.; ANCA-COUCE, A.; RASSE, D. P. Surface Properties and Chemical Composition of Corncob and Miscanthus Biochars : Effects of Production Temperature and Method. Journal of agricultural and food chemistry, v. 62, p. 3791–3799, 2014. BUENO, C. C. Biochar : caracterização estrutural e interações com nutrientes e microorganismos pedológicos. 2017. Tese (doutorado) Universidade Estadual Paulista, Instituto de Ciência e Tecnologia, Programa de Pós Graduação em Ciências Ambientais, Sorocaba – SP, 2017. BUSS, W.; MAŠEK, O.; GRAHAM, M.; WÜST, D. Inherent organic compounds in Biochar- Their content, composition and potential toxic effects. Journal of Environmental Management, v. 156, p. 150–157, 2015. CAMPBELL, B.; MANN, W.; MELÉNDEZ-ORTIZ, R. Agriculture and Climate Change: A Scoping Report. Meridian Institute, 2011. 137 CAMPBELL, B.; PYE-SMITH, C. Farming’s climate-smart future. Police Pointer, p. 1-36, 2023. CAMPITELLI, P.; CEPPI, S. Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma, v. 144, n. 1–2, p. 325–333, 2008. CANABARRO, N.; SOARES, J. F.; ANCHIETA, C. G.; KELLING, C. S.; MAZUTTI, M. A. Thermochemical processes for biofuels production from biomass. Sustainable Chemical Processes, v. 1, n. 1, p. 22, 2013. CANELLAS, L. P.; CANELLAS, N. O. A.; LUIZ EDUARDO, L. E. S.; OLIVARES, F. L.; PICCOLO, A. Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture, v. 7, n. 1, p. 1-17, 2020. CANELLAS, L. P.; SANTOS, G. DE A.; RUMJANEK, V. M.; MORAES, A. A.; GURIDI, F. Distribuição da matéria orgânica e características de ácidos húmicos em solos com adição de resíduos de origem urbana. Pesquisa Agropecuária Brasileira, v. 36, n. 12, p. 1529–1538, 2001. CARVALHO, E. A.; BRINCK, V. Parte 1 - Briquetagem. Em: LUZ, A. B.; SAMPAIO, J. A.; FRANÇA, S. C. A. (Eds.). . Tratamento de minérios. 5a ed. Rio de Janeiro: CETEM, 2010. p. 682–703. CARVALHO FILHO, A.; LUMBRERAS, J. F.; SANTOS, R. D. Os solos do estado do Rio de Janeiro. Brasília: CPRM, 2000. CHAI, X.; TAKAYUKI, S.; CAO, X.; GUO, Q.; ZHAO, Y. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere, v. 69, n. 9, p. 1446–1453, 2007. CHANG, Y.; ROSSI, L.; ZOTARELLI, L.; GAO, B.; SHAHID, M. A.; SARKHOSH, A. Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture, v. 8, n. 1, 2021. CHEN, L.; CHEN, X. L.; ZHOU, C. H.; YANG, H. M.; JI, S. F.; TONG, D. S.; ZHONG, Z. K.; YU, W. H.; CHU, M. Q. Environmental-friendly montmorillonite-Biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. Journal of Cleaner Production, v. 156, p. 648–659, 2017. CHEN, S.; YANG, M.; BA, C.; YU, S.; JIANG, Y.; ZOU, H.; ZHANG, Y. Preparation and characterization of slow-release fertilizer encapsulated by Biochar-based waterborne copolymers. Science of the Total Environment, v. 615, p. 431–437, 2018. CHEN, T.; ZHANG, Y.; WANG, H.; LU, W.; ZHOU, Z.; ZHANG, Y.; REN, L. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of Biochar derived from municipal sewage sludge. Bioresource Technology, v. 164, p. 47–54, 2014. CHEW, J.; ZHU, L.; NIELSEN, S.; GRABER, E.; MITCHELL, D. R. G.; HORVAT, J.; MOHAMMED, M.; LIU, M.; VAN ZWIETEN, L.; DONNE, S.; MUNROE, P.; TAHERYMOOSAVI, S.; PACE, B.; RAWAL, A.; HOOK, J.; MARJO, C.; THOMAS, D. S.; PAN, G.; LI, L.; BIAN, R.; FAN, X. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Science of the Total Environment, v. 713, p. 136431, 2020. 138 CHI, N. T. L.; ANTO, S.; AHAMED, T. S.; KUMAR, S. S.; SHANMUGAM, S.; SAMUEL, M. S.; MATHIMANI, T.; BRINDHADEVI, K.; PUGAZHENDHI, A. A review on Biochar production techniques and Biochar based catalyst for biofuel production from algae. Fuel, v. 287, n. October, p. 119411, 2021. CHINTALA, R.; SCHUMACHER, T. E.; MCDONALD, L. M.; CLAY, D. E.; MALO, D. D.; PAPIERNIK, S. K.; CLAY, S. A.; JULSON, J. L. Phosphorus sorption and availability from Biochars and soil/Biochar mixtures. Clean - Soil, Air, Water, v. 42, n. 5, p. 626–634, 2014. CHIVENGE, P. P.; MURWIRA, H. K.; GILLER, K. E.; MAPFUMO, P.; SIX, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil and Tillage Research, v. 94, n. 2, p. 328– 337, 2007. CHRISTIAN, M.; STEFFENS, B.; SCHENCK, D.; BURMESTER, S.; BÖTTGER, M.; LÜTHEN, H. How does auxin enhance cell elongation? Roles of auxin-binding proteins and potassium channels in growth control. Plant Biology, v. 8, p. 346-352, 2006. COLLARD, F. X.; BLIN, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, v. 38, p. 594–608, 2014. CONZ, R. F.; ABBRUZZINI, T. F.; PELLEGRINO, C. E. Caracterização morfológica de Biochars produzidos a partir de diferentes biomassas e temperaturas de pirólise. XXXV Congresso Brasileiro de Ciência do Solo, n. 1, p. 1–5, 2015. CORBEELS, M.; MARCHÃO, R. L.; NETO, M. S.; FERREIRA, E. G.; MADARI, B. E.; SCOPEL, E.; BRITO, O. R. Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Scientific Reports, v. 6, p. 1-8, 2016. COSTA, L. F.; DE OLIVEIRA, D. G.; MOREIRA, F. M. S.; DE URZEDO, A. P. F. M.; CESTAROLLI, D. T.; BERNARDES-SILVA, A. C. Utilização de Biocarvão e Processos Oxidativos Avançados para Remoção do Propranolol de Efluentes Aquosos Simulados. Revista Virtual de Quimica, v. 10, n. 2, p. 295–312, 2018. CYBULAK, M.; SOKOŁOWSKA, Z.; BOGUTA, P. The influence of Biochar on the content of carbon and the chemical transformations of fallow and grassland humic acids. Scientific Reports, v. 11, n. 1, 2021. DANG, Y.; MA, H.; WANG, J.; ZHOU, Z.; XU, Z. An Improved Multi-Objective Optimization Decision Method Using NSGA-III for a Bivariate Precision Fertilizer Applicator. Agriculture, v. 12, n. 9, p. 1492, 2022. DAS, S. K.; GHOSH, G. K.; AVASTHE, R. Valorizing biomass to engineered Biochar and its impact on soil, plant, water, and microbial dynamics: a review. Biomass Conversion and Biorefinery, p. 1–16, 2020. DAS, S. K.; GHOSH, G. K.; AVASTHE, R. Evaluating biomas-derived Biochar on seed germination and early seedling growth of maize and black gram. Biomass Conversion and Biorefinery, v. 12, n. 12, p. 5663–5676, 2022. DATTA, S.; KIM, C. M.; PERNAS, M.; PIRES, N. D.; PROUST, H.; TAM, T.; VIJAYAKUMAR, P.; DOLAN, L. Root hairs: Development, growth and evolution at the plant- soil interface. Plant and Soil, v. 346, p. 1-14, 2011. 139 DE AQUINO, A. M.; CANELLAS, L. P.; DA SILVA, A. P. S.; CANELLAS, N. O.; DA S LIMA, L.; OLIVARES, F. L.; PICCOLO, A.; SPACCINI, R. Evaluation of molecular properties of humic acids from vermicompost by 13 C-CPMAS-NMR spectroscopy and thermochemolysis–GC–MS. Journal of Analytical and Applied Pyrolysis, v. 141, 1 ago. 2019. FONTANA, A.; MELO, A. S.; MARTINS, A. L. S. Solos frágeis, IN: DE CASTRO, S. S.; HERNANI, L. C. (eds.) Solos frágeis: Caracterização, manejo e sustentabilidade. Embrapa, 2015, p. 1-370. DE DATTA, S. K.; MIKKELSEN, D. S. Potassium Nutrition of Rice. IN: MUNSON, R. D. (eds). Potassium in Agriculture. SSSA books, 1985, p. 665-699. DE FIGUEREDO, N. A.; DA COSTA, L. M.; MELO, L. C. A.; SIEBENEICHLERD, E. A.; TRONTO, J. Characterization of Biochars from different sources and evaluation of release of nutrients and contaminants. Revista Ciencia Agronomica, v. 48, n. 3, p. 395–403, 2017. DE FREITAS, P. L.; LANDERS, J. N. The Transformation of Agriculture in Brazil Through Development and Adoption of Zero Tillage Conservation Agriculture. International Soil and Water Conservation Research, v. 2, n. 1, p. 35–46, 2014. DE NEGRI TOZZI, F. V.; COSCIONE, A. R.; PUGA, A. P.; CARVALHO, C. S.; PELLEGRINO CERRI, C. E.; DE ANDRADE, C. A. Carbon stability and Biochar aging process after soil application. Horticulture International Journal, v. 3, n. 6, p. 320–329, 2019. DE SOUZA, C. DA C. B.; AMARAL SOBRINHO, N. M. B. DO; LIMA, E. S. A.; LIMA, J. DE O.; CARMO, M. G. F. DO; GARCÍA, A. C. Relation between changes in organic matter structure of poultry litter and heavy metals solubility during composting. Journal of Environmental Management, v. 247, n. December 2018, p. 291–298, 2019. DE SOUZA, C. DA C. B.; BORELLA, J.; LEAL, J. F. L.; TORNISIELO, V. L.; PIMPINATO, R. F.; MONQUERO, P. A.; DE PINHO, C. F. Limited Diclosulam Herbicide Uptake and Translocation-Induced Tolerance in Crotalaria juncea. Bulletin of Environmental Contamination and Toxicology, v. 104, n. 1, p. 114–120, 2020. DECHEN, A. R.; NACHTIGALL, G. R. Elementos requeridos à nutrição de plantas. Em: NOVAIS, R. F.; ALAVAREZ, V. V. H.; BARROS, N. F.; CANTARUTTI, R. L. F.; NEVES, J. C. L. (Eds.). . Fertilidade do solo. Viçosa: SBCS, 2007. p. 1–1019. DEMETRIO, W. C.; RIBEIRO, R. H.; NADOLNY, H.; BARTZ, M. L. C.; BROWN, G. G. Earthworms in Brazilian no-tillage agriculture: Current status and future challenges. European Journal of Soil Science, v. 71, n. 6, p. 988–1005, 2020. DEMIRBAS, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, v. 72, n. 2, p. 243–248, 2004. DEMIRBAŞ, A.; ARIN, G. An overview of biomass pyrolysis. Energy Sources, v. 24, n. 5, p. 471–482, 2002. DEVEREUX, R. C.; STURROCK, C. J.; MOONEY, S. J. The effects of Biochar on soil physical properties and winter wheat growth. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 103, n. 1, p. 13–18, 2013. 140 DIETER JESCHKE, W.; ATKINS, C. A.; PATE, J. S. Ion Circulation via Phloem and Xylem Between Root and Shoot of Nodulated White Lupin. Journal of Plant Physiology, v. 117, n. 4, p. 319–330, 1985. DIETRICH, C. C.; RAHAMAN, M. A.; ROBLES-AGUILAR, A. A.; LATIF, S.; INTANI, K.; MÜLLER, J.; JABLONOWSKI, N. D. Nutrient Loaded Biochar Doubled Biomass Production in Juvenile Maize Plants (Zea mays L.). Agronomy, v. 10, n. 4, 2020. DIWAN, A. D.; HARKE, S. N.; PANDE, B. N.; PANCHE, A. Regenerative Agriculture Farming. Indian Farminig, v. 71, n. 12, p. 03–08, 2021. DOKOOHAKI, H.; MIGUEZ, F. E.; LAIRD, D.; HORTON, R.; BASSO, A. S. Assessing the Biochar Effects on Selected Physical Properties of a Sandy Soil: An Analytical Approach. Communications in Soil Science and Plant Analysis, v. 48, n. 12, p. 1387–1398, 2017. DOLAN, L.; DAVIES, J. Cell expansion in roots. Current Opinion in Plant Biology, v. 7, n.1, p. 33-39, 2004. DOMINGUES, R. R.; TRUGILHO, P. F.; SILVA, C. A.; DE MELO, I. C. N. A.; MELO, L. C. A.; MAGRIOTIS, Z. M.; SÁNCHEZ-MONEDERO, M. A. Properties of Biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE, v. 12, n. 5, p. 1–19, 2017. DONAGEMMA, G. K.; DE FREITAS, P. L.; BALIEIRO, F. DE C.; FONTANA, A.; SPERA, S. T.; LUMBRERAS, J. F.; VIANA, J. H. M.; FILHO, J. C. DE A.; DOS SANTOS, F. C.; DE ALBUQUERQUE, M. R.; MACEDO, M. C. M.; TEIXEIRA, P. C.; AMARAL, A. J.; BORTOLON, E.; BORTOLON, L. Characterization, agricultural potential, and perspectives for the management of light soils in Brazil. Pesquisa Agropecuaria Brasileira, v. 51, n. 9, p. 1003–1020, 2016. DRAKE, J. A.; CARRUCAN, A.; JACKSON, W. R.; CAVAGNARO, T. R.; PATTI, A. F. Biochar application during reforestation alters species present and soil chemistry. Science of the Total Environment, v. 514, p. 359–365, 2015. DUNNIVANT, F. M.; ANDERS, E. A basic introduction to pollutant fate and transport. New Jersey: John Wiley & Sons, 2006. DUTRA, F. DE C. Estudos fenomenológicos associados à aplicação de silicato de sódio em aglomeração a frio de finos de minério de ferro. 2015. 102 f. Tese (Doutorado em Engenharia de Materiais) Programa de Pós Granduação em Engenharia de Materiais, REDEMAT, Ouro Preto, 2015. ENDERS, A.; HANLEY, K.; WHITMAN, T.; JOSEPH, S.; LEHMANN, J. Characterization of Biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology, v. 114, p. 644–653, 2012. EPSTEIN, E.; RAINS, D. W.; ELZAM, O. E. Resolution of Dual Mechanisms of Potassium Absorption. Botany, v. 49, n. 5, p. 684–692, 1963. FACHINI, J.; FIGUEIREDO, C. C. DE; VALE, A. T. DO. Assessing potassium release in natural silica sand from novel K-enriched sewage sludge Biochar fertilizers. Journal of Environmental Management, v. 314, p. 115080, 2022. FAGERIA, N. K.; OLIVEIRA, J. P. Nitrogen, Phosphorus and Potassium Interactions in Upland Rice. Journal of Plant Nutrition, v. 37, n. 10, p. 1586–1600, 2014. 141 FANG, Y.; SINGH, B.; SINGH, B. P. Effect of temperature on Biochar priming effects and its stability in soils. Soil Biology and Biochemistry, v. 80, p. 136–145, 2015. FARHANGI-ABRIZ, S.; TORABIAN, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by Biochar under salt stress. Ecotoxicology and Environmental Safety, v. 137, n. September 2016, p. 64–70, 2017. FEECO. The agglomeration handbook. Disponível em: <https://go.feeco.com/l/825973/2020-02-09/xdq>. Acesso em: 3 nov. 2020. FEITOSA, A. A.; TEIXEIRA, W. G.; RITTER, E.; RESENDE, F. A.; KERN, J. Characterization of Biochar samples of banana peels and orange bagasse carbonized at 400 and 600°C. Revista Virtual de Quimica, v. 12, n. 4, p. 901–912, 2020. FONTS, I.; AZUARA, M.; GEA, G.; MURILLO, M. B. Study of the pyrolysis liquids obtained from different sewage sludge. Journal of Analytical and Applied Pyrolysis, v. 85, n. 1–2, p. 184–191, 2009. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. World reference base for soil resources 2014 : international soil classification system for naming soils and creating legends for soil maps. FAO, 2014. FREGOLENTE, L. G.; DOS SANTOS, J. V.; VINCI, G.; PICCOLO, A.; MOREIRA, A. B.; FERREIRA, O. P.; BISINOTI, M. C.; SPACCINI, R. Insights on molecular characteristics of hydrochars by13C-NMR and off-line TMAH-GC/MS and assessment of their potential use as plant growth promoters. Molecules, v. 26, n. 4, p. 1–16, 2021. FUNGO, B.; LEHMANN, J.; KALBITZ, K.; THIONĢO, M.; OKEYO, I.; TENYWA, M.; NEUFELDT, H. Aggregate size distribution in a Biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil and Tillage Research, v. 165, p. 190–197, 2017. FURTADO, G. DE F.; CHAVES, L. H. G.; DE SOUSA, J. R. M.; ARRIEL, N. H. C.; XAVIER, D. A.; DE LIMA, G. S. Soil chemical properties, growth and production of sunflower under fertilization with Biochar and NPK. Australian Journal of Crop Science, v. 10, n. 3, p. 418– 424, 2016. GAO, S.; HOFFMAN-KRULL, K.; BIDWELL, A. L.; DELUCA, T. H. Locally produced wood Biochar increases nutrient retention and availability in agricultural soils of the San Juan Islands, USA. Agriculture, Ecosystems and Environment, v. 233, p. 43–54, 2016. GARCÍA, A. C. Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados. 2013. 131 f. Tese (Doutorado). Curso de Pós Graduação em Agronomia - Ciência do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013. GARCÍA, A. C.; BERBARA, R. L. L.; FARÍAS, L. P.; IZQUIERDO, F. G.; HERNÁNDEZ, O. L.; CAMPOS, R. H.; CASTRO, R. N. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology, v. 11, n. 13, p. 3125–3134, 2012. GARCÍA, A. C.; CASTRO, T. A. V. T. DE; SANTOS, L. A.; TAVARES, O. C. H.; CASTRO, R. N.; BERBARA, R. L. L.; GARCÍA-MINA, J. M. Structure–Property–Function Relationship of Humic Substances in Modulating the Root Growth of Plants: A Review. Journal of Environment Quality, p. 1–11, 2019. 142 GARCIÁ, A. C.; DE SOUZA, L. G. A.; PEREIRA, M. G.; CASTRO, R. N.; GARCIÁ-MINA, J. M.; ZONTA, E.; LISBOA, F. J. G.; BERBARA, R. L. L. Structure-Property-Function Relationship in Humic Substances to Explain the Biological Activity in Plants. Scientific Reports, v. 6, n. February, p. 1–10, 2016. GARCÍA, A. C.; SANTOS, L. A.; DE SOUZA, L. G. A.; TAVARES, O. C. H.; ZONTA, E.; GOMES, E. T. M.; GARCÍA-MINA, J. M.; BERBARA, R. L. L. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants. Journal of Plant Physiology, v. 192, p. 56–63, 2016. GARCÍA, A. C.; SANTOS, L. A.; IZQUIERDO, F. G.; RUMJANEK, V. M.; CASTRO, R. N.; DOS SANTOS, F. S.; DE SOUZA, L. G. A.; BERBARA, R. L. L. Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). Journal of Geochemical Exploration, v. 136, p. 48–54, 2014. GARCÍA, A. C.; SANTOS, L. A.; IZQUIERDO, F. G.; SPERANDIO, M. V. L.; CASTRO, R. N.; BERBARA, R. L. L. Vermicompost humic acids as an ecological pathway to protect rice plant against oxidative stress. Ecological Engineering, v. 47, p. 203–208, 2012. GARCIA-MINAI, M.; SANCHEZ-DIAZ, M. The ability of several iron (II)-Humic complexes to provide available iron to plants under adverse soil conditions. Iron Nutrition in Soil and Plants, p. 235–239, 1995. GASCÓ, G.; CELY, P.; PAZ-FERREIRO, J.; PLAZA, C.; MÉNDEZ, A. Relation between Biochar properties and effects on seed germination and plant development. Biological Agriculture and Horticulture, v. 32, n. 4, p. 237–247, 2016. GERARD, C. J. Laboratory experiments on the effectis of antecedent moisture content and residue application on structural properties of a fragile soil. Soil & Tillage Research, v. 7, p. 63–74, 1986. GILLER, K. E.; HIJBEEK, R.; ANDERSSON, J. A.; SUMBERG, J. Regenerative Agriculture: An agronomic perspective. Outlook on Agriculture, v. 50, n. 1, p. 13–25, 2021. GLASER, B.; LEHR, V. I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Nature, v. 9, n. 1, p. 1–9, 2019. GLASER, B.; LEHR, V. I. Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Scientific Reports, v. 9, n. 1, 2019. GONZAGA, M. I. S.; MACKOWIAK, C.; DE ALMEIDA, A. Q.; DE CARVALHO JUNIOR, J. I. T.; ANDRADE, K. R. Positive and negative effects of Biochar from coconut husks, orange bagasse and pine wood chips on maize (Zea mays L.) growth and nutrition. Catena, v. 162, n. October 2016, p. 414–420, 2018. GOPAL, M.; GUPTA, A.; SHAHUL HAMEED, K.; SATHYASEELAN, N.; KHADEEJATH RAJEELA, T. H.; THOMAS, G. V. Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar, v. 2, n. 2, p. 211–226, 2020. GRAY, M.; JOHNSON, M. G.; DRAGILA, M. I.; KLEBER, M. Water uptake in Biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, v. 61, p. 196–205, 2014. GUPPY, C. N.; MENZIES, N. W.; MOODY, P. W.; BLAMEY, F. P. C. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Australian Journal of Soil Research, v. 43, n. 2, p. 189–202, 2005. 143 GÜSEWELL, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist, v. 164, n. 2, p. 246-266, 2004. GWENZI, W.; CHAUKURA, N.; NOUBACTEP, C.; MUKOME, F. N. D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of Environmental Management, v. 197, p. 732-749, 2017. HADDAD, K.; JEGUIRIM, M.; JELLALI, S.; THEVENIN, N.; RUIDAVETS, L.; LIMOUSY, L. Biochar production from Cypress sawdust and olive mill wastewater: Agronomic approach. Science of the Total Environment, v. 752, p. 141713, 2021. HAGEMANN, N.; JOSEPH, S.; SCHMIDT, H. P.; KAMMANN, C. I.; HARTER, J.; BORCH, T.; YOUNG, R. B.; VARGA, K.; TAHERYMOOSAVI, S.; ELLIOTT, K. W.; MCKENNA, A.; ALBU, M.; MAYRHOFER, C.; OBST, M.; CONTE, P.; DIEGUEZ-ALONSO, A.; ORSETTI, S.; SUBDIAGA, E.; BEHRENS, S.; KAPPLER, A. Organic coating on Biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications, v. 8, n. 1, p. 1–11, 2017. HAGEMANN, N.; KAMMANN, C. I.; SCHMIDT, H. P.; KAPPLER, A.; BEHRENS, S. Nitrate capture and slow release in Biochar amended compost and soil. PLoS ONE, v. 12, n. 2, 2017. HAIDER, G.; JOSEPH, S.; STEFFENS, D.; MÜLLER, C.; TAHERYMOOSAVI, S.; MITCHELL, D.; KAMMANN, C. I. Mineral nitrogen captured in field-aged Biochar is plant- available. Scientific Reports, v. 10, n. 1, 2020. HAN WENG, Z.; VAN ZWIETEN, L.; SINGH, B. P.; TAVAKKOLI, E.; JOSEPH, S.; MACDONALD, L. M.; ROSE, T. J.; ROSE, M. T.; KIMBER, S. W. L.; MORRIS, S.; COZZOLINO, D.; ARAUJO, J. R.; ARCHANJO, B. S.; COWIE, A. Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, v. 7, n. 5, p. 371–376, 2017. HAPGOOD, K. P.; IVESON, S. M.; LITSTER, J. D.; LIU, L. X. Granulation Rate Processes. IN: SALMAN, A. D.; HOUNSLOW, M. J.; SEVILLE, J. P. K. (Eds.). Handbook of powder technology - Granulation. 11. ed. Elsevier, 2007. p. 898–975. HARTLEY, W.; RIBY, P.; WATERSON, J. Effects of three different Biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. Journal of Environmental Management, v. 181, p. 770–778, 2016. HE, Y.; ZHOU, X.; JIANG, L.; LI, M.; DU, Z.; ZHOU, G.; SHAO, J.; WANG, X.; XU, Z.; HOSSEINI BAI, S.; WALLACE, H.; XU, C. Effects of Biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy, v. 9, n. 4, p. 743–755, 2017. HE, Z.; GUO, M.; FORTIER, C.; CAO, X.; SCHMIDT-ROHR, K. Fourier transform infrared and solid state 13 C nuclear magnetic resonance spectroscopic 3 characterization of defatted cottonseed meal-based Biochars. SSNR, p. 1–25, 2020. HERATH, H. M. S. K.; CAMPS-ARBESTAIN, M.; HEDLEY, M. J.; KIRSCHBAUM, M. U. F.; WANG, T.; VAN HALE, R. Experimental evidence for sequestering C with Biochar by avoidance of CO2 emissions from original feedstock and protection of native soil organic matter. GCB Bioenergy, v. 7, p. 512–526, 2015. HILBER, I.; MAYER, P.; GOULIARMOU, V.; HALE, S. E.; CORNELISSEN, G.; SCHMIDT, H. P.; BUCHELI, T. D. Bioavailability and bioaccessibility of polycyclic aromatic 144 hydrocarbons from (post-pyrolytically treated) Biochars. Chemosphere, v. 174, p. 700–707, 2017. HOLZSCHUH, M. J.; BOHNEN, H.; ANGUINONI, I.; PIZZOLATO, T. M.; CARMONA, F. C.; CARLOS, F. S. ABSORÇÃO DE NUTRIENTES E CRESCIMENTO DO ARROZ COM SUPRIMENTO COMBINADO DE AMÔNIO E NITRATO. Revista Brasileira de Ciência do Solo, v. 35, p. 1357–1366, 2011. HOU, W.; XUE, X.; LI, X.; KHAN, M. R.; YAN, J.; REN, T.; CONG, R.; LU, J. Interactive effects of nitrogen and potassium on: Grain yield, nitrogen uptake and nitrogen use efficiency of rice in low potassium fertility soil in China. Field Crops Research, v. 236, p. 14–23, 2019. HUANG, J.; WANG, P.; NIU, Y.; YU, H.; MA, F.; XIAO, G.; XU, X. Changes in C:N:P stoichiometry modify N and P conservation strategies of a desert steppe species Glycyrrhiza uralensis. Scientific Reports, v. 8, n. 1, 2018. HUANG, S.; WANG, P.; YAMAJI, N.; MA, J. F. Plant nutrition for human nutrition: hints from rice research and future perspectives molecular plant. Cell Press, v. 13, n. 6, p. 825- 835, 2020. IBI. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil. Disponível em: <http://www.Biochar- international.org/characterizationstandard.>. Acesso em: 20 jan. 2020. IBRAHIM, A.; USMAN, A. R. A.; AL-WABEL, M. I.; NADEEM, M.; OK, Y. S.; AL- OMRAN, A. Effects of conocarpus Biochar on hydraulic properties of calcareous sandy soil: influence of particle size and application depth. Archives of Agronomy and Soil Science, v. 63, n. 2, p. 185–197, 2017. IBRAM. Informações e Análises da Economia Mineral Brasileira. Instituto Brasileiro de Mineração-IBRAM, v. 53, n. 9, p. 1689–1699, 2012. IHSS. IHSS - International Humic Substances Society (2014) Products. Disponível em: <http://www.ihss.gatech.edu/products.html>. Acesso em: 23 nov. 2020. JACINTO, R. C. Produção de pellets para energia usando diferentes resíduos de biomassa agrícolas e florestais. 2017. 80 f. Dissertação (Mestrado), Programa de Pós Graduação em Engenharia Florestal, Universidade de Estado de Santa Catarina, Lages, 2017. JAISWAL, A. K.; ELAD, Y.; CYTRYN, E.; GRABER, E. R.; FRENKEL, O. Activating Biochar by manipulating the bacterial and fungal microbiome through pre-conditioning. New Phytologist, v. 219, n. 1, p. 363–377, 2018. JAROSIEWICZ, A.; TOMASZEWSKA, M. Controlled-release NPK fertilizer encapsulated by polymeric membranes. Journal of Agricultural and Food Chemistry, v. 51, n. 2, p. 413–417, 2003. JEFFERY, S.; VERHEIJEN, F. G. A.; VAN DER VELDE, M.; BASTOS, A. C. A quantitative review of the effects of Biochar application to soils on crop productivity using meta-analysis. Agriculture, Ecosystems and Environment, v. 144, n.1, p. 175-187, 2011. JINDO, K.; MIZUMOTO, H.; SAWADA, Y.; SANCHEZ-MONEDERO, M. A.; SONOKI, T. Physical and chemical characterization of Biochars derived from different agricultural residues. Biogeosciences, v. 11, n. 23, p. 6613–6621, 2014. 145 JOHANSSON, I.; WULFETANGE, K.; PORÉE, F.; MICHARD, E.; GAJDANOWICZ, P.; LACOMBE, B.; SENTENAC, H.; THIBAUD, J. B.; MUELLER-ROEBER, B.; BLATT, M. R.; DREYER, I. External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant Journal, v. 46, n. 2, p. 269–281, 2006. JOSEPH, S.; COWIE, A. L.; VAN ZWIETEN, L.; BOLAN, N.; BUDAI, A.; BUSS, W.; CAYUELA, M. L.; GRABER, E. R.; IPPOLITO, J. A.; KUZYAKOV, Y.; LUO, Y.; OK, Y. S.; PALANSOORIYA, K. N.; SHEPHERD, J.; STEPHENS, S.; WENG, Z.; LEHMANN, J. How Biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to Biochar. GCB Bioenergy, v. 13, n. 11, p. 1731–1764, 2021. JOSEPH, S.; GRABER, E. R.; CHIA, C.; MUNROE, P.; DONNE, S.; THOMAS, T.; NIELSEN, S.; MARJO, C.; RUTLIDGE, H.; PAN, G. X.; LI, L.; TAYLOR, P.; RAWAL, A.; HOOK, J. Shifting paradigms: Development of high-efficiency Biochar fertilizers based on nano-structures and soluble components. Carbon Management, v. 4, n. 1, p. 323-343, 2013. JOSEPH, S.; HUSSON, O.; GRABER, E. R.; VAN ZWIETEN, L.; TAHERYMOOSAVI, S.; THOMAS, T.; NIELSEN, S.; YE, J.; PAN, G.; CHIA, C.; MUNROE, P.; ALLEN, J.; LIN, Y.; FAN, X.; DONNE, S. The electrochemical properties of Biochars and how they affect soil redox properties and processes. Agronomy, v. 5, n. 3, p. 322–340, 2015. JOSEPH, S.; PEACOCKE, C.; LEHMANN, J.; MUNROE, P. Developing Biochar classification and test methods. Em: LEHMANN, J.; JOSEPH, S. (Eds.). Biochar for environmental management science and technology. New York: Earthscan, 2009. p. 107– 126. JOUDEH, N.; LINKE, D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologistsJournal of Nanobiotechnology. BioMed Central Ltd, n. 20, p. 262, 2022. KALIYAN, N.; MOREY, R. V. Factors affecting strength and durability of densified biomass products. Biomass and Bioenergy, v. 33, n. 3, p. 337–359, 2009. KAMAU, S.; KARANJA, N. K.; AYUKE, F. O.; LEHMANN, J. Short-term influence of Biochar and fertilizer-Biochar blends on soil nutrients, fauna and maize growth. Biology and Fertility of Soils, v. 55, n. 7, p. 661–673, 2019. KAMEYAMA, K.; MIYAMOTO, T.; IWATA, Y.; SHIONO, T. Influences of feedstock and pyrolysis temperature on the nitrate adsorption of Biochar. Soil Science and Plant Nutrition, v. 62, n. 2, p. 180–184, 2016. KARHU, K.; MATTILA, T.; BERGSTRÖM, I.; REGINA, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity - Results from a short-term pilot field study. Agriculture, Ecosystems and Environment, v. 140, n. 1–2, p. 309–313, 2011. KARTIKA, K.; SAKAGAMI, J. I.; LAKITAN, B.; YABUTA, S.; AKAGI, I.; WIDURI, L. I.; SIAGA, E.; IWANAGA, H.; NURRAHMA, A. H. I. Rice Husk Biochar Effects on Improving Soil Properties and Root Development in Rice (Oryza Glaberrima steud.) Exposed to Drought Stress During Early Reproductive Stage. AIMS Agriculture and Food, v. 6, n. 2, p. 737–751, 2021. KAVITHA, B.; REDDY, P. V. L.; KIM, B.; LEE, S. S.; PANDEY, S. K.; KIM, K. H. Benefits and limitations of Biochar amendment in agricultural soils: A review. Journal of Environmental Management, v. 227, p. 146–154, 2018. 