Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/20735Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Dutra, Gabriel Almeida | - |
| dc.date.accessioned | 2025-03-31T17:23:39Z | - |
| dc.date.available | 2025-03-31T17:23:39Z | - |
| dc.date.issued | 2020-02-28 | - |
| dc.identifier.citation | DUTRA, Gabriel Almeida. Variação Sazonal no Proteoma do Fluido Folicular Equino. 2020. 30 f. Tese (Doutorado em Medicina Veterinária) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/20735 | - |
| dc.description.abstract | A presente pesquisa investigou a influência sazonal no proteoma do fluido folicular (FF) em equinos, uma temática pouco explorada na pecuária. Utilizando a abordagem de proteômica em alta escala, foram coletados e analizados perfis proteômicos de FF de folículos dominantes durante a estação anovulatória de primavera (SAN), bem como nas estações ovulatórias de primavera (SOV), verão (SU) e outono (FO). O estudo visou identificar variações sazonais em proteínas relacionadas ao crescimento folicular e oocitário, bem como mapear redes regulatórias dependentes da estação e proteínas-chave associadas. Independentemente da estação, identificou-se um total de 90 proteínas no FF, distribuídas como 63, 72, 69 e 78 na SAN, SOV, SU e FO, respectivamente. Cinquenta e duas proteínas foram comuns a todas as estações, 13 foram exclusivas de uma estação específica, e 25 foram compartilhadas entre duas ou mais estações. A análise de interação proteína-proteína (PPI) indicou papéis críticos prováveis do plasminogênio na estação SAN, da combinação protrombina/plasminogênio na SU, e do plasminogênio/complemento C3 nas estações SOV e FO. A apolipoproteína A1 demonstrou ser crucial em todas as estações. Os resultados evidenciaram que o proteoma do FF na estação de verão (SU) difere das demais estações, caracterizando-se por uma maior fluidez (baixa viscosidade). Destaca-se que o equilíbrio entre os conteúdos de protrombina, plasminogênio e o fator XII da coagulação no FF, pode ser crucial durante o pico da estação ovulatória (SU) por favorecer a fluidez do FF, explicando a menor incidência reportada de folículos anovulatórios hemorrágicos durante essa estação. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Folículo ovariano | pt_BR |
| dc.subject | Sazonalidade | pt_BR |
| dc.subject | Proteômica | pt_BR |
| dc.subject | Ovarian follicle | pt_BR |
| dc.subject | Seasonality | pt_BR |
| dc.subject | Proteomics | pt_BR |
| dc.title | Variação Sazonal no Proteoma do Fluido Folicular Equino | pt_BR |
| dc.title.alternative | Seasonal variation in equine follicular fluid proteome | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | Proteomic studies of follicular fluid (FF) exist for several species, including the horse; however, the seasonal influence on FF proteome has not been explored in livestock. The application of high-throughput proteomics of FF in horse has the potential to identify seasonal variations of proteins involved in follicle and oocyte growth. This study (i) profiles the proteomes of equine FF collected from dominant growing follicles during the spring anovulatory season (SAN), and spring (SOV), summer (SU), and fall (FO) ovulatory seasons; and (ii) identifies season- dependent regulatory networks and associated key proteins. Regardless of season, a total of 90 proteins were identified in FF, corresponding to 63, 72, 69, and 78 proteins detected in the SAN, SOV, SU, and FO seasons, respectively. Fifty-two proteins were common to all seasons, a total of 13 were unique to either season, and 25 were shared between two seasons or more. Protein- to-protein interaction (PPI) analysis indicated the likely critical roles of plasminogen in the SAN season, the prothrombin/plasminogen combination in SU, and plasminogen/complement C3 in both SOV and FO seasons. The apolipoprotein A1 appeared crucial in all seasons. The present findings show that FF proteome of SU differs from other seasons, with FF having high fluidity (low viscosity). Finally, the balance between the FF contents in prothrombin, plasminogen, and coagulation factor XII proteins favoring FF fluidity may be crucial at the peak of the ovulatory season (SU) and may explain the reported lower incidence of hemorrhagic anovulatory follicles during the SU season. | en |
| dc.contributor.advisor1 | Jacob, Julio Cesar Ferraz | - |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/4105470945179000 | pt_BR |
| dc.contributor.advisor-co1 | Mello, Marco Roberto Bourg de | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-9790-4764 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/3560332978218414 | pt_BR |
| dc.contributor.referee1 | Jacob, Julio Cesar Ferraz | - |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/4105470945179000 | pt_BR |
| dc.contributor.referee2 | Jesus, Vera Lucia Teixeira de | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/6838386218159684 | pt_BR |
| dc.contributor.referee3 | Massard, Carlos Luiz | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-8465-3038 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/7743112049924654 | pt_BR |
| dc.contributor.referee4 | Gomes, Gustavo Mendes | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-4967-8029 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/3235319534131230 | pt_BR |
| dc.contributor.referee5 | Melo, Cely Marinni | - |
| dc.contributor.referee5Lattes | - | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/7725276314913508 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Veterinária | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Medicina Veterinária (Patologia e Ciências Clínicas) | pt_BR |
| dc.relation.references | ACOSTA, T. J.; BEG, M. A; GINTHER, O. J. Aberrant blood flow area and plasma gonadotropin concentrations during the development of dominant-sized transitional anovulatory follicles in mares. Biology of reproduction, v. 71, p. 637-642, 2004. ALEXANDER, S. L.; IRVINE, C. H. G. Control of on set of the breeding season in the mare and its artificial regulation by progesterone treatment. Journal of Reproduction and Fertility Supplement, v. 44, p. 307-318, 1991. ALGRIANY, O.; BEVERS, M.; SCHOEVERS, E.; COLENBRANDER, B.; DIELEMAN, S. Follicle size-dependent effects of sow follicular fluid on in vitro cumulus expansion, nuclear maturation and blastocyst formation of sow cumulus oocytes complexes. Theriogenology, v. 62, p. 1483-1497, 2004. ALI, A.; DERAR, R.; HUSSEIN, H. Seasonal variation of the ovarian follicular dynamics and luteal functions of sheep in the subtropics. Theriogenology, v. 66, p. 463-469, 2006. AMBEKAR, A.S.; NIRUJOGI, R. S.; SRIKANTH, S.M.; CHAVAN, S.; KELKAR, D.S.; HINDUJA, I.; ZAVERI, K.; PRASAD, T. K.; HARSHA, H.C.; PANDEY, A.; et al. Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis. Journal of Proteomics, v. 87, p. 68-77, 2013. ANAHORY, T.; DECHAUD, H.; BENNES, R.; MARIN, P.; LAMB, N. J.; LAOUDJ, D. Identification of new proteins in follicular fluid of mature human follicles. Electrophoresis, v. 23, p. 1197-1202, 2002. ANGELUCCI, S.; CIAVARDELLI, D.; DI GIUSEPPE, F.; ELEUTERIO, E.; SULPIZIO, M.; TIBONI, G. M.; GIAMPIETRO, F.; PALUMBO, P.; DI ILIO, C. Proteome analysis of human follicular fluid. Biochim Biophys Acta, v. 1764, p. 1775- 1785, 2006. APPASAMY, M.; JAUNIAUX, E.; SERHAL, P.; AL-QAHTANI, A.; GROOME, N. P.; MUTTUKRISHNA, S. Evaluation of the relationship between follicular fluid oxidative 20 stress, ovarian hormones, and response to gonadotropin stimulation. Fertility and sterility, v. 89 p. 912-921, 2008. ARASHIRO, E. K.; PALHAO, M. P.; WOHLRES-VIANA, S.; SIQUEIRA, L. G.; CAMARGO, L.; HENRY, M.; VIANA, J. H. In vivo collection of follicular fluid and granulosa cells from individual follicles of different diameters in cattle by an adapted ovum pick-up system. Reproductive Biology and Endocrinology, v. 11, p. 73, 2013. ASSIDI, M.; MONTAG, M.; VAN DER VEN, K.; SIRARD, M. A. Biomarkers of human oocyte developmental competence expressed in cumulus cells before ICSI: a preliminary study. Journal of Assisted Reproduction and Genetics, v. 28, p. 173-188, 2011. BAGGERMAN, G.; VIERSTRAETE, E.; DE LOOF, A.; SCHOOFS, L.; Gel-based versus gel-free proteomics: a review. Combinatorial chemistry & high throughput screening, v. 8 p. 669-677, 2005. BAGOWSKI, C. P.; MYERS, J. W.; FERRELL, J. E. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. Journal of Biological Chemistry, v. 276, p. 37708-37714, 2001. BASHIR, S. T.; ISHAK, G. M.; GASTAL, M. O.; ROSER, J. F.; GASTAL, E. L. Changes in intrafollicular concentrations of free IGF-1, activin A, inhibin A, VEGF, estradiol, and prolactin before ovulation in mares. Theriogenology, v. 85, p. 1491-1498, 2016. BEERS, W. H. Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. Cell, v. 6, p. 379-386, 1975. BEG, M. A.; GINTHER, O. J. Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction, v. 132, p. 365–377, 2006. BIANCHI, L.; GAGLIARDI, A.; CAMPANELLA, G.; LANDI, C.; CAPALDO, A.; CARLEO, A.; ARMINI, A.; DE LEO, V.; PIOMBONI, P.; FOCARELLI, R.; et al. A methodological and functional proteomic approach of human follicular fluid en route for oocyte quality evaluation. Journal of Proteomics, v. 90, p. 61-76, 2013. BIANCHI, L.; GAGLIARDI, A.; LANDI, C.; FOCARELLI, R.; DE LEO, V.; LUDDI, A.; BINI, L.; PIOMBONI, P. Protein pathways working in human follicular fluid: the future for tailored IVF? Expert Reviews in Molecular Medicine, v.18, p. e9, 2016. BIJTTEBIER, J.; TILLEMAN, K.; DHAENENS, M.; DEFORCE, D.; VAN SOOM, A.; MAES, D. Comparative proteome analysis of porcine follicular fluid and serum reveals that excessive α2‐macroglobulin in serum hampers successful expansion of cumulus‐ oocyte complexes. Proteomics, v.9, p. 4554-4565, 2009. BONNET, A.; DALBIES-TRAN, R.; SIRARD, M. A. Focus on Mammalian Embryogenomics Opportunities and challenges in applying genomics to the study of oogenesis and folliculogenesis in farm animals. Reproduction, v. 135, p. 119-128, 2008. 21 BRÄNNSTRÖM, M.; HELLBERG, P. Bradykinin potentiates LH-induced follicular rupture in the rat ovary perfused in vitro. Human Reproduction, v. 4, p. 475-481, 1989. BRÜSSOW, K. P.; RÁTKY, J.; TORNER, H.; EGERSZEGI, I.; SCHNEIDER, F.; SOLTI, L.; TUCHSCHERER, A. Follicular and oocyte development in gilts of different age. Acta Veterinaria Hungarica, v. 50, p. 101-110, 2002. CAO, M.; NICOLA, E.; PORTELA, V. M.; PRICE, C. A. Regulation of serine protease inhibitor-E2 and plasminogen activator expression and secretion by follicle stimulating hormone and growth factors in non-luteinizing bovine granulosa cells in vitro. Matrix Biology, v. 25, p. 342-354, 2006. CARNEVALE, E. M. The mare model for follicular maturation and reproductive aging in the woman. Theriogenology, v. 69, p. 23-30, 2008. CHANDRAMOULI, K.; QIAN, P. Y. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Human genomics and proteomics, v. 1, p. 1-22, 2009. CHEN, F.; SPIESSENS, C.; D’HOOGHE, T.; PEERAER, K.; CARPENTIER, S. Follicular fluid biomarkers for human in vitro fertilization outcome: Proof of principle. Proteome Science, v. 14, p. 17, 2016. CORTEZZI, S. S.; GARCIA, J. S.; FERREIRA, C.R.; BRAGA, D. P.; FIGUEIRA, R. C.; IACONELLI, A.; SOUZA, G. H.; BORGES, E.; EBERLIN, M. N. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. Analytical and bioanalytical chemistry, v. 401, p. 1331–1339, 2011. CRAIG, R.; BEAVIS, R. C. TANDEM: matching proteins with tandem mass spectra. Bioinformatics, v. 20, p. 1466–1467, 2004. CURRY, T. E.; OSTEEN, K. G. The matrix metalloproteinase system: changes, regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocrine Reviews, v. 24, p. 428-465, 2003. DE AGOSTINI, A. I.; DONG, J-C.; DE VANTÉRY ARRIGHI, C.; RAMUS, M-A.; DENTAND-QUADRI, I.; THALMANN, S.; VENTURA, P.; IBECHEOLE, V.; MONGE, F.; FISCHER, A. M.; et al. Human follicular fluid heparan sulfate contains abundant 3-O-sulfated chains with anticoagulant activity. Journal of Biological Chemistry, v. 283, p. 28115-28124, 2008. DONADEU, F. X.; GINTHER, O. J. Effect of number and diameter of follicles on plasma concentrations of inhibin and FSH in mares. Reproduction, v. 121, p. 897–903, 2001. DONADEU, F. X.; GINTHER, O. J. Follicular waves and circulating concentrations of gonadotrophins, inhibin and oestradiol during the anovulatory season in mares. Reproduction, v. 124, p. 875–885, 2002. DONADEU, F. X.; WATSON, E. D. Seasonal changes in ovarian activity: lessons learnt from the horse. Animal Reproduction Science, v. 100, p. 225-242, 2007. 22 DOWSEY, A. W.; DUNN, M. J.; YANG, G. The role of bioinformatics in two- dimensional gel electrophoresis. Proteomics, v. 3, p. 1567–1596, 2003. DUCOLOMB, Y.; GONZÁLEZ-MÁRQUEZ, H.; FIERRO, R.; JIMÉNEZ, I.; CASAS, E.; FLORES, D.; BONILLA, E.; SALAZAR, Z.; BETANCOURT, M. Effect of porcine follicular fluid proteins and peptides on oocyte maturation and their subsequent effect on in vitro fertilization. Theriogenology, v. 79, p. 896-904, 2013. EBISCH, I. M.; THOMAS, C. M.; WETZELS, A. M.; WILLEMSEN, W. N.; SWEEP, F. C.; STEEGERS-THEUNISSEN, R. P. Review of the role of the plasminogen activator system and vascular endothelial growth factor in subfertility. Fertility and Sterility, v. 90, p. 2340-2350, 2008. FAHIMINIYA, S.; GÉRARD, N. Le liquide folliculaire chez les mammifères. Gynécologie Obstétrique & Fertilité, v. 38, p. 402-404, 2010. FAHIMINIYA, S.; LABAS, V.; ROCHE, S.; DACHEUX, J. L.; GÉRARD, N. Proteomic analysis of mare follicular fluid during late follicle development. Proteome Science, v. 9, p. 54, 2011. FAHIMINIYA, S.; REYNAUD, K.; LABAS, V.; BATARD, S.; CHASTANT- MAILLARD, S.; GÉRARD, N. Steroid hormones content and proteomic analysis of canine follicular fluid during the preovulatory period. Reproductive Biology and Endocrinology, v. 8, p. 132, 2010. FEIST, P.; HUMMON, A. B. Proteomic challenges: sample preparation techniques for microgram-quantity protein analysis from biological samples. International Journal of Molecular Sciences, v. 16, p. 3537-3563, 2015. FERRAZZA, R. D. A.; GARCIA, H. D. M.; SCHMIDT, E. M. D. S.; MIHM CARMICHAEL, M.; SOUZA, F. F. D.; BURCHMORE, R.; SARTORI, R.; ECKERSALL, P. D.; FERREIRA, J. C. P. Quantitative proteomic profiling of bovine follicular fluid during follicle development. Biology of Reproduction, v. 97, p. 835-849, 2017. FEUGANG, J. M.; RODRIGUEZ-MUNOZ, J. C.; WILLARD, S. T.; BATHGATE, R. A.; RYAN, P. L. Examination of relaxin and its receptors expression in pig gametes and embryos. Reproduction Biology Endocrinology, v. 9, p. 10, 2011. FITZGERALD, B. P.; AFFLECK, K. J.; BARROWS, S. P.; MURDOCH, W. L.; BARKER, K. B.; LOY, R. G. Changes in LH pulse frequency and amplitude in intact mares during the transition into the breeding season. Journal of Reproduction and Fertility, v. 79, p. 485-493, 1987. FORTUNE, J. E. Ovarian follicular growth and development in mammals. Biology of reproduction, v. 50, p. 225-232, 1994. 23 FREEDMAN, L. J.; GARCIA, M. C.; GINTHER, O. J. Influence of photoperiod and ovaries on seasonal reproductive activity in mares. Biology of Reproduction, v. 20, p. 567-574, 1979. FU, Q.; HUANG, Y.; WANG, Z.; CHEN, F.; HUANG, D.; LU, Y.; LIANG, X.; ZHANG, M. Proteome profile and quantitative proteomic analysis of buffalo (Bubalus bubalis) follicular fluid during follicle development. International Journal of Molecular Sciences, v. 17, p. 618, 2016. GAKHAR, L.; BARTLETT, J. A.; PENTERMAN, J.; MIZRACHI, D.; SINGH, P. K.; MALLAMPALLI, R. K.; RAMASWAMY, S.; MCCRAY, P. B. PLUNC is a novel airway surfactant protein with anti-biofilm activity. PloS One, v. 5, p. e9098, 2010. GASTAL, E. L.; GASTAL, M. O.; BERGFELT, D. R.; GINTHER, O. J. Role of diameter differences among follicles in selection of a future dominant follicle in mares. Biology of Reproduction, v. 57, p. 1320-1327, 1997. GASTAL, E. L.; GASTAL, M. O.; DONADEU, F. X.; ACOSTA, T. J.; BEG, M. A.; GINTHER, O. J. Temporal relationships among LH, estradiol, and follicle vascularization preceding the first compared with later ovulations during the year in mares. Animal Reproduction Science, v. 102, p. 314-321, 2007. GASTAL, E. L.; GASTAL, M. O.; GINTHER, O. J. Relationships of changes in B-mode echotexture and colour-Doppler signals in the wall of the preovulatory follicle to changes in systemic oestradiol concentrations and the effects of human chorionic gonadotrophin in mares. Reproduction, v. 131, p. 699-709, 2006. GASTAL, E. L.; GASTAL, M. O.; WILTBANK, M. C.; GINTHER, O. J. Follicle deviation and intrafollicular and systemic estradiol concentrations in mare. Biology of Reproduction, v. 61, p. 31-39, 1999. GERARD, N.; MONGET, P. Intrafollicular insulin-like growth factor-binding protein levels in equine ovarian follicles during preovulatory maturation and regression. Biology of reproduction, v. 58, p. 1508–1514, 1998. GILCHRIST, R. B.; RITTER, L. J.; ARMSTRONG, D. T. Oocyte–somatic cell interactions during follicle development in mammals. Animal reproduction science, v. 82, p. 431-446, 2004. GINTHER, O. J. Folliculogenesis during the transitional period and early ovulatory season in mares. Journal of Reproduction and Fertility, v. 90, p. 311-320, 1990. GINTHER, O. J. Pitfalls in animal reproduction research: how the animal guards nature's secrets. Theriogenology, v. 80, p. 169-175, 2013. GINTHER, O. J. Reproductive Biology of the Mare: Basic and Applied Aspects. Equiservices Cross Plains, WI, USA, 1979. GINTHER, O. J. Reproductive Biology of the Mare: Basic and Applied Aspects. Equiservices Cross Plains, WI, USA, 1992. 24 GINTHER, O. J.; GASTAL, E. L.; GASTAL, M. O.; BEG, M. A. Seasonal influence on equine follicle dynamics. Animal Reproduction, v.1, p. 31-44, 2004. GINTHER, O. J.; GASTAL, M. O.; GASTAL, E. L.; JACOB, J. C.; BEG, M. A. Age- related dynamics of follicles and hormones during an induced ovulatory follicular wave in mares. Theriogenology, v. 71, p. 780-788, 2008. GOLDSACK, N. R.; CHAMBERS, R. C.; DABBAGH, K.; LAURENT, G. J. Molecules in focus Thrombin. The International Journal of Biochemistry & Cell Biology, v. 30, p. 641-646, 1998. GOSDEN, R. G.; HUNTER, R. H.; TELFER, E.; TORRANCE, C.; BROWN, N. Physiological factors underlying the formation of ovarian follicular fluid. Reproduction, v. 82, p. 813-825, 1988. GYGI, S. P.; CORTHALS, G. L.; ZHANG, Y.; ROCHON, Y.; AEBERSOLD, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences, v. 97, p. 9390-9395, 2000. HANRIEDER, J.; NYAKAS, A.; NAESSEN, T.; BERGQUIST, J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. Journal of Proteome Research, v. 7, p. 443-449, 2008. HANRIEDER, J.; ZUBEROVIC, A.; BERGQUIST, J. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: A gel-free multidimensional electrophoresis approach for proteomic profiling— Exemplified on human follicular fluid. Journal of Chromatography, v. 1216, p. 3621- 3628, 2009. HELLBERG, P.; LARSON, L.; OLOFSSON, J.; HEDIN, L.; BRÄNNSTRÖM, M. Stimulatory effects of bradykinin on the ovulatory process in the in vitro-perfused rat ovary. Biology of Reproduction, v. 44, p. 269-274, 1991. HOFMAN, Z.; DE MAAT, S.; HACK, C. E.; MAAS, C. Bradykinin: inflammatory product of the coagulation system. Clinical Reviews in Allergy & Immunology, v. 51, p. 152-161, 2016. HOSHINO, T.; SHIMIZU, K.; HONDA, T.; KAWAKATSU, T.; FUKUYAMA, T.; NAKAMURA, T.; MATSUDA, M.; TAKAI, Y. A novel role of nectins in inhibition of the e-cadherin–induced activation of Rac and formation of cell-cell adherens junctions. Molecular Biology of the Cell, v. 15, p. 1077-1088, 2004. HUNTER, M. G.; BIGGS, C.; FAILLACE, L. S.; PICTON, H. M. Current concepts of folliculogenesis in monovular and polyovular farm species. Journal of Reproduction and Fertility, v. 45, p. 21-38, 1992. 25 HUNTER, M. G.; ROBINSON, R. S.; MANN, G. E.; WEBB, R. Endocrine and paracrine control of follicular development and ovulation rate in farm species. Animal Reproduction Science, v. 82, p. 461-477, 2004. IRVINE, C. H.; ALEXANDER, S. L. The dynamics of gonadotrophin-releasing hormone, LH and FSH secretion during the spontaneous ovulatory surge of the mare as revealed by intensive sampling of pituitary venous blood. Journal of endocrinology, v. 140, p. 283-295, 1994. ISHAK, G. M.; BASHIR, S. T.; DUTRA, G. A.; GASTAL, G. D. A.; GASTAL, M. O.; CAVINDER, C. A.; FEUGANG, J. M.; GASTAL, E. L. In vivo antral follicle wall biopsy: a new research technique to study ovarian function at the cellular and molecular levels. Reproductive Biology and Endocrinology, v. 16, p. 71, 2018. ISHAK, G. M.; BASHIR, S. T.; GASTAL, M. O.; GASTAL, E. L. Pre-ovulatory follicle affects corpus luteum diameter, blood flow, and progesterone production in mares. Animal Reproduction Science, v. 187, p. 1-12, 2017. ITO, M.; MIYADO, K.; NAKAGAWA, K.; MURAKI, M.; IMAI, M.; YAMAKAWA, N.; QIN, J.; HOSOI, Y.; SAITO, H.; TAKAHASHI, Y. Age-associated changes in the subcellular localization of phosphorylated p38 MAPK in human granulosa cells. Molecular human reproduction, v. 16, p. 928-937, 2010. IWASE, A.; KOBAYASHI, H.; GOTO, M.; NAKAHARA, T.; NAKAMURA, T.; KONDO, M.; NAGATOMO, Y.; KOTANI, T.; KIKKAWA, F. A proteomic analysis of human follicular fluid: Comparison between fertilized oocytes and non-fertilized oocytes in the same patient. Journal of Assised Reproduction and Genetics, v. 30, p. 1231- 1238, 2013. JARKOVSKA, K.; MARTINKOVA, J.; LISKOVA, L.; HALADA, P.; MOOS, J.; REZABEK, K.; GADHER, S. J.; KOVAROVA, H. Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization. Journal of Proteome Research, v. 9, p. 1289-1301, 2010. JIANG, L.; HE, L.; FOUNTOULAKIS, M. Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. Journal of Chromatography A, v. 1023, p. 317-320, 2004. LANDER, E. S.; LINTON, L. M.; BIRREN, B.; NUSBAUM, C.; ZODY, M. C.; BALDWIN, J.; et al. Erratum: Initial sequencing and analysis of the human genome: International Human Genome Sequencing Consortium. Nature, v. 412, p. 565-566, 2001. LEE, H. C.; LEE, S. W, LEE, K. W.; CHA, K. Y.; KIM, K. H.; LEE, S. Identification of new proteins in follicular fluid from mature human follicles by direct sample rehydration method of two-dimensional polyacrylamide gel electrophoresis. Journal of Korean medical science, v. 20, p. 456-460, 2002. LEWANDOWSKA, A. E.; MACUR, K.; CZAPLEWSKA, P.; LISS, J.; ŁUKASZUK, K.; OŁDZIEJ, S. Qualitative and quantitative analysis of proteome and peptidome of 26 human follicular fluid using multiple samples from single donor with LC–MS and SWATH methodology. Journal of Proteome Research, v. 16, p. 3053-3067, 2017. LI, K.; LIU, Y.; XIA, X.; WANG, L.; LU, M.; HU, Y.; XU, C. Bactericidal/permeability- increasing protein in the reproductive system of male mice may be involved in the sperm– oocyte fusion. Reproduction, v. 146, p. 135-144, 2013. MAKKER, A.; GOEL, M. M.; NIGAM, D.; MAHDI, A. A.; DAS, V.; AGARWAL, A.; PANDEY, A.; GAUTAM, A. Aberrant Akt activation during implantation window in infertile women with intramural uterine fibroids. Reproductive Sciences, v. 25, p. 1243- 1253, 2017. MALIZIA, B. A.; WOOK, Y. S.; PENZIAS, A. S.; USHEVA, A. The human ovarian follicular fluid level of interleukin-8 is associated with follicular size and patient age. Fertility and sterility, v. 93, p. 537-543, 2010. MARKSTROM, E.; SVENSSON, E.; SHAO, R.; SVANBERG, B.; BILLIG, H. Survival factors regulating ovarian apoptosis--dependence on follicle differentiation. Reproduction, v. 123, p. 23-30, 2002. MARTINUK, S. D.; CHIZEN, D. R.; PIERSON, R. A. Ultrasonographic morphology of the human preovulatory follicle wall prior to ovulation. The Official Journal of the American Association of Clinical Anatomists and the British Association of Clinical Anatomists, v. 5, p. 339-352, 1992. MARTORIATI, A.; DUCHAMP, G.; GERARD, N. In vivo effect of epidermal growth factor, interleukin-1{beta}, and interleukin-1RA on equine preovulatory follicles. Biology of reproduction, v. 68, p. 1748-1754, 2003. MASON, H. D.; WILLIS, D. S.; BEARD, R. W.; WINSTON, R. M.; MARGARA, R.; FRANKS, S. Estradiol production by granulosa cells of normal and polycystic ovaries: Relationship to menstrual cycle history and concentrations of gonadotropins and sex steroids in follicular fluid. The Journal of Clinical Endocrinology & Metabolism, v.79, p. 1355-1360, 1994. MIAO, X.; LUO, Q.; ZHAO, H.; QIN, X. Ovarian proteomic study reveals the possible molecular mechanism for hyperprolificacy of Small Tail Han sheep. Scientific reports, v.6, p. 1-10, 2016. MOU, L.; XIE, N. Male infertility-related molecules involved in sperm-oocyte fusion. Journal of Reproduction and Development, v. 63, p. 1-7, 2017. MUSLIN, A. J.; KLIPPEL, A.; WILLIAMS, L. T. Phosphatidylinositol 3-kinase activity is important for progesterone-induced Xenopus oocyte maturation. Molecular and Cellular Biology, v. 13, p. 6661-6666, 1993. NAGY, P.; GUILLAUME, D.; DAELS, P. Seasonality in mares. Animal Reproduction Science, v. 60, p. 245-262, 2000. 27 OH, J. W.; KIM, S. K.; CHO, K. C.; KIM, M. S.; SUH, C. S.; LEE, J. R.; KIM, K. P. Proteomic analysis of human follicular fluid in poor ovarian responders during in vitro fertilization. Proteomics, v. 17, p. 1600333, 2017. O’FARRELL, P. H. The pre-omics era: the early days of two-dimensional gels. Proteomics, v. 8, p. 4842-4852, 2008. PALMER, E.; DRIANCOURT, M. A. Use of ultrasonic echography in equine gynecology. Theriogenology, v. 13, p. 203-216, 1980. PANDEY, A.; MANN, M. Proteomics to study genes and genomes. Nature, v. 405, p. 837-846, 2000. PARAMIO, J. M.; SEGRELLES, C.; RUIZ, S.; JORCANO, J. L. Inhibition of protein kinase B (PKB) and PKCζ mediates keratin K10-induced cell cycle arrest. Molecular and Cellular Biology, v. 21, p. 7449-7459, 2001. PAULA, A. R. J.; VAN TIBURG, M. F.; LOBO, M. D. P.; MONTEIRO-MOREIRA, A. C. O.; MOREIRA, R. A.; MELO, C. H. S.; SOUZA-FABJAN, J. M. G.; ARAÚJO, A. A.; MELO, L, M.; TEIXEIRA, D. I. A.; et al. Proteomic analysis of follicular fluid from tropically-adapted goats. Animal Reproduction Science, v. 188, p. 35-44, 2018. PELTIER, M. R.; ROBINSON, G.; SHARP, D. C. Effects of melatonin implants in pony mares. 2. Long-term effects. Theriogenology, v. 49, p. 1125–1142, 1998. PERKINS, D. N.; PAPPIN, D. J.; CREASY, D. M.; COTTRELL, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, v. 20, p. 3551–3567, 1999. REGIANI, T.; CORDEIRO, F. B.; DA COSTA, L. D. V. T.; SALGUEIRO, J.; CARDOZO, K.; CARVALHO, V. M.; PERKEL, K. J.; ZYLBERSZTEJN, D. S.; CEDENHO, A. P.; LO TURCO, E. G. Follicular fluid alterations in endometriosis: label- free proteomics by MSE as a functional tool for endometriosis. Systems Biology in Reproductive Medicine, v. 61, p. 263-276, 2015. REVELLI, A.; DELLE PIANE, L.; CASANO, S.; MOLINARI, E.; MASSOBRIO, M.; RINAUDO, P. Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics. Reproductive Biology and Endocrinology, v. 7, p. 40, 2009. RICHARDS, J. S.; RUSSEL, D. L.; OCHSNER, S.; HSIEH, M., DOYLE, K. H.; FALENDER, A. E.; et al. "Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization." Recent progress in hormone research, v. 57, p. 195-220, 2002. ROACH, L. E.; PETRIK, J. J.; PLANTE, L.; LAMARRE, J.; GENTRY, P. A. Thrombin generation and presence of thrombin receptor in ovarian follicles. Biology of Reproduction, v. 66, p. 1350-1358, 2002. RODGERS, R. J.; IRVING-RODGERS, H. F.; RUSSELL, D. L. Extracellular matrix of the developing ovarian follicle. Reproduction, v.126, p. 415-424, 2003. 28 SANTA, C.; ANJO, S. I.; MANADAS, B. Protein precipitation of diluted samples in SDS‐containing buffer with acetone leads to higher protein recovery and reproducibility in comparison with TCA/acetone approach. Proteomics, v. 16, p. 1847-1851, 2016. SCHIRMER, E. C.; YATES 3rd J. R.; GERACE, L. MudPIT: A powerful proteomics tool for discovery. Discovery medicine, v. 18, p. 38-39, 2003. SEABORNE, E. The oestrous cycle of the mare and some associated phenomena. The Anatomical Record, v. 30, p. 277-287, 1925. SHARP, D. C.; GRUBAUGH, W. R.; WEITHENAUER, J.; DAVIS, S. D.; WILCOX, C. J. Effects of steroid administration on pituitary luteinizing hormone and follicle- stimulating hormone in ovariectomized pony mares in the early spring; pituitary responsiveness to gonadotropin-releasing hormone and pituitary gonadotropin content. Biology of Reproduction, v. 44, p. 982-990, 1991. SHARP, D. C.; WOLFE, M. W.; CLEAVER, B. D.; NILSON, J. Effects of estradiol17 administration on steady-state messenger ribonucleic acid (mRNA) encoding equine and LH/CG subunits in pituitari esofovariectomized pony mares. Theriogenology, v. 55, p. 1083-1093, 2001. SHEN, X.; LIU, X.; ZHU, P.; ZHANG, Y.; WANG, J.; WANG, Y.; WANG, W.; LIU, J.; LI, N.; LIU, F. Proteomic analysis of human follicular fluid associated with successful in vitro fertilization. Reproductive Biology and Endocrinology, v. 15, p. 58, 2017. SILVERMAN, G. A.; BIRD, P. I.; CARRELL, R. W.; CHURCH, F. C.; COUGHLIN, P. B.; GETTINS, P. G. W.; IRVING, J. A. I.; LOMAS, D. A.; LUKE, C. J.; MOYER, R. W.; et al. The serpins are an expanding superfamily of structurally similar but funtionally diverse proteins: evolution, mechanism of inhibition, novel functions, and a revised nomenclature. Journal of Biological Chemistry, v. 276, p. 33293-33296, 2001. SPITZER, D.; MURACH, K. F.; LOTTSPEICH, F.; STAUDACH, A.; ILLMENSEE, K. Different protein patterns derived from follicular fluid of mature and immature human follicles. Human reproduction, v. 11, p. 798-807, 1996. STEEL L. F.; BRIAN, B.; SAMIR, M. Methods of comparative proteomic profiling for disease diagnostics. Journal of Chromatography, v. 815, p. 275-284, 2005. SZKLARCZYK, D.; FRANCESCHINI, A.; WYDER, S.; FORSLUND, K.; HELLER, D.; HUERTA-CEPAS, J.; SIMONOVIC, M.; ROTH, A.; SANTOS, A.; TSAFOU, K. P.; et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Research, v. 43, p. D447-D452, 2015. TAKÁČ, T.; ŠAMAJOVÁ, O.; PECHAN, T.; LUPTOVČIAK, I.; ŠAMAJ, J. Feedback microtubule control and microtubule-actin cross-talk in Arabidopsis revealed by integrative proteomic and cell biology analysis of KATANIN 1 mutants. Molecular & Cellular Proteomics, v. 16, p. 1591-1609, 2017. 29 TAKÁČ, T.; VADOVIČ, P.; PECHAN, T.; LUPTOVČIAK, I.; ŠAMAJOVÁ, O.; ŠAMAJ, J. Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6. Scientific Reports, v.6, p. 28306, 2016. LO TURCO, E. G.; CORDEIRO, F. B.; DE CARVALHO L.; P. H. D. C.; GOZZO F. C.; PILAU, E. J.; SOLER, T. B.; DA SILVA, B. F.; DEL GIUDICE, P. T.; BERTOLLA,; R. P.; FRAIETTA R.; et al. Proteomic analysis of follicular fluid from women with and without endometriosis: new therapeutic targets and biomarkers. Molecular Reproduction and Development, v. 80, p. 441-450, 2013. TURNER, D. D.; GARCIA. M. C.; GINTHER O. J. Follicular and gonadotropic changes throughout the year in pony mares. Journal of Veterinary Research, v. 40, p. 1694– 1700, 1979. VALCKX, S. D. M.; ARIAS-ALVAREZ, M.; DE PAUW, I.; FIEVEZ, V.; VLAEMINCK, B.; FRANSEN, E.; BOLS, P. E. J.; LEROY, J. L. M. R. Fatty acid composition of the follicular fluid of normal weight, overweight and obese women undergoing assisted reproductive treatment: a descriptive cross-sectional study. Reproductive Biology and Endocrinology, v. 12, p. 1-11, 2014. VON OTTE, S.; PALETTA, J. R. J.; BECKER, S.; KÖNIG, S.; FOBKER, M.; GREB, R. R.; KIESEL L.; ASSMANN, G.; DIEDRICH, K.; NOFER, J. R. Follicular fluid high density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis. Journal of Biological Chemistry, v. 281 p. 5398-5405, 2006. VON WALD, T.; MONISOVA, Y.; HACKER, M. R.; YOO, S. W.; PENZIAS, A. S.; REINDOLLAR, R. R.; USHEVA, A. Age-related variations in follicular apolipoproteins may influence human oocyte maturation and fertility potential. Fertility and sterility, v. 93, p. 2354-2361, 2002. WASHBURN, M. P.; WOLTERS, D.; YATES, J. R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology, v.19, p. 242-247, 2001. WATSON, E. D.; AL-ZI'ABI, M. O. Characterization of morphology and angiogenesis in follicles of mares during spring transition and the breeding season. Reproduction, v. 124, p. 227-234, 2002. WATSON, E. D.; HEALD, M.; TSIGOS, A.; LEASK, R.; STEELE, M.; GROOME, N.; PANDRILEY, S. C. Plasma FSH, inhibin A and inhibin isoforms containing pro- and – C during winter anoestrus, spring transition and the breeding season in mares. Reproduction, v. 123, p. 535–542, 2002. WHITMORE, H. L.; WENTWORTH, B. C.; GINTHER, O. J. Circulating concentrations of luteinizing hormone during estrous cycle of mares as determined by radioimmunoassay. American Journal of Veterinary Research, v. 34, p. 631-636, 1973. WILKINS, M. R.; SANCHEZ, J. C.; GOOLEY, A. A.; APPEL, R. D.; HUMPHERY- SMITH, I.; HOCHSTRASSER, D. F.; WILLIAMS, K. L. Progress with proteome 30 projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnology and genetic engineering review, v. 13, p. 19-50, 1996. WU, C. C.; YATES, J. R. The application of mass spectrometry to membrane proteomics. Nature biotechnology, v. 21, p. 262-267, 2003. WU, Y. T.; WANG, T. T.; CHEN, X. J.; ZHU, X. M.; DONG, M. Y.; SHENG, J. Z.; et al. Bone morphogenetic protein-15 in follicle fluid combined with age may differentiate between successful and unsuccessful poor ovarian responders. Reproductive Biology and Endocrinology, v. 10, p. 116, 2012. YATES 3 rd , J. R.; ENG, J. K.; MCCORMACK, A. L.; SCHIELTZ, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Analytical chemistry, v. 67, p. 1426–1436, 1995. YIE, S. M.; BROWN. G. M.; LIU, G. Y.; COLLINS, J. A.; DAYA, S.; HUGHES, E. G.; FOSTER, W. G.; YOUNGLAI, E. V.; Melatonin and steroids in human pre-ovulatory follicular fluid: seasonal variations and granulosa cell steroid production. Human Reproduction, v. 10, p. 50-55, 1995. YOSHIMURA, Y.; ESPEY, L.; HOSOI, Y.; ADACHI, T.; ATLAS, S. J.; GHODGAONKAR, R. B.; DUBIN, N. H.; WALLACH, E. E. The effects of bradykinin on ovulation and prostaglandin production by the perfused rabbit ovary. Endocrinology, v. 122, p. 2540-2546, 1988. ZACHUT, M.; SOOD, P.; LEVIN, Y.; MOALLEM, U. Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. Journal of Proteomics, v. 139, p. 122-129, 2016. ZAMAH, A. M.; HASSIS, M. E.; ALBERTOLLE, M. E.; WILLIAMS, K. E. Proteomic analysis of human follicular fluid from fertile women. Clinical Proteomics, v. 12, p. 5, 2015. ZHANG, Y.; FONSLOW, B. R.; SHAN, B.; BAEK, M. C.; YATES,J. R. Protein analysis by shotgun/bottom-up proteomics. Chemical reviews, v. 113, p. 2343-2394, 2013. | pt_BR |
| dc.subject.cnpq | Medicina Veterinária | pt_BR |
| Appears in Collections: | Mestrado em Medicina Veterinária (Patologia e Ciências Clínicas) | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2020 - Gabriel Almeida Dutra.pdf | 2.47 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
