Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/21232Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Rodrigues, Hugo Machado | - |
| dc.date.accessioned | 2025-04-25T16:19:51Z | - |
| dc.date.available | 2025-04-25T16:19:51Z | - |
| dc.date.issued | 2025-02-17 | - |
| dc.identifier.citation | RODRIGUES, Hugo Machado. Eficiência do Autora: um Algoritmo para delineamento automático de áreas de referência para suporte à amostragem otimizada de solos. 2025. 146 f. Tese (Doutorado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/21232 | - |
| dc.description.abstract | O algoritmo autoRA é uma metodologia baseada em dados projetada para delinear Áreas de Referência (ARs) que capturam fatores críticos de formação do solo, aprimorando os fluxos de trabalho de mapeamento digital do solo (MDS). Ao aproveitar o Índice de Dissimilaridade de Gower, o autoRA determina sistematicamente o tamanho ideal da área alvo e as configurações de resolução espacial, equilibrando desempenho preditivo e custo-benefício. Para avaliar sua eficácia, o autoRA foi testado em três cenários distintos. No primeiro cenário, realizado no Rio de Janeiro e na Flórida, examinamos o efeito da resolução espacial no cálculo do Índice de Gower e o impacto do tamanho da área-alvo no desempenho do modelo. O modelo preditivo foi desenvolvido para estimar uma Superfície Teórica Simulada (STS) usando uma única iteração. O Modelo de Área de Referência (MAR) ideal com uma área alvo de 50% e um tamanho de bloco de 10 pixels alcançou valores de Distância Euclidiana (DE) (0,15 no Rio de Janeiro e 0,38 na Flórida), aproximando-se dos resultados da amostragem exaustiva e reduzindo os custos em aproximadamente 61% e 63%, respectivamente. No segundo cenário, o autoRA foi aplicado a uma classificação de unidade de solo já mapeada em Sátiro Dias, Bahia, Brasil. Como este estudo teve uma AR delineada manualmente por um especialista e amostras de solo coletadas de acordo com uma estrutura completa de perfil de solo, a autoRA foi aplicada usando as mesmas covariáveis do especialista. Testamos ARs com 10%, 20%, 30%, 40% e 50%, cruzando os limites das ARs propostas com os locais reais das amostras de solo. As amostras internas foram usadas para treinamento do modelo, enquanto as amostras externas validaram a extrapolação das predições. Com 40% de cobertura de AR, o erro de predição usando autoRA foi menor do que o da AR delineada manualmente. Além disso, mapas de classe de solo gerados manualmente e via autoRA foram comparados com 100 iterações de modelagem Random Forest usando a abordagem MDS convencional, onde os conjuntos de dados foram divididos aleatoriamente (70% de treinamento, 30% de validação). Essa validação iterativa confirmou a robustez das previsões do autoRA. O terceiro cenário explorou diferentes proporções de pixels classificados como baixa e alta Dissimilaridade de Gower. A mesma abordagem de treinamento interno e validação externa foi aplicada. Os resultados demonstraram que o foco em regiões de alta dissimilaridade permitiu a redução das áreas amostradas, mantendo a precisão preditiva. A abordagem de Área Total (AT) também foi testada com tamanhos de amostra variando de 100 a 1.000. O modelo AT desenvolvido usando 100 iterações de divisões de 70% a 30% mostrou que a redução do tamanho da amostra resultou em uma melhoria de 20% na DE em comparação com o benchmark de 1.000 amostras. O conjunto de dados de 800 amostras foi identificado como a referência ideal para modelagem de AT. Para testar o efeito do mosaico de áreas de alta e baixa dissimilaridade, mantivemos o limite de melhoria de 20% no DE, usando 800 como uma nova referência. Os resultados demonstraram que um conjunto de dados de 600 amostras focado no