146 KEELER, C.; KELLY, E. F.; MACIEL, G. E. Chemical-structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA. Geoderma, v. 130, n. 1–2, p. 124–140, 2006. KEILUWEIT, M.; NICO, P. S.; JOHNSON, M. G.; KLEBER, M. Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information -. Environmental Science and Technology, v. 44, n. 4, p. 1247–1253, 2010. KHAN, S.; CHAO, C.; WAQAS, M.; ARP, H. P. H.; ZHU, Y. G. Sewage sludge Biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environmental Science and Technology, v. 47, n. 15, p. 8624–8632, 2013. KHARE, P.; DILSHAD, U.; ROUT, P. K.; YADAV, V.; JAIN, S. Plant refuses driven Biochar: Application as metal adsorbent from acidic solutions. Arabian Journal of Chemistry, v. 10, p. S3054–S3063, 2017. KIM, P.; JOHNSON, A. M.; ESSINGTON, M. E.; RADOSEVICH, M.; KWON, W. T.; LEE, S. H.; RIALS, T. G.; LABBÉ, N. Effect of pH on surface characteristics of switchgrass-derived Biochars produced by fast pyrolysis. Chemosphere, v. 90, n. 10, p. 2623–2630, 2013. KIMETU, J. M.; LEHMANN, J.; NGOZE, S. O.; MUGENDI, D. N.; KINYANGI, J. M.; RIHA, S.; VERCHOT, L.; RECHA, J. W.; PELL, A. N. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems, v. 11, n. 5, p. 726–739, 2008. KLOSS, S.; ZEHETNER, F.; DELLANTONIO, A.; HAMID, R.; OTTNER, F.; LIEDTKE, V.; SCHWANNINGER, M.; GERZABEK, M. H.; SOJA, G. Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, v. 41, n. 4, p. 990–1000, 2012. KOGEL-KNABNER, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Disponível em: <www.elsevier.com/locate/soilbio>. Acesso em: 26 jan. 2022. KONAKA, T.; YABUTA, S.; MAZEREKU, C.; KAWAMITSU, Y.; TSUJIMOTO, H.; UENO, M.; AKASHI, K. Use of carbonized fallen leaves of Jatropha curcas L. As a soil conditioner for acidic and undernourished soil. Agronomy, v. 9, n. 5, p. 11–13, 2019. KRAUSE, B.; MENDE, M.; PÖTSCHKE, P.; PETZOLD, G. Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon, v. 48, n. 10, p. 2746–2754, 2010. KUMAR, A.; TSECHANSKY, L.; LEW, B.; RAVEH, E.; FRENKEL, O.; GRABER, E. R. Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. Science of the Total Environment, v. 618, p. 188–198, 2018. KUZYAKOV, Y.; BOGOMOLOVA, I.; GLASER, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biology and Biochemistry, v. 70, p. 229–236, 2014. KUZYAKOV, Y.; GAVRICHKOVA, O. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: A review of mechanisms and controlsGlobal Change Biology, dez. 2010. 147 KWAPINSKI, W.; BYRNE, C. M. P.; KRYACHKO, E.; WOLFRAM, P.; ADLEY, C.; LEAHY, J. J.; NOVOTNY, E. H.; HAYES, M. H. B. Biochar from biomass and waste. Waste and Biomass Valorization, v. 1, n. 2, p. 177–189, 2010. LAGHARI, M.; HU, Z.; MIRJAT, M. S.; XIAO, B.; TAGAR, A. A.; HU, M. Fast pyrolysis Biochar from sawdust improves the quality of desert soils and enhances plant growth. Journal of the Science of Food and Agriculture, v. 96, n. 1, p. 199–206, 2016. LAIRD, D. A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, v. 100, n. 1, p. 178–181, 2008. LATEEF, A.; NAZIR, R.; JAMIL, N.; ALAM, S.; SHAH, R.; KHAN, M. N.; SALEEM, M.; REHMAN, S. UR. Synthesis and characterization of environmental friendly corncob Biochar based nano-composite – A potential slow release nano-fertilizer for sustainable agriculture. Environmental Nanotechnology, Monitoring and Management, v. 11, 2019. LAWRINENKO, M.; JING, D.; BANIK, C.; LAIRD, D. A. Aluminum and iron biomass pretreatment impacts on Biochar anion exchange capacity. Carbon, v. 118, p. 422–430, 2017. LEFEBVRE, D.; WILLIAMS, A.; MEERSMANS, J.; KIRK, G. J. D.; SOHI, S.; GOGLIO, P.; SMITH, P. Modelling the potential for soil carbon sequestration using Biochar from sugarcane residues in Brazil. Scientific Reports, v. 10, n. 1, p. 1–11, 2020. LEHMANN, J. A handful of carbon. Nature, v. 447, n. 10, p. 143–144, 2007. LEHMANN, J.; GAUNT, J.; RONDON, M. Bio-char sequestration in terrestrial ecosystems - A review. Mitigation and Adaptation Strategies for Global Change, v. 11, n. 2, p. 403–427, 2006. LEHMANN, J.; JOSEPH, S. Biochar for Environmental Management. Routledge, 2015, p. 944. LEHMANN, J.; RILLING, M. C.; THIES, j.; MASIELLO, C. A.; HOCKADAY, W.; CEOWLEY, D. Biochar effects on soil biota-A review. Soil Biology & Biochemistry, v. 43, p. 1812-1836, 2011. LEI, O.; ZHANG, R. Effects of Biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. Journal of Soils and Sediments, v. 13, n. 9, p. 1561–1572, 2013. LENG, L.; HUANG, H. An overview of the effect of pyrolysis process parameters on Biochar stability. Bioresource Technology, v. 270, p. 627-642, 2018. LI, J.; YU, L.; QI, G. N.; LI, J.; XU, Z. J.; WU, W. H.; YI, W. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex. Plant Cell, v. 26, n. 8, p. 3387–3402, 2014. LI, L.; ZHANG, Y. J.; NOVAK, A.; YANG, Y.; WANG, J. Role of Biochar in improving sandy soil water retention and resilience to drought. Water (Switzerland), v. 13, n. 4, 2 fev. 2021. LI, S.; CHEN, G. Thermogravimetric, thermochemical, and infrared spectral characterization of feedstocks and Biochar derived at different pyrolysis temperatures. Waste Management, v. 78, p. 198–207, 2018. 148 LIAO, S.; PAN, B.; LI, H.; ZHANG, D.; XING, B. Detecting free radicals in Biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environmental Science and Technology, v. 48, n. 15, p. 8581–8587, 2014. LIAO, W.; DRAKE, J.; THOMAS, S. C. Biochar granulation enhances plant performance on a green roof substrate. Science of the Total Environment, v. 813, p. 152638, 2022. LIMA, J. R. S. ; OLIVEIRA, J. E. S. ; HAMMECKER, C. ; DUDA, G. P. ; MEDEIROS, E. V. ; ANTONINO, A. C. D. ; SOUZA, R. M. S. ; SOUZA, E. S.; ROMUALDO DE SOUSA LIMA, J.; EMANUELLA, J.; OLIVEIRA, S.; HAMMECKER, C.; DUDA, G. P.; VALENTE DE MEDEIROS, É.; CELSO, A.; ANTONINO, D.; MARCONDES, R.; SOUZA, S.; SOARES DE SOUZA, E. Revista Brasileira de Geografia Física, v. 13, p. 3448–3458, 2020. LIMWIKRAN, T.; KHEORUENROMNE, I.; SUDDHIPRAKARN, A.; PRAKONGKEP, N.; GILKES, R. J. Dissolution of K, Ca, and P from Biochar grains in tropical soils. Geoderma, v. 312, p. 139–150, 2018. LIPPER, L.; THORNTON, P.; CAMPBELL, B. M.; BAEDEKER, T.; BRAIMOH, A.; BWALYA, M.; CARON, P.; CATTANEO, A.; GARRITY, D.; HENRY, K.; HOTTLE, R.; JACKSON, L.; JARVIS, A.; KOSSAM, F.; MANN, W.; MCCARTHY, N.; MEYBECK, A.; NEUFELDT, H.; REMINGTON, T. Climate-smart agriculture for food security. Nature Climate Change, v. 4, p. 1068–1072, 2014. LIU, Y.; LONAPPAN, L.; BRAR, S. K.; YANG, S. Impact of Biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Science of the Total Environment, v. 645, p. 60–70, 2018. LOPES, W. A.; FASCIO, M. Flow chart for infrared spectra interpretation of organic compounds. Quimica Nova, v. 27, n. 4, p. 670–673, 2004. LU, H.; ZHANG, W.; WANG, S.; ZHUANG, L.; YANG, Y.; QIU, R. Characterization of sewage sludge-derived Biochars from different feedstocks and pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, v. 102, n. 41771343, p. 137–143, 2013. LU, X. Q.; HANNA, J. V; JOHNSON, W. D. Source indicators of humic substances: an elemental composition, solid state 13 C CP/MAS NMR and Py-GC/ MS study. Applied Geochemistry, v. 15, p. 1019–1033, 2000. LUO, W.; QIAN, L.; LIU, W.; ZHANG, X.; WANG, Q.; JIANG, H.; CHENG, B.; MA, H.; WU, Z. A potential Mg-enriched Biochar fertilizer: Excellent slow-release performance and release mechanism of nutrients. Science of the Total Environment, v. 768, 2021. MADARI, B. E.; COSTA, A. R. D. C. L.; SANTOS, J. L. S.; BENITES, V. M.; ROCHA, A. D. O.; MACHADO, P. L. O. A. Carvão vegetal como condicionador de solo para arroz de terras altas (cultivar Primavera): um estudo prospectivo. Santo Antônio de Goiás, Embrapa Arroz e Feijão, 2006. 2p. (Comunicado técnico 125). MAJUMDER, S.; NEOGI, S.; DUTTA, T.; POWEL, M. A.; BANIK, P. The impact of Biochar on soil carbon sequestration: Meta-analytical approach to evaluating environmental and economic advantages. Journal of Environmental Management, v. 250, n. July, p. 109466, 2019. MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Evaluation of the Nutritional Status of Plants: Principles and Applications. 2. ed.; Brazilian Association for the Research of Potash and Phosphate: Piracicaba, Brazil, 1997, p. 319. 149 MANNA, S.; SINGH, N.; PURAKAYASTHA, T. J.; BERNS, A. E. Effect of deashing on physico-chemical properties of wheat and rice straw Biochars and potential sorption of pyrazosulfuron-ethyl. Arabian Journal of Chemistry, v. 13, n. 1, p. 1247–1258, 2020. MAPA. Instrução normativa n-61 de 8 de julho de 2020. Diário Oficial da União: seção 1, Brasília, DF, ano 135, 8 jul. 2020. MARINHO, D. Y. Produção de adubos de liberação lenta utilizando a briquetagem de finos de calcário e melado de cana: estudos iniciais. 72 f. Dissertação (Mestrado) - Programa de Pós Graduação em Engenharia de Produção - Universidade Federal de Catalão, Catalão, 2019. MARRA, R.; VINALE, F.; CESARANO, G.; LOMBARDI, N.; D’ERRICO, G.; CRASTO, A.; MAZZEI, P.; PICCOLO, A.; INCERTI, G.; WOO, S. L.; SCALA, F.; BONANOMI, G. Biochars from olive mill waste have contrasting effects on plants, fungi and phytoparasitic nematodes. PLoS ONE, v. 13, n. 6, 2018. MAZZEI, P.; CANGEMI, S.; MALAKSHAHI KURDESTANI, A.; MUELLER, T.; PICCOLO, A. Quantitative Evaluation of Noncovalent Interactions between 3,4-Dimethyl-1 H-pyrazole and Dissolved Humic Substances by NMR Spectroscopy. Environmental Science and Technology, v. 56, n. 16, p. 11771–11779, 2022. MCBEATH, A. V.; SMERNIK, R. J.; KRULL, E. S.; LEHMANN, J. The influence of feedstock and production temperature on Biochar carbon chemistry: A solid-state 13C NMR study. Biomass and Bioenergy, v. 60, p. 121–129, 2014. MCBEATH, A. V.; WURSTER, C. M.; BIRD, M. I. Influence of feedstock properties and pyrolysis conditions on Biochar carbon stability as determined by hydrogen pyrolysis. Biomass and Bioenergy, v. 73, p. 155–173, 2015. MCDONALD-WHARRY, J. S.; MANLEY-HARRIS, M.; PICKERING, K. L. Reviewing, Combining, and Updating the Models for the Nanostructure of Non-Graphitizing Carbons Produced from Oxygen-Containing Precursors. Energy and Fuels, v. 20, n. 10, p. 7811-7826, 2016. MILDER, J. C.; MAJANEN, T.; SCHERR, S. J. Performance and Potential of Conservation Agriculture for Climate Change Adaptation and Mitigation in Sub-Saharan Africa Initiative. Disponível em: <http://www.ecoport.org>. Acesso em: 20 de jan. 2021. Ministério da Agricultura, Pecuária e Abastecimento. Disponível em: <https://www.gov.br/pt-br/orgaos/ministerio-da-agricultura-pecuaria-e-abastecimento>. Acesso em: 22 out. 2022. MITCHELL, P. J.; DALLEY, T. S. L.; HELLEUR, R. J. Preliminary laboratory production and characterization of Biochars from lignocellulosic municipal waste. Journal of Analytical and Applied Pyrolysis, v. 99, p. 71–78, 2013. MOLNÁR, M.; VASZITA, E.; FARKAS, É.; UJACZKI, É.; FEKETE-KERTÉSZ, I.; TOLNER, M.; KLEBERCZ, O.; KIRCHKESZNER, C.; GRUIZ, K.; UZINGER, N.; FEIGL, V. Acidic sandy soil improvement with Biochar — A microcosm study. Science of the Total Environment, v. 563–564, p. 855–865, 2016. MUHAMMAD, P.; RAMZANI, A.; SHAN, L.; ANJUM, S.; KHAN, W.; RONGGUI, H.; IQBAL, M.; VIRK, Z. A.; KAUSAR, S. Improved quinoa growth, physiological response, and 150 seed nutritional quality in three soils having different stresses by the application of acidified Biochar and compost. Plant Physiology and Biochemistry, v. 116, p. 127-138, 2017. MUKHERJEE, A.; ZIMMERMAN, A. R. Organic carbon and nutrient release from a range of laboratory-produced Biochars and Biochar-soil mixtures. Geoderma, v. 193–194, p. 122–130, 2013. MUKHERJEE, A.; ZIMMERMAN, A. R.; HAMDAN, R.; COOPER, W. T. Physicochemical changes in pyrogenic organic matter (Biochar) after 15 months field-aging. Solid Earth Discussions, v. 6, n. 1, p. 731–760, 2014. NAGHDI, M.; TAHERAN, M.; PULICHARLA, R.; ROUISSI, T.; BRAR, S. K.; VERMA, M.; SURAMPALLI, R. Y. Pine-wood derived nanoBiochar for removal of carbamazepine from aqueous media: Adsorption behavior and influential parameters. Arabian Journal of Chemistry, v. 12, n. 8, p. 5292–5301, 2019. NAKANDALAGE, N.; SENEWEERA, S. Micronutrients Use Efficiency of Crop-Plants Under Changing Climate. In: HOSSAIN, M.A.; KAMIYA, T.; BURRITT, D.J.; TRAN, L.P.; FUJIWARA, T. Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants. Elsevier, 2018. p. 209–224. NEHLS, T. Fertility improvement of a Terra Firme oxisol in Central Amazonia by charcoal application. 82 f. Tese (Doutorado). Institute of soil science and soil geography - University of Bayreuth, Bayreuth, 2002. NI, B.; LIU, M.; LÜ, S. Multifunctional slow-release urea fertilizer from ethylcellulose and superabsorbent coated formulations. Chemical Engineering Journal, v. 155, n. 3, p. 892–898, 2009. NIELSEN, N. P. K.; GARDNER, D. J.; POULSEN, T.; FELBY, C. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood and Fiber Science, v. 41, n. 4, p. 414–425, 2009. NOVAK, J. M.; BUSSCHER, W. J.; WATTS, D. W.; AMONETTE, J. E.; IPPOLITO, J. A.; LIMA, I. M.; GASKIN, J.; DAS, K. C.; STEINER, C.; AHMEDNA, M.; REHRAH, D.; SCHOMBERG, H. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Science, v. 177, n. 5, p. 310–320, 2012. OBIA, A.; MULDER, J.; HALE, S. E.; NURIDA, N. L.; CORNELISSEN, G. The potential of Biochar in improving drainage, aeration and maize yields in heavy clay soils. PLoS ONE, v. 13, n. 5, 2018. ODINGA, E. S.; WAIGI, M. G.; GUDDA, F. O.; WANG, J.; YANG, B.; HU, X.; LI, S.; GAO, Y. Occurrence, formation, environmental fate and risks of environmentally persistent free radicals in Biochars. Environment International, v. 134, n. July 2019, p. 105172, 2020. OGAWA, M.; OKIMORI, Y.; TAKAHASHI, F. Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change, v. 11, n. 2, p. 429–444, 2006. OGLE, S. M.; ALSAKER, C.; BALDOCK, J.; BERNOUX, M.; BREIDT, F. J.; MCCONKEY, B.; REGINA, K.; VAZQUEZ-AMABILE, G. G. Climate and soil characteristics determine where no-till management can store carbon in soils and mitigate greenhouse gas emissions. Scientific Reports, v. 9, n. 1, 2019. 151 OJEDA, G.; MATTANA, S.; ÀVILA, A.; ALCAÑIZ, J. M.; VOLKMANN, M.; BACHMANN, J. Are soil-water functions affected by Biochar application? Geoderma, v. 249– 250, p. 1–11, 2015. OLIVEIRA, J. B.; GOMES, P. A.; ALMEIDA, M. R. Propriedades do carvão vegetal. In: PENEDO, W. R. (Ed.). Carvão vegetal. Belo Horizonte: CETEC, 1982. p. 9–61. ORLOV, D. S.; AMMOSOVA, Y. M.; GLEBOVA, G. I. Molecular parameters of humic acids. Geoderma, v. 13, n. 3, p. 211–229, 1975. OUKARROUM, A.; MADIDI, S. EL; SCHANSKER, G.; STRASSER, R. J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, v. 60, n. 3, p. 438–446, 2007. PANEQUE, M.; DE LA ROSA, J. M.; FRANCO-NAVARRO, J. D.; COLMENERO- FLORES, J. M.; KNICKER, H. Effect of Biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. Catena, v. 147, p. 280– 287, 2016. PARFITT, R. L.; ATKINSON, R. J.; SMART, S. C. The Mechanism of Phosphate Fixation by Iron Oxides. Soil Sci. Soc. Amer. Proc, v. 39, p. 837-841, 1975. PAULILO, M. T. S.; VIANA, A. M.; RANDI, A. M. Fisiologia Vegetal. Florianópolis: Universidade Federal de Santa Catarina, 2015, p. 182. PAUSTIAN, K.; LEHMANN, J.; OGLE, S.; REAY, D.; ROBERTSON, G. P.; SMITH, P. Climate-smart soils. Nature, v. 532, p. 49-57, 2016. PEREIRA, H. S. Fósforo e potássio exigem manejos diferenciados. Visão agrícola, n. 9, p. 43– 46, 2009. PEREIRA, R. G.; HEINEMANN, A. B.; MADARI, B. E.; CARVALHO, M. T. DE M.; KLIEMANN, H. J.; SANTOS, A. P. Transpiration response of upland rice to water deficit changed by different levels of eucalyptus Biochar. Pesquisa Agropecuária Brasileira, v. 47, n. 5, p. 716–721, 2012. PÉREZ-GARCÍA, S.; FERNÁNDEZ-PÉREZ, M.; VILLAFRANCA-SÁNCHEZ, M.; GONZÁLEZ-PRADAS, E.; FLORES-CÉSPEDES, F. Controlled release of ammonium nitrate from ethylcellulose coated formulations. Industrial and Engineering Chemistry Research, v. 46, n. 10, p. 3304–3311, 2007. PERMINOVA, I. V.; GARCÍA-MINA, J. M.; KNICKER, H.; MIANO, T. Humic substances and nature-like technologies: Learning from nature: understanding humic substances structures and interactions for the development of environmentally friendly, nature-like technologies. Journal of Soils and Sediments, v. 19, n. 6, p. 2663–2664, 2019. PETTER, F. A.; MADARI, B. E.; SOLER DA SILVA, M. A.; AURÉLIO, M.; CARNEIRO, C.; THAÍS, M.; CARVALHO, M.; HUR, B.; JÚNIOR, M.; PACHECO, L. P. Soil fertility and upland rice yield after Biochar application in the Cerrado. Pesq. agropec. bras, n. 5, p. 699– 706, 2012. PICCOLO, A.; MBAGWU, J. S. C. Role of Hydrophobic Components of Soil Organic Matter in Soil Aggregate Stability. Soil Science Society of America Journal, v. 63, n. 6, p. 1801– 1810, 1999. 152 PIGNATELLO, J. J.; MITCH, W. A.; XU, W. Activity and Reactivity of Pyrogenic Carbonaceous Matter toward Organic Compounds. Environmental Science and Technology, v. 51, n. 16, p. 8893–8908, 2017. PLACIDO, J.; CAPAREDA, S.; KARTHIKEYAN, R. Production of humic substances from cotton stalks Biochar by fungal treatment with Ceriporiopsis subvermispora. Sustainable Energy Technologies and Assessments, v. 13, p. 31–37, 2016. PORTZ, A.; RESENDE, A. S.; TEIXEIRA, A. J.; ABBOUD, A. C. S.; MARTINS, C. A. C.; CARVALHO, C. A. B.; LIMA, E.; ZONTA, E.; PEREIRA, J. B. A.; BALIEIRO, F. C.; ALMEIDA, J. C. C.; SOUZA, J. F.; GUERRA, J. G. M.; MACEDO, J. R.; SOUZA, J. N.; FREIRE, L. R.; VASCONCELOS, M. A. S.; LEAL, M. A. A.; FERREIRA, M. B. C.; MANHÃES, M.; GOUVEA, R. F.; BUSQUET, R. N. B.; BHERING, S. B. Recomendações de adubos, corretivos e de manejo da matéria orgânica para as principais culturas do Estado do Rio de Janeiro. In: FREIRE, L. R.; BALIEIRO, F. C.; ZONTA, E.; DOS ANJOS, L. H. C.; PEREIRA, M. G.; LIMA, E.; GUERRA, J. G. M.; FERREIRA, M. B. C.; LEAL, M. A. A.; CAMPOS, D. V. B.; POLIDORO, J. C. (Ed.). Manual de calagem e adubação do Estado do Rio de Janeiro. 1. ed. v. 1, 2013, p. 434. POSPÍŠIL, P.; DAU, H. Chlorophyll fluorescence transients of Photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. Photosynthesis Research, v. 65, n. 1, p. 41–52, 2000. PRADHAN, S.; ABDELAAL, A. H.; MROUE, K.; AL-ANSARI, T.; MACKEY, H. R.; MCKAY, G. Biochar from vegetable wastes: agro-environmental characterization. Biochar, v. 2, n. 4, p. 439–453, 2020. PRENDERGAST-MILLER, M. T.; DUVALL, M.; SOHI, S. P. Biochar-root interactions are mediated by Biochar nutrient content and impacts on soil nutrient availability. European Journal of Soil Science, v. 65, n. 1, p. 173–185, 2014. PRESTON, C. M.; NAULT, J. R.; TROFYMOW, J. A. Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems, v. 12, n. 7, p. 1078–1102, 2009. PRESTON, C. M.; SCHMIDT, M. W. I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences, v. 3, n. 4, p. 397–420, 2006. PUGA, A. P.; GRUTZMACHER, P.; CERRI, C. E. P.; RIBEIRINHO, V. S.; ANDRADE, C. A. DE. Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Science of the Total Environment, v. 704, p. 135375, 2020. PURKAYSTHA, J.; PRASHER, S.; AFZAL, M. T.; NZEDIEGWU, C.; DHIMAN, J. Wheat straw Biochar amendment significantly reduces nutrient leaching and increases green pepper yield in a less fertile soil. Environmental Technology and Innovation, v. 28, 2022. RAFIQ, M. K.; BAI, Y.; AZIZ, R.; RAFIQ, M. T.; MAŠEK, O.; BACHMANN, R. T.; JOSEPH, S.; SHAHBAZ, M.; QAYYUM, A.; SHANG, Z.; DANAEE, M.; LONG, R. Biochar amendment improves alpine meadows growth and soil health in Tibetan plateau over a three year period. Science of the Total Environment, v. 717, p. 35296, 2020. RAWAL, A.; JOSEPH, S. D.; HOOK, J. M.; CHIA, C. H.; MUNROE, P. R.; DONNE, S.; LIN, Y.; PHELAN, D.; MITCHELL, D. R. G.; PACE, B.; HORVAT, J.; WEBBER, J. B. W. 153 Mineral-Biochar Composites: Molecular Structure and Porosity. Environmental Science and Technology, v. 50, n. 14, p. 7706–7714, 2016. REGMI, A.; SINGH, S.; MOUSTAID-MOUSSA, N.; COLDREN, C.; SIMPSON, C. The Negative Effects of High Rates of Biochar on Violas Can Be Counteracted with Fertilizer. Plants, v. 11, n. 4, 2022. REYNOLDS, A.; JOSEPH, S. D.; VERHEYEN, T. V.; CHINU, K.; TAHERYMOOSAVI, S.; MUNROE, P. R.; DONNE, S.; PACE, B.; VAN ZWIETEN, L.; MARJO, C. E.; THOMAS, T.; RAWAL, A.; HOOK, J. Effect of clay and iron sulphate on volatile and water-extractable organic compounds in bamboo Biochars. Journal of Analytical and Applied Pyrolysis, v. 133, p. 22–29, 2018. REZA, M. S.; ISLAM, S. N.; AFROZE, S.; ABU BAKAR, M. S.; SUKRI, R. S.; RAHMAN, S.; AZAD, A. K. Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecology and Environment, v. 5, n. 2, p. 118–133, 2020. RHODES, C. J. Permaculture: Regenerative - not merely sustainable. Science Progress, v. 98, n. 4, p. 403–412, 2015. RHODES, C. J. The imperative for regenerative agriculture. Science Progress, v. 100, n. 1, p. 80–129, 2017. ROBERTSON, S. J.; MICHAEL RUTHERFORD, P.; LÓPEZ-GUTIÉRREZ, J. C.; MASSICOTTE, H. B. Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Canadian Journal of Soil Science, v. 92, n. 2, p. 329– 340, 2012. RODRIGUES, R. DA F. Influência das condições de processo na granulação de super simples em tambor rotativo. 193 f. Tese (Doutorado), Programa de Pós Graduação em Engenharia Química - Universidade Federal de Uberlândia, Uberlândia, 2012. RODRIGUEZ ORTIZ, L.; TORRES, E.; ZALAZAR, D.; ZHANG, H.; RODRIGUEZ, R.; MAZZA, G. Influence of pyrolysis temperature and bio-waste composition on Biochar characteristics. Renewable Energy, v. 155, p. 837–847, 2020. SANTOS, R. D.; LEMOS, R. C.; SANTOS, H. G.; KER, J. C.; ANJOS, L. H. C.; SHIMIZU, S. H. Manual de descrição e coleta de solo no campo. SBCS, Viçosa, 2015, p. 100. SARFARAZ, Q.; SILVA, L.; DRESCHER, G.; ZAFAR, M.; SEVERO, F.; KOKKONEN, A.; MOLIN, G.; SHAFI, M.; SHAFIQUE, Q.; SOLAIMAN, Z. Characterization and carbon mineralization of Biochars produced from different animal manures and plant residues. Scientific Reports, v. 10, n. 1, p. 1-9, 2020. SARKER, T. C.; INCERTI, G.; SPACCINI, R.; PICCOLO, A.; MAZZOLENI, S.; BONANOMI, G. Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy. Soil Biology and Biochemistry, v. 117, p. 175–184, 2018. SCHEIFELE, M.; HOBI, A.; BUEGGER, F.; GATTINGER, A.; SCHULIN, R.; BOLLER, T.; MÄDER, P. Impact of pyrochar and hydrochar on soybean (Glycine max L.) root nodulation and biological nitrogen fixation. Zeitschrift fur Pflanzenernahrung und Bodenkunde, v. 180, n. 2, p. 199–211, 2017. 154 SCHERR, S. J.; SHAMES, S.; FRIEDMAN, R. From climate-smart agriculture to climate- smart landscapesAgriculture and Food Security. BioMed Central Ltd, v. 1, n. 12, p. 1-15, 2012. SCHMIDT, H. P.; KAMMANN, C.; NIGGLI, C.; EVANGELOU, M. W. H.; MACKIE, K. A.; ABIVEN, S. Biochar and Biochar-compost as soil amendments to a vineyard soil: Influences on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems and Environment, v. 191, p. 117–123, 2014. SCHMIDT, H. P.; PANDIT, B. H.; CORNELISSEN, G.; KAMMANN, C. I. Biochar-Based Fertilization with Liquid Nutrient Enrichment: 21 Field Trials Covering 13 Crop Species in Nepal. Land Degradation and Development, v. 28, n. 8, p. 2324–2342, 2017. SCHMIDT, H.-P. 55 Uses of Biochar. Ithaka Journal, v. 25, n. 1/2012, p. 13–25, 2012. SCHMIDT, M. W. I.; TORN, M. S.; ABIVEN, S.; DITTMAR, T.; GUGGENBERGER, G.; JANSSENS, I. A.; KLEBER, M.; KÖGEL-KNABNER, I.; LEHMANN, J.; MANNING, D. A. C.; NANNIPIERI, P.; RASSE, D. P.; WEINER, S.; TRUMBORE, S. E. Persistence of soil organic matter as an ecosystem property. Nature, v. 478, p. 49-56, 2011. SCHNITZER, M. Organic Matter Characterization. In: PAGE, A. L. (Ed.). Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Agronomy Series Number 9 (Part 2). Madison: American Society of Agronomy, 1982. p. 1011–1069. SCHREEFEL, L.; SCHULTE, R. P. O.; DE BOER, I. J. M.; SCHRIJVER, A. P.; VAN ZANTEN, H. H. E. Regenerative agriculture – the soil is the base. Global Food Security, v. 26, p. 100404, 2020. SCHREITER, I. J.; SCHMIDT, W.; KUMAR, A.; GRABER, E. R.; SCHÜTH, C. Effect of water leaching on Biochar properties and its impact on organic contaminant sorption. Environmental Science and Pollution Research, v. 27, n. 1, p. 691–703, 2020. SCIVITTARO, W. B.; PARFITT, J. M. B.; JARDIM, T. M.; TREPTOW, R. C. B.; SILVEIRA, C. M.; BETTIM, H. C. Adubação Nitrogenada e Potássica para Cultivares de Arroz Irrigado Pelotas. Pelotas: EMBRAPA, 2018, 21p. (EMBRAPA, Circular 197). SEMIDA, W. M.; BEHEIRY, H. R.; SÉTAMOU, M.; SIMPSON, C. R.; ABD EL-MAGEED, T. A.; RADY, M. M.; NELSON, S. D. Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, v. 127, p. 333-347, 2019. SERAN, T. Effect of rice straw and husk Biochar on vegetative growth and yield attributes of Oryza sativa L. International Journal of Crop Science and Technology, v. 4, n. 2, p. 49-56, 2018. SERRANO, D. M. C. Avaliação do potencial de produção e exportação de pellets combustível no pólo florestal da região sul do Brasil. 104 f. Dissertação (Mestrado), Programa de Pós Graduação em Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2009. SHI, W.; JU, Y.; BIAN, R.; LI, L.; JOSEPH, S.; MITCHELL, D. R. G.; MUNROE, P.; TAHERYMOOSAVI, S.; PAN, G. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, v. 701, p. 134424, 2020. SHRESTHA, J.; KANDEL, M.; SUBEDI, S.; SHAH, K. K. Role of nutrients in rice ( Oryza sativa L.): A review . Agrica, v. 9, n. 1, p. 53, 2020. 155 SILBER, A.; LEVKOVITCH, I.; GRABER, E. R. PH-dependent mineral release and surface properties of cornstraw Biochar: Agronomic implications. Environmental Science and Technology, v. 44, n. 24, p. 9318–9323, 2010. SILVA, C. A. Estudo técnico-econômico da compactação de resíduos madeireiros para fins energéticos. 68 f. Dissertação (Mestrado), Programa de Pós Graduação em Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, 2007. SILVA, D. R. G.; LOPES, A. S. Princípios Básicos Para Formulação E Mistura De Fertilizantes. Editora UFLA, v. 89, p. 46, 2012. SILVA GONZAGA, M. I.; OLIVEIRA DA SILVA, P. S.; CARLOS DE JESUS SANTOS, J.; GANASSALI DE OLIVEIRA JUNIOR, L. F. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu- contaminated soil. Ecotoxicology and Environmental Safety, v. 183, 2019. SILVA, M. I.; MACKOWIAK, C.; MINOGUE, P.; REIS, A. F.; DA VEIGA MOLINE, E. F. Potenciais impactos do uso de biocarvão de lodo de esgoto no crescimento de mudas de especies florestais. Ciencia Rural, v. 47, n. 1, 2017. SIM, D. H. H.; TAN, I. A. W.; LIM, L. L. P.; HAMEED, B. H. Encapsulated Biochar-based sustained release fertilizer for precision agriculture: A review. Journal of Cleaner Production, v. 303, p. 127018, 2021. SINGH, B. P.; COWIE, A. L.; SMERNIK, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environmental Science and Technology, v. 46, n. 21, p. 11770–11778, 2012. SINGH, B. P.; FANG, Y.; BOERSMA, M.; COLLINS, D.; VAN ZWIETEN, L.; MACDONALD, L. M. In situ persistence and migration of Biochar carbon and its impact on native carbon emission in contrasting soils under managed temperate pastures. PLoS ONE, v. 10, n. 10, 2015. SINGH, B.; SINGH, B. P.; COWIE, A. L. Characterisation and evaluation of Biochars for their application as a soil amendment. Australian Journal of Soil Research, v. 48, p. 516–525, 2010. SNYDER, C. S.; SLATON, N. A. Rice Production in the United States-An Overview. Better Crops International, v. 16, p. 30-35, 2002. SOHI, S. P. Carbon storage with benefits. Science, v. 338, n. 6110, p. 1034–1035, 2012. SOHI, S. P.; KRULL, E.; LOPEZ-CAPEL, E.; BOL, R. A review of Biochar and its use and function in soil. Advances in Agronomy, v. 105, p. 47–82, 2010. SOLAIMAN, Z. M.; SHAFI, M. I.; BEAMONT, E.; ANAWAR, H. M. Poultry litter Biochar increases mycorrhizal colonisation, soil fertility and cucumber yield in a fertigation system on sandy soil. Agriculture (Switzerland), v. 10, n. 10, p. 1–14, 2020. SONG, G.; NOVOTNY, E. H.; SIMPSON, A. J.; CLAPP, C. E.; HAYES, M. H. B. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. European Journal of Soil Science, v. 59, n. 3, p. 505–516, 2008. SONG, W.; GUO, M. Quality variations of poultry litter Biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, v. 94, p. 138–145, 2012. 156 SOUZA, C. C. B. Alterações químicas, estruturais e na capacidade de adsorção de metais pesados da cama de frango durante a compostagem. 180 f. Tese (Doutorado) Programa de Pós Graduação em Agronomia - Ciência do Solo, Universidade Federal Rural do Rio de Janeiro, 2022. SPACCINI, R.; PICCOLO, A. Spectroscopic characterization of compost at different maturity stages. Clean - Soil, Air, Water, v. 36, n. 2, p. 152–157, 2008. SPACCINI, R.; PICCOLO, A. Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biology and Biochemistry, v. 41, n. 6, p. 1164–1172, 2009. SPONSEL, L. E. Amazon ecology and adaption. Anthropology, v. 15, p. 67–96, 1986. STRASSER, B. J. Donor side capacity of Photosystem II probed by chlorophyll a fluorescence transients. Photosynthesis Research, v. 52, n. 2, p. 147–155, 1997. STRASSER, R. J.; TSIMILLI-MICHAEL, M.; SRIVASTAVA, A. Analysis of the chlorophyll a fluorescence transient. In: PAPAGEORGIOU, G. C.; GOVINDJEE (Eds.). Chlorophyll a Fluorescence. Springer, 2004. v. 19, p. 321–362. SUN, T.; LEVIN, B. D. A.; GUZMAN, J. J. L.; ENDERS, A.; MULLER, D. A.; ANGENENT, L. T.; LEHMANN, J. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, v. 8, p. 1-12, 2017. SUN, X.; SHAN, R.; LI, X.; PAN, J.; LIU, X.; DENG, R.; SONG, J. Characterization of 60 types of Chinese biomass waste and resultant Biochars in terms of their candidacy for soil application. GCB Bioenergy, v. 9, n. 9, p. 1423–1435, 2017. SUSTR, M.; SOUKUP, A.; TYLOVA, E. Potassium in root growth and development. Plants, v. 8, n. 10, p. 435, 2019. TABATABAEI, M.; SOLTANIAN, S.; AGHBASHLO, M.; NIZAMI, A.-S. Fast pyrolysis of biomass: Advances in science and technology: A book review. Journal of Cleaner Production, v. 213, p. 1411–1413, 2019. TAGLIAFERRO, A.; ROSSO, C.; GIORCELLI, M. Biochar: feedstocks, production and characterization. Bristol: IOP Publishing, 2020, p. 1-80. TAHERYMOOSAVI, S.; JOSEPH, S.; PACE, B.; MUNROE, P. A comparison between the characteristics of single- and mixed-feedstock Biochars generated from wheat straw and basalt. Journal of Analytical and Applied Pyrolysis, v. 129, p. 123–133, 2018. TAKAHASHI, K.; KINOSHITA, T. The Regulation of Plant Cell Expansion: Auxin- Induced Turgor-Driven Cell Elongation. In: ROSE, R. J. (Ed). Molecular Cell Biology of the Growth and Differentiation of Plant Cells. Newcasttle: CRC Press, 2016, p. 1-396. TAO, S.; KIU, J.; JIN, K.; QIU, X.; ZHANG, Y.; REN, X.; HU, S. Preparation and characterization of triple polymer-coated controlled-release urea with water-retention property and enhanced durability. Journal of Applied Polymer Science, v. 120, n. 5, p. 2103–2111, 2010. TARIN, M. W. K.; FAN, L. L.; SHEN, L.; LAI, J. L.; TAYYAB, M.; SARFRAZ, R.; CHEN, L. Y.; YE, J.; HE, T. Y.; RONG, J. D.; CHEN, L. G.; ZHENG, Y. S. Effects of different Biochars ammendments on physiochemical properties of soil and root morphological attributes of Fokenia Hodginsii (Fujian cypress). Applied Ecology and Environmental Research, v. 17, n. 5, p. 11107–11120, 2019. 157 TAVARES, O. C. H.; SANTOS, L. A.; FERREIRA, L. M.; GARCÍA, A. C.; CASTRO, T. A. V. T.; ZONTA, E.; PEREIRA, M. G.; FERNANDES, M. S. Response surface modeling of humic acid stimulation of the rice (Oryza sativa L.) root system. Archives of Agronomy and Soil Science, v. 67, p. 1046–1059, 2020. TAYLOR, M. Climate-smart agriculture: what is it good for? Journal of Peasant Studies, v. 45, n. 1, p. 89–107, 2018. THOMAS, S. C.; FRYE, S.; GALE, N.; GARMON, M.; LAUNCHBURY, R.; MACHADO, N.; MELAMED, S.; MURRAY, J.; PETROFF, A.; WINSBOROUGH, C. Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management, v. 129, p. 62–68, 2013. TOMCZYK, A.; SOKOŁOWSKA, Z.; BOGUTA, P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, v. 19, p. 191-215, 2020. TOMEK, P.; LAZÁR, D.; ILÍK, P.; NAUS, J. On the intermediate steps between the O and P steps in chlorophyll a fluorescence rise measured at different intensities of exciting light. Australian Journal of Plant Physiology, v. 28, n. 11, p. 1151–1160, 2001. TORCHIA, D. F. DE O.; ZONTA, E.; DE ANDRADE, A. M.; GARCÍA, A. C. Production and characterization of Biochar obtained from different biomass and pyrolysis temperature. Brazilian Journal of Chemical Engineering, v. 39, n. 2, p. 415–427, 2021. UCHIMIYA, M.; WARTELLE, L. H.; LIMA, I. M.; KLASSON, K. T. Sorption of deisopropylatrazine on broiler litter Biochars. Journal of Agricultural and Food Chemistry, v. 58, n. 23, p. 12350–12356, 2010. UDEN, P. C. Nomenclature and terminology for analytical pyrolysis. Pure and Applied Chemistry, v. 65, n. 11, p. 2405-2409, 1993. USHIMA, A. H. Uso de bagaço de cana para finalidades energéticas. Disponível em: <https://escriba.ipt.br/pdf/174796.pdf>. Acesso em: 4 dez. 2020. UZOMA, K. C.; INOUE, M.; ANDRY, H.; FUJIMAKI, H.; ZAHOOR, A.; NISHIHARA, E. Effect of cow manure Biochar on maize productivity under sandy soil condition. Soil Use and Management, v. 27, n. 2, p. 205–212, 2011. VAN DE VELDEN, M.; BAEYENS, J.; BREMS, A.; JANSSENS, B.; DEWIL, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, v. 35, n. 1, p. 232–242, 2010. VAN TOL DE CASTRO, T. A.; GARCÍA, A. C.; TAVARES, O. C. H.; PEREIRA, E. G.; DE SOUZA, C. DA C. B.; TORCHIA, D. F. DE O.; DE PINHO, C. F.; CASTRO, R. N. Humic acids affect photosynthetic quantum efficiency in rice under water deficit. Theoretical and Experimental Plant Physiology, v. 34, p. 463-483, 2022. VENDRA SINGH, S.; CHATURVEDI, S.; DHYANI, V. C.; KASIVELU, G. Pyrolysis temperature influences the characteristics of rice straw and husk Biochar and sorption/desorption behaviour of their biourea composite. Bioresource Technology, v. 314, p. 23674, 2020. WALKER, D. J.; BLACK, C. R.; MILLER, A. J. The Role of Cytosolic Potassium and pH in the Growth of Barley Roots Physiology. Plant Physiology, v. 118, n. 3, p. 957-964, 1998. 158 WANG, D.; FONTE, S. J.; PARIKH, S. J.; SIX, J.; SCOW, K. M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, v. 303, p. 110–117, 2017. WANG, H.; WANG, X.; BI, L.; WANG, Y.; FAN, J.; ZHANG, F.; HOU, X.; CHENG, M.; HU, W.; WU, L.; XIANG, Y. Multi-objective optimization of water and fertilizer management for potato production in sandy areas of northern China based on TOPSIS. Field Crops Research, v. 240, p. 55–68, 2019. WANG, J.; XIONG, Z.; KUZYAKOV, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy, v. 8, n. 3, p. 512–523, 2016. WANG, L.; BUTTERLY, C. R.; WANG, Y.; HERATH, H. M. S. K.; XI, Y. G.; XIAO, X. J. Effect of crop residue Biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use and Management, v. 30, n. 1, p. 119–128, 2014. WANG, L.; O’CONNOR, D.; RINKLEBE, J.; OK, Y. S.; TSANG, D. C. W.; SHEN, Z.; HOU, D. Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, and Implications for Field Applications. Environmental Science and Technology, v. 54, n. 23, p. 14797–14814, 2020. WANG, L.; XUE, C.; NIE, X.; LIU, Y.; CHEN, F. Effects of Biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science, v. 181, n. 5, p. 635–643, 2018. WANG, X.; CHI, Q.; LIU, X.; WANG, Y. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed Biochar made from hydrothermally treated sewage sludge. Chemosphere, v. 216, p. 698–706, 2019. WAQAS, M.; ABURIAZAIZA, A. S.; MIANDAD, R.; REHAN, M.; BARAKAT, M. A.; NIZAMI, A. S. Development of Biochar as fuel and catalyst in energy recovery technologies. Journal of Cleaner Production, v. 188, p. 477–488, 2018. WRB (WORLD REFERENCE BASE FOR SOIL). IUSS Working Group World reference base for soil resources 2006. Rome: FAO, 2006, p. 1-145. WU, L.; WEI, C.; ZHANG, S.; WANG, Y.; KUZYAKOV, Y.; DING, X. MgO-modified Biochar increases phosphate retention and rice yields in saline-alkaline soil. Journal of Cleaner Production, v. 235, p. 901–909, 2019. WU, L.; ZHANG, S.; WANG, J.; DING, X. Phosphorus retention using iron (II/III) modified Biochar in saline-alkaline soils: Adsorption, column and field tests. Environmental Pollution, v. 261, 2020. WU, P.; WANG, Z.; WANG, H.; BOLAN, N. S.; WANG, Y.; CHEN, W. Visualizing the emerging trends of Biochar research and applications in 2019: a scientometric analysis and review. Biochar, v. 2, n. 2, p. 135–150, 2020. XIAO, F.; GÁMIZ, B.; PIGNATELLO, J. J. Science of the Total Environment Adsorption and desorption of nitrous oxide by raw and thermally air-oxidized chars. Science of the Total Environment, v. 643, p. 1436–1445, 2018. XIAO, R.; AWASTHI, M. K.; LI, R.; PARK, J.; PENSKY, S. M.; WANG, Q.; WANG, J. J.; ZHANG, Z. Recent developments in Biochar utilization as an additive in organic solid waste composting: A review. Bioresource Technology, v. 246, p. 203–213, 2017. 159 XIAO, X.; CHEN, Z.; CHEN, B. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of Biochars derived from diverse precursory materials. Scientific Reports, v. 6, 2016. XIAO, X.; LI, F.; HUANG, J.; SHENG, G. D.; QIU, Y. REDUCED ADSORPTION OF PROPANIL TO BLACK CARBON : EFFECT OF DISSOLVED ORGANIC MATTER LOADING MODE AND MOLECULE SIZE. Environmental toxicology and chemistry, v. 31, n. 6, p. 1187–1193, 2012. XU, Q.; WANG, J.; LIU, Q.; CHEN, Z.; JIN, P.; DU, J.; FAN, J.; YIN, W.; XIE, Z.; WANG, X. Long-Term Field Biochar Application for Rice Production: Effects on Soil Nutrient Supply, Carbon Sequestration, Crop Yield and Grain Minerals. Agronomy, v. 12, n. 8, 2022. YADAV, K.; JAGADEVAN, S. Influence of Process Parameters on Synthesis of Biochar by Pyrolysis of Biomass: An Alternative Source of Energy. In: IBRAHIM, H. A. Recent Advances in Pyrolysis. Intechopen, 2020, p. 1–14. YANG, G.; WANG, Z.; XIAN, Q.; SHEN, F.; SUN, C.; ZHANG, Y.; WU, J. Effects of pyrolysis temperature on the physicochemical properties of Biochar derived from vermicompost and its potential use as an environmental amendment. RSC Advances, v. 5, n. 50, p. 40117–40125, 2015. YANG, H.; YAN, R.; CHEN, H.; LEE, D. H.; ZHENG, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, v. 86, n. 12–13, p. 1781–1788, 2007. YANG, T.; ZHANG, S.; HU, Y.; WU, F.; HU, Q.; CHEN, G.; CAI, J.; WU, T.; MORAN, N.; YU, L.; XU, G. The role of a potassium transporter oshak5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiology, v. 166, n. 2, p. 945–959, 2014. YANG, Y.; SUN, K.; HAN, L.; JIN, J.; SUN, H.; YANG, Y.; XING, B. Effect of minerals on the stability of Biochar. Chemosphere, v. 204, p. 310–317, 2018. YAO, Y.; GAO, B.; CHEN, J.; YANG, L. Engineered Biochar Reclaiming Phosphate from Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer. Environmental Science and Technology, v. 47, p. 8700–8708, 2013. YE, L.; CAMPS-ARBESTAIN, M.; SHEN, Q.; LEHMANN, J.; SINGH, B.; SABIR, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use and Management, v. 36, n. 1, p. 2–18, 2020. YIN, Q.; WANG, R.; ZHAO, Z. Application of Mg–Al-modified Biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. Journal of Cleaner Production, v. 176, p. 230–240, 2018. YU, G. H.; KUZYAKOV, Y. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth-Science Reviews, v. 214, p. 103525, 2021. YUE, Y.; CUI, L.; LIN, Q.; LI, G.; ZHAO, X. Efficiency of sewage sludge Biochar in improving urban soil properties and promoting grass growth. Chemosphere, v. 173, p. 551– 556, 2017. YUSUF, M. A.; KUMAR, D.; RAJWANSHI, R.; STRASSER, R. J.; TSIMILLI-MICHAEL, M.; GOVINDJEE; SARIN, N. B. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a 160 fluorescence measurements. Biochimica et Biophysica Acta - Bioenergetics, v. 1797, n. 8, p. 1428–1438, 2010. ZAVALLONI, C.; ALBERTI, G.; BIASIOL, S.; VEDOVE, G. D.; FORNASIER, F.; LIU, J.; PERESSOTTI, A. Microbial mineralization of Biochar and wheat straw mixture in soil: A short-term study. Applied Soil Ecology, v. 50, n. 1, p. 45–51, 2011. ZHANG, Z. S.; SONG, X. L.; LU, X. G.; XUE, Z. S. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: Influences of vegetation coverage, plant communities, geomorphology, and seawalls. Journal of Soils and Sediments, v. 13, n. 6, p. 1043–1051, 2013. ZHAO, L.; CAO, X.; MAŠEK, O.; ZIMMERMAN, A. Heterogeneity of Biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, v. 256–257, p. 1–9, 2013. ZHAO, S. X.; TA, N.; WANG, X. D. Effect of temperature on the structural and physicochemical properties of Biochar with apple tree branches as feedstock material. Energies, v. 10, n. 9, 2017. ZHENG, J.; CHEN, J.; PAN, G.; LIU, X.; ZHANG, X.; LI, L.; BIAN, R.; CHENG, K.; JINWEI, Z. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment, v. 571, p. 206–217, 2016. ZHENG, J.; HAN, J.; LIU, Z.; XIA, W.; ZHANG, X.; LI, L.; LIU, X.; BIAN, R.; CHENG, K.; ZHENG, J.; PAN, G. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture, Ecosystems and Environment, v. 241, p. 70–78, 2017. ZHENG, R.; LI, C.; SUN, G.; XIE, Z.; CHEN, J.; WU, J.; WANG, Q. The influence of particle size and feedstock of Biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L. Environmental Science and Pollution Research, v. 24, n. 28, p. 22340–22352, 2017. ZONG, Y.; CHEN, D.; LU, S. Impact of Biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil. Journal of Plant Nutrition and Soil Science, v. 177, n. 6, p. 920–926, 2014.pt_BR
dc.subject.cnpqAgronomiapt_BR
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!

Files in This Item:
File Description SizeFormat 
2023 - Danielle França de Oliveira Torchia.pdf13.25 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.