RA de 40% delineado pelo autoRA produziu métricas de ED comparáveis ao modelo previsto do AT- STS. A análise de sensibilidade usando simulações STS permitiu testes extensivos de configurações de parâmetros, confirmando que as configurações de autoRA mais eficazes priorizam regiões de alta dissimilaridade. Tão importante quanto determinar o número de pontos para uma previsão precisa é decidir onde colocá-los. A abordagem autoRA responde a essa pergunta simulando várias configurações, fornecendo expectativas de precisão e custo, honrando o conhecimento da dissimilaridade da paisagem e evitando amostragem redundante. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | Mapeamento Digital de Solos | pt_BR |
| dc.subject | Modelagem Preditiva | pt_BR |
| dc.subject | Estratégias de amostragem | pt_BR |
| dc.subject | Digital Soil Mapping | pt_BR |
| dc.subject | Predictive Modeling | pt_BR |
| dc.subject | Sampling Strategies | pt_BR |
| dc.title | Eficiência do Autora: um algoritmo para delineamento automático de áreas de referência para suporte à amostragem otimizada de solos | pt_BR |
| dc.title.alternative | Efficacy of autoRA: algorithm for automatic delineation of reference areas to support optimized soil sampling | en |
| dc.type | Tese | pt_BR |
| dc.description.abstractOther | The autoRA algorithm is a data-driven methodology designed to delineate Reference Areas (RAs) that capture critical soil-forming factors, enhancing digital soil mapping (DSM) workflows. By leveraging Gower’s Dissimilarity Index, autoRA systematically determines optimal target area size and spatial resolution configurations, balancing predictive performance and cost-effectiveness. To evaluate its efficacy, autoRA was tested in three distinct scenarios. In the first scenario, conducted in Rio de Janeiro and Florida, we examined the effect of spatial resolution in calculating Gower’s Index and the impact of target area size on model performance. The predictive model was developed to estimate a Simulated Theoretical Surface (STS) using a single iteration. The optimal Reference Area Model (RAM) with a 50% target area and a 10-pixel block size achieved Euclidean Distance (ED) values (0.15 in Rio de Janeiro and 0.38 in Florida), closely approximating results from exhaustive sampling while reducing costs by approximately 61% and 63%, respectively. In the second scenario, autoRA was applied to an already mapped soil unit classification in Sátiro Dias, Bahia, Brazil. As this study had an RA manually delineated by a specialist and soil samples collected according to a complete soil profile framework, autoRA was applied using the same covariates as the specialist. We tested RAs at 10%, 20%, 30%, 40%, and 50%, intersecting the proposed RAs with the actual sample locations. The inner samples were used for model training, while the outer samples validated the extrapolation of predictions. At 40% RA coverage, the prediction error using autoRA was lower than that of manually delineated RA. Additionally, manual and autoRA-generated RA soil class maps were compared against 100 iterations of Random Forest modeling using the conventional DSM approach, where datasets were randomly split (70% training, 30% validation). This iterative validation confirmed the robustness of autoRA’s predictions. The third scenario explored different proportions of pixels classified as low or high Gower’s Dissimilarity. The same inner-training, outer-validation approach was applied. The results demonstrated that focusing on high-dissimilarity regions allowed for the reduction of sampled areas while maintaining predictive accuracy. The Total Area (TA) approach was also tested with sample sizes ranging from 100 to 1,000. The TA model developed using 100 iterations of 70%-30% splits showed that reducing the sample size resulted in a 20% ED improvement compared to the 1,000-sample benchmark. The 800-sample dataset was identified as the optimal benchmark for TA modeling. To test the effect of mosaicking high- and low-dissimilarity areas, we maintained the 20% ED improvement threshold, using 800 as a new benchmark. The results demonstrated that a 600-sample dataset focused within the 40% RA delineated by autoRA produced ED metrics comparable to the TA-STS predicted model. Sensitivity analysis using STS simulations allowed for extensive testing of parameter configurations, ultimately confirming that the most effective autoRA settings prioritize high-dissimilarity regions. As important as determining the number of points for an accurate prediction is deciding where to place them. The autoRA approach answers this question by simulating multiple configurations, providing expectations of accuracy and cost while honoring the knowledge of landscape dissimilarity and avoiding redundant sampling. | en |
| dc.contributor.advisor1 | Ceddia, Marcos Bacis | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-8611-314X | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2115137917689655 | pt_BR |
| dc.contributor.advisor-co1 | Vasques, Gustavo de Mattos | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/1838153897546051 | pt_BR |
| dc.contributor.referee1 | Ceddia, Marcos Bacis | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-8611-314X | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/2115137917689655 | pt_BR |
| dc.contributor.referee2 | Anjos, Lúcia Helena Cunha dos | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-0063-3521 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/7882538227876962 | pt_BR |
| dc.contributor.referee3 | Pinheiro, Helena Saraiva Koenow | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0001-5742-7556 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/6947091664236298 | pt_BR |
| dc.contributor.referee4 | Brandão, Diego Nunes | - |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/5882024148867913 | pt_BR |
| dc.contributor.referee5 | Terra, Fabrício da Silva | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0002-8901-7970 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/5947801599029550 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0002-8070-8126 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/1594791643571293 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Agronomia | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Agronomia - Ciência do Solo | pt_BR |
| dc.relation.references | ABDULRAHEEM, M. I.; ZHANG, W.; LI, S.; MOSHAYEDI, A. J.; FAROOQUE, A. A.; HU, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustainability, vol. 15, no. 21, p. 15444, Jan. 2023. DOI 10.3390/su152115444. Available at: https://www.mdpi.com/2071-1050/15/21/15444. Accessed on: 10 Jan. 2025. ABREU, S. F. Brazilian Oil Fields and Oil-Shale Reserves. Bulletin of the American Association of Petroleum Geologists, vol. 33, no. 9, p. 10, 1949. DOI 10.1306/3D933DF4- 16B1-11D7-8645000102C1865D. Available at: http://search.datapages.com/data/doi/10.1306/3D933DF4-16B1-11D7-8645000102C1865D. Accessed on: 23 Jan. 2025. ADAMS, R. A.; FOURNIER, J. J. F. (Eds.). 4 - The Sobolev Imbedding Theorem. Pure and Applied Mathematics. Sobolev Spaces. [S. l.]: Elsevier, 2003. vol. 140, p. 79–134. DOI 10.1016/S0079-8169(03)80006-5. Available at: https://www.sciencedirect.com/science/article/pii/S0079816903800065. Accessed on: 29 Jan. 2025. ADRIANO, L.; ZALÁN, P.; HIDALGO-GATO, M.; CUNHA, A.; YALAMANCHILI, R.; SILVA, D. Integrated interpretation of the Western Portion of the Pará – Maranhão Basin – Brazilian Equatorial Margin. In: 14TH INTERNATIONAL CONGRESS OF THE BRAZILIAN GEOPHYSICAL SOCIETY & EXPOGEF, RIO DE JANEIRO, BRAZIL, 3-6 AUGUST 2015, 6 Aug. 2015. 14th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 3-6 August 2015 [...]. Rio de Janeiro: Brazilian Geophysical Society, 6 Aug. 2015. p. 43–48. DOI 10.1190/sbgf2015-008. Available at: https://library.seg.org/doi/10.1190/sbgf2015-008. Accessed on: 23 Jan. 2025. ARRUDA, G. P.; DEMATTÊ, J. A. M.; CHAGAS, C. S.; FIORIO, P. R.; SOUZA, A. B.; FONGARO, C. T. Digital soil mapping using reference area and artificial neural networks. Scientia Agricola, vol. 73, p. 266–273, 2016. DOI 10.1590/0103-9016-2015-0131. Available at: https://www.scielo.br/j/sa/a/HWJLXB9TBj9Y43X8GN3T4Qf/?lang=en. Accessed on: 22 Sep. 2024. BARROS, G. M.; SANTOS, J. C. B.; SOUZA JÚNIOR, V. S.; DELARMELINDA, E. A.; ARAÚJO FILHO, J. C.; CÂMARA, E. R. G. Association between parent materials and soil attributes along different geological environments in western Pará, Brazil. Acta Amazonica, vol. 48, p. 261–270, Sep. 2018. DOI https://doi.org/10.1590/1809-4392201703322. Available at: https://www.scielo.br/j/aa/a/Nqs5KGps8hWDSzPFgrgVfKD/?lang=en. Accessed on: 23 Jan. 2025. BARUCK, J.; NESTROY, O.; SARTORI, G.; BAIZE, D.; TRAIDL, R.; VRŠČAJ, B.; BRÄM, E.; GRUBER, F. E.; HEINRICH, K.; GEITNER, C. Soil classification and mapping in the Alps: The current state and future challenges. Geoderma, Soil mapping, classification, and modelling: history and future directions. vol. 264, p. 312–331, 15 Feb. 2016. DOI 10.1016/j.geoderma.2015.08.005. Available at: https://www.sciencedirect.com/science/article/pii/S0016706115300343. Accessed on: 23 Dec. 2024. 129 BIJOS, N. R.; DA SILVA, D. P.; MUNHOZ, C. B. R. Soil texture and fertility determine the beta diversity of plant species in veredas in Central Brazil. Plant and Soil, vol. 492, no. 1, p. 241–259, 1 Nov. 2023. DOI 10.1007/s11104-023-06168-3. Available at: https://doi.org/10.1007/s11104-023-06168-3. Accessed on: 23 Jan. 2025. BISWAS, A.; ZHANG, Y. Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, vol. 28, no. 1, p. 1–15, Feb. 2018. DOI 10.1016/S1002-0160(18)60001-3. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1002016018600013. Accessed on: 30 Sep. 2024. BOETTINGER, J. L. (Ed.). Digital soil mapping: bridging research, environmental application, and operation. Dordrecht [Netherlands] ; London: Springer, 2010(Progress in soil science, 2). BOVOLO, C. I.; PEREIRA, R.; PARKIN, G.; KILSBY, C.; WAGNER, T. Fine-scale regional climate patterns in the Guianas, tropical South America, based on observations and reanalysis data. International Journal of Climatology, vol. 32, no. 11, p. 1665–1689, 2012. DOI 10.1002/joc.2387. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.2387. Accessed on: 23 Jan. 2025. BRUNGARD, C. W.; BOETTINGER, J. L. Conditioned Latin Hypercube Sampling: Optimal Sample Size for Digital Soil Mapping of Arid Rangelands in Utah, USA. In: BOETTINGER, J. L.; HOWELL, D. W.; MOORE, A. C.; HARTEMINK, A. E.; KIENAST-BROWN, S. (eds.). Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. Dordrecht: Springer Netherlands, 2010. p. 67–75. DOI 10.1007/978-90-481-8863-5_6. Available at: https://doi.org/10.1007/978-90-481-8863-5_6. Accessed on: 29 Dec. 2024. BRUS, D. J. Statistical sampling approaches for soil monitoring. European Journal of Soil Science, vol. 65, no. 6, p. 779–791, 2014. DOI 10.1111/ejss.12176. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/ejss.12176. Accessed on: 21 Sep. 2024. BRUS, D. J.; KEMPEN, B.; HEUVELINK, G. B. M. Sampling for validation of digital soil maps. European Journal of Soil Science, vol. 62, no. 3, p. 394–407, 2011. DOI 10.1111/j.1365-2389.2011.01364.x. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2389.2011.01364.x. Accessed on: 30 Sep. 2024. BRUS, D. J.; VAŠÁT, R.; HEUVELINK, G. B. M.; KNOTTERS, M.; DE VRIES, F.; WALVOORT, D. J. J. Towards a Soil Information System with quantified accuracy. A prototype for mapping continuous soil properties. Wageningen, Statutory Research Tasks Unit for Nature and the Environment, vol. WOt-werkdocument 197, p. 160, 2009. Available at: https://edepot.wur.nl/148932. Accessed on: 21 Sep. 2024. CANAVESI, V.; SEGONI, S.; ROSI, A.; TING, X.; NERY, T.; CATANI, F.; CASAGLI, N. Different Approaches to Use Morphometric Attributes in Landslide Susceptibility Mapping Based on Meso-Scale Spatial Units: A Case Study in Rio de Janeiro (Brazil). Remote Sensing, vol. 12, no. 11, p. 1826, 5 Jun. 2020. DOI 10.3390/rs12111826. Available at: https://www.mdpi.com/2072-4292/12/11/1826. Accessed on: 23 Dec. 2024. CARNEIRO, P. B. M.; XIMENES NETO, A. R.; JUCÁ-QUEIROZ, B.; TEIXEIRA, C. E. P.; FEITOSA, C. V.; BARROSO, C. X.; MATTHEWS-CASCON, H. DE MORAIS, J. O.; 130 FREITAS, J. E. P.; SANTANDER-NETO, J.; DE ARAÚJO, J. T.; MONTEIRO, L. H. U.; PINHEIRO, L. S.; BRAGA, M. D. A.; CORDEIRO, R. T. S.; ROSSI, S.; BEJARANO, S.; SALANI, S.; GARCIA, Tatiane M.; SOARES, M. O. Interconnected marine habitats form a single continental-scale reef system in South America. Scientific Reports, vol. 12, no. 1, p. 17359, 17 Oct. 2022. DOI 10.1038/s41598-022-21341-x. Available at: https://www.nature.com/articles/s41598-022-21341-x. Accessed on: 23 Jan. 2025. CARTER, M. R.; GREGORICH, E. G. (Eds.). Soil Sampling and Methods of Analysis. 0 ed. [S. l.]: CRC Press, 2007. DOI 10.1201/9781420005271. Available at: https://www.taylorfrancis.com/books/9781420005271. Accessed on: 19 Oct. 2024. CARVALHO, W.; PEREIRA, N. R.; FERNANDES, E. I.; CALDERANO, B.; PINHEIRO, H. S. K.; CHAGAS, C. S.; BHERING, S. B.; PEREIRA, V. R.; LAWALL, S. Sample design effects on soil unit prediction with machine: randomness, uncertainty, and majority map. Revista Brasileira de Ciência do Solo, vol. 44, p. e0190120, 6 Aug. 2020. DOI 10.36783/18069657rbcs20190120. Available at: https://www.rbcsjournal.org/article/sample- design-effects-on-soil-unit-prediction-with-machine-randomness-uncertainty-and-majority- map/. Accessed on: 2 Jan. 2025. CASA, R.; CASTALDI, F.; PASCUCCI, S.; BASSO, B.; PIGNATTI, S. Geophysical and Hyperspectral Data Fusion Techniques for In-Field Estimation of Soil Properties. Vadose Zone Journal, vol. 12, no. 4, p. vzj2012.0201, 2013. DOI 10.2136/vzj2012.0201. Available at: https://onlinelibrary.wiley.com/doi/abs/10.2136/vzj2012.0201. Accessed on: 17 Aug. 2024. CEDDIA, M. B.; VILLELA, A. L. O.; PINHEIRO, É. F. M.; WENDROTH, O. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil. Science of The Total Environment, vol. 526, p. 58–69, 1 Sep. 2015. DOI 10.1016/j.scitotenv.2015.03.121. Available at: https://www.sciencedirect.com/science/article/pii/S0048969715004052. Accessed on: 29 Nov. 2024. CESCO, S.; SAMBO, P.; BORIN, M.; B., B.; ORZES, G.; MAZZETTO, F. Smart agriculture and digital twins: Applications and challenges in a vision of sustainability. European Journal of Agronomy, vol. 146, p. 126809, May 2023. DOI 10.1016/j.eja.2023.126809. Available at: https://linkinghub.elsevier.com/retrieve/pii/S1161030123000771. Accessed on: 24 Feb. 2025. CHEN, L.; WANG, W.; WANG, C.; YAN, X.; ZHANG, Yuhan; SHEN, Zhenyao. From field soil sampling to watershed model: Upscaling by integrating information entropy and interpolation method. Journal of Environmental Management, vol. 360, p. 121119, 1 Jun. 2024. DOI 10.1016/j.jenvman.2024.121119. Available at: https://www.sciencedirect.com/science/article/pii/S0301479724011058. Accessed on: 23 Dec. 2024. CHENG, X.; LUO, Y.; XU, X.; SHERRY, R.; ZHANG, Q. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences, vol. 8, no. 6, p. 1487–1498, 9 Jun. 2011. DOI 10.5194/bg-8-1487-2011. Available at: https://bg.copernicus.org/articles/8/1487/2011/. Accessed on: 10 Sep. 2024. CLINGENSMITH, Christopher M.; GRUNWALD, Sabine. Predicting Soil Properties and Interpreting Vis-NIR Models from across Continental United States. Sensors, vol. 22, no. 9, p. 131 3187, Jan. 2022. DOI 10.3390/s22093187. Available at: https://www.mdpi.com/1424- 8220/22/9/3187. Accessed on: 2 Aug. 2024. CLOTHIER, B. E.; POLLOK, J. A.; SCOTTER, D. R. Mottling in Soil Profiles Containing a Coarse-textured Horizon. Soil Science Society of America Journal, vol. 42, no. 5, p. 761–763, 1978. DOI 10.2136/sssaj1978.03615995004200050022x. Available at: https://onlinelibrary.wiley.com/doi/abs/10.2136/sssaj1978.03615995004200050022x. Accessed on: 19 Jan. 2025. COSTA, L. R. F.; MAIA, R. P.; BARRETO, L. L.; SALES, V. C. C. Geomorphology of the Northern Brazilian Northeast: A Classification Proposal. Revista Brasileira de Geomorfologia, vol. 21, no. 1, 1 Jan. 2020. DOI 10.20502/rbg.v21i1.1447. Available at: https://rbgeomorfologia.org.br/rbg/article/view/1447. Accessed on: 23 Jan. 2025. COSTA, E. M.; CEDDIA, M. B.; SANTOS, F. N.; SILVA, L. O.; REZENDE, I. P. T.; FERNANDES, D. A. C. Training pedologist for soil mapping: Contextualizing methods and its accuracy using the project pedagogy approach. Revista Brasileira de Ciência do Solo, vol. 45, p. 33, 10 Mar. 2021. DOI 10.36783/18069657rbcs20200130. Available at: https://www.scielo.br/j/rbcs/a/XZMn6LVn6HdJKF8wpSZQ5Yk/?lang=en. Accessed on: 25 Nov. 2024. COSTA, E. M.; RODRIGUES, H. M.; FERREIRA, A. C. S.; CEDDIA, M. B.; FERNANDES, D. A. C. Using Legacy Soil Data to Plan New Data Collection: Study Case of Rio de Janeiro State: Brazil. In: DE CARVALHO JUNIOR, W.; PINHEIRO, H. S. K.; VALLADARES, G. S. (eds.). Pedometrics in Brazil. Progress in Soil Science. Cham: Springer Nature Switzerland, 2024. p. 101–113. DOI 10.1007/978-3-031-64579-2_8. Available at: https://link.springer.com/10.1007/978-3-031-64579-2_8. Accessed on: 22 Feb. 2025. DA SILVA FREITAS, L. C.; CAVALCANTI, L. C. S.; NETO, J. J. F. Geoenvironmental Diagnosis of the Protected Areas of the Spix’s Macaw, Bahia. Revista Brasileira de Geografia Fisica, vol. 17, no. 5, p. 3416–3449, 2024. https://doi.org/10.26848/rbgf.v17.5.p3416-3449. DANTAS, L. G.; DOS SANTOS, C. A. C.; SANTOS, C. A. G.; MARTINS, E. S. P. R.; ALVES, L. M. Future Changes in Temperature and Precipitation over Northeastern Brazil by CMIP6 Model. Water, vol. 14, no. 24, p. 4118, Jan. 2022. DOI 10.3390/w14244118. Available at: https://www.mdpi.com/2073-4441/14/24/4118. Accessed on: 23 Jan. 2025. DE ALKMIM, F. F. Geological Background: A Tectonic Panorama of Brazil. In: VIEIRA, Bianca Carvalho; SALGADO, André Augusto Rodrigues; SANTOS, Leonardo José Cordeiro (eds.). Landscapes and Landforms of Brazil. Dordrecht: Springer Netherlands, 2015. p. 9– 17. DOI 10.1007/978-94-017-8023-0_2. Available at: https://doi.org/10.1007/978-94-017- 8023-0_2. Accessed on: 23 Jan. 2025. DE CARVALHO JUNIOR, W.; PINHEIRO, H. S. K.; CEDDIA, M. B.; VALLADARES, G. S. Pedometrics in Brazil. Cham, Switzerland: Springer, 2024. DE MORISSON VALERIANO, M.; DE FÁTIMA ROSSETTI, D. Topodata: Brazilian full coverage refinement of SRTM data. Applied Geography, vol. 32, no. 2, p. 300–309, 1 Mar. 2012. DOI 10.1016/j.apgeog.2011.05.004. Available at: https://www.sciencedirect.com/science/article/pii/S0143622811000786. Accessed on: 12 Jan. 2025. 132 DEFRAEYE, T.; SHRIVASTAVA, C.; BERRY, T.; VERBOVEN, Pi.; ONWUDE, D.; SCHUDEL, S.; BÜHLMANN, A.; CRONJE, P.; ROSSI, R. M. Digital twins are coming: Will we need them in supply chains of fresh horticultural produce? Trends in Food Science & Technology, vol. 109, p. 245–258, Mar. 2021. DOI 10.1016/j.tifs.2021.01.025. Available at: https://linkinghub.elsevier.com/retrieve/pii/S092422442100025X. Accessed on: 24 Feb. 2025. DEVINE, S. M.; STEENWERTH, K. L.; O’GEEN, A. T. A regional soil classification framework to improve soil health diagnosis and management. Soil Science Society of America Journal, vol. 85, no. 2, p. 361–378, 2021. DOI 10.1002/saj2.20200. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/saj2.20200. Accessed on: 10 Jan. 2025. DORNIK, A.; CHEŢAN, M. A.; DRĂGUŢ, L.; DICU, D. D.; ILIUŢĂ, A. Optimal scaling of predictors for digital mapping of soil properties. Geoderma, vol. 405, p. 115453, 1 Jan. 2022. DOI 10.1016/j.geoderma.2021.115453. Available at: https://www.sciencedirect.com/science/article/pii/S0016706121005334. Accessed on: 23 Dec. 2024. ELLILI, Y.; WALTER, C.; MICHOT, D.; PICHELIN, P.; LEMERCIER, B. Mapping soil organic carbon stock change by soil monitoring and digital soil mapping at the landscape scale. Geoderma, vol. 351, p. 1-8, 1 Oct. 2019. DOI 10.1016/j.geoderma.2019.03.005. Available at: https://www.sciencedirect.com/science/article/pii/S0016706117320633. Accessed on: 23 Dec. 2024. FALCONER, K. J.; MARSH, D. T. On the Lipschitz equivalence of Cantor sets. Mathematika, vol. 39, no. 2, p. 223–233, 1992. DOI 10.1112/S0025579300014959. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1112/S0025579300014959. Accessed on: 29 Jan. 2025. FARR, T. G.; ROSEN, P. A.; CARO, E.; CRIPPEN, R.; DUREN, R.; HENSLEY, S.; KOBRICK, M.; PALLER, M.; RODRIGUEZ, E.; ROTH, L.; SEAL, D.; SHAFFER, S.; SHIMADA, J.; UMLAND, J.; WERNER, M.; OSKIN, M.; BURBANK, D.; ALSDORF, D. The Shuttle Radar Topography Mission. Reviews of Geophysics, vol. 45, no. 2, 2007. DOI 10.1029/2005RG000183. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1029/2005RG000183. Accessed on: 5 Dec. 2024. FAVROT, J. C. Cartographie, caractérisation et interpretation des données pédologique en vue du drainage agricole. 1986. Sol et eau: résumés des actes du séminaire [...]. Paris, France: ORSTOM, 1986. p. 551–577. FERNANDES, K.; JÚNIOR, J. M.; RIBON, A. A.; DE ALMEIDA, G. M.; MOITINHO, M. R.; DELARICA, D. L. D.; BAHIA, A. S. R. S.; OLIVEIRA, D. M. S. Characterization and detailed mapping of C by spectral sensor for soils of the Western Plateau of São Paulo. Scientific Reports, vol. 14, no. 1, p. 17311, 27 Jul. 2024. DOI 10.1038/s41598-024-66369-3. Available at: https://www.nature.com/articles/s41598-024-66369-3. Accessed on: 23 Dec. 2024. FERREIRA, A. C. S.; CEDDIA, M. B.; COSTA, E. M.; PINHEIRO, É. F. M.; NASCIMENTO, M. M.; VASQUES, G. M. Use of Airborne Radar Images and Machine Learning Algorithms to Map Soil Clay, Silt, and Sand Contents in Remote Areas under the Amazon Rainforest. Remote Sensing, vol. 14, no. 22, p. 5711, Jan. 2022. DOI 10.3390/rs14225711. Available at: https://www.mdpi.com/2072-4292/14/22/5711. Accessed on: 21 Nov. 2024. 133 FERREIRA, A. C. S.; PINHEIRO, E. E. M.; COSTA, E. M.; CEDDIA, M. B. Predicting soil carbon stock in remote areas of the Central Amazon region using machine learning techniques. Geoderma Regional, vol. 32, p. e00614, 1 Mar. 2023. DOI 10.1016/j.geodrs.2023.e00614. Available at: https://www.sciencedirect.com/science/article/pii/S235200942300010X. Accessed on: 30 Sep. 2024. FERRY, S.; WEINBERGER, S. Quantitative algebraic topology and Lipschitz homotopy. Proceedings of the National Academy of Sciences, vol. 110, no. 48, p. 19246–19250, 26 Nov. 2013. DOI 10.1073/pnas.1208041110. Available at: https://pnas.org/doi/full/10.1073/pnas.1208041110. Accessed on: 29 Jan. 2025. FICK, S. E.; HIJMANS, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, vol. 37, no. 12, p. 4302–4315, 2017. DOI 10.1002/joc.5086. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086. Accessed on: 23 Nov. 2024. FILIPPINI-ALBA, J. M.; FLORES, C. A.; BERNARDI, A. C. Pedology in Precision Agriculture from a Brazilian context. Revista de Ciências Agrícolas, vol. 40, no. 3, p. e3216, 31 Oct. 2023. DOI 10.22267/rcia.20234003.216. Available at: https://revistas.udenar.edu.co/index.php/rfacia/article/view/7753. Accessed on: 23 Dec. 2024. FONTANA, A.; CHAGAS, C. S.; DONAGEMMA, G. K.; MENEZES, A. R.; CALDERANO, B. Soils Developed on Geomorphic Surfaces in the Mountain Region of the State of Rio de Janeiro. Rev. Bras. Ciênc. Solo, vol. 41, p., 5 Dec. 2017. DOI 10.1590/18069657rbcs20160574. Available at: https://www.rbcsjournal.org/pt-br/article/soils- developed-on-geomorphic-surfaces-in-the-mountain-region-of-the-state-of-rio-de-janeiro/. Accessed on: 26 Dec. 2024. FRANCINI-FILHO, R. B.; ASP, N. E.; SIEGLE, E.; HOCEVAR, J.; LOWYCK, K.; D’AVILA, N.; VASCONCELOS, A. A.; BAITELO, R.; REZENDE, Carlos E.; OMACHI, Claudia Y.; THOMPSON, Cristiane C.; THOMPSON, Fabiano L. Perspectives on the Great Amazon Reef: Extension, Biodiversity, and Threats. Frontiers in Marine Science, vol. 5, 23 Apr. 2018. DOI 10.3389/fmars.2018.00142. Available at: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2018.00142/full. Accessed on: 23 Jan. 2025. FREIRE, L. M.; LIMA, J. S.; VERÍSSIMO, C. U. V.; SILVA, E. V. Carste em Rochas Não Carbonáticas: contribuição ao estudo geomorfológico em cavernas de arenito da Amazônia Paraense (Karst in Non-Carbonate Rocks: contribution in geomorphological study in sandstones caves of the Paraense Amazon). Revista Brasileira de Geografia Física, vol. 10, no. 6, p. 1829–1845, 10 Jul. 2017. DOI 10.26848/rbgf.v10.6.p1829-1845. Available at: https://periodicos.ufpe.br/revistas/index.php/rbgfe/article/view/234054. Accessed on: 23 Jan. 2025. FURTADO, A. M. M.; PONTE, F. C. Mapeamento de Unidades de Relevo do Estado do Pará. Revista Geoamazônia, vol. 2, no. 1, p. 56–67, 31 Dec. 2013. DOI 10.17551/2358- 1778/geoamazonia.n1v2p56-67. Available at: http://www.bibliotekevirtual.org/index.php/2013-02-07-03-02-35/2013-02-07-03-03-11/2014- 07-19-06-15-59/720-geoamazonia/n01v02/6615-mapeamento-de-unidades-de-relevo-do- estado-do-para.html. Accessed on: 24 Jan. 2025. 134 GAULD, D. B. Topological Properties of Manifolds. The American Mathematical Monthly, vol. 81, no. 6, p. 633–636, 1 Jun. 1974. DOI 10.1080/00029890.1974.11993635. Available at: https://doi.org/10.1080/00029890.1974.11993635. Accessed on: 29 Jan. 2025. GELSLEICHTER, Y. A.; COSTA, E. M.; ANJOS, L. H. C.; MARCONDES, R. A. T.. Enhancing Soil Mapping with Hyperspectral Subsurface Images generated from soil lab Vis- SWIR spectra tested in southern Brazil. Geoderma Regional, vol. 33, p. e00641, Jun. 2023. DOI 10.1016/j.geodrs.2023.e00641. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2352009423000378. Accessed on: 25 Nov. 2024. GOMES, L. C.; BEUCHER, A. M.; MØLLER, A. B.; IVERSEN, B. V.; BØRGESEN, C. D.; ADETSU, D. V.; SECHU, G. L.; HECKRATH, G. J.; KOCH, J.; ADHIKARI, K.; KNADEL, M.; LAMANDÉ, M.; GREVE, M. B.; JENSEN, N. H.; GUTIERREZ, S.; BALSTRØM, T.; KOGANTI, T.; ROELL, Y.; PENG, Y.; GREVE, M. H.. Soil assessment in Denmark: Towards soil functional mapping and beyond. Frontiers in Soil Science, vol. 3, 31 Jan. 2023. DOI 10.3389/fsoil.2023.1090145. Available at: https://www.frontiersin.org/journals/soil- science/articles/10.3389/fsoil.2023.1090145/full. Accessed on: 10 Jan. 2025. GONÇALVES, D. A. M.; PEREIRA, W. V. S.; JOHANNESSON, K. H.; PÉREZ, D. V.; GUILHERME, L. R. G.; FERNANDES, A. R.. Geochemical Background for Potentially Toxic Elements in Forested Soils of the State of Pará, Brazilian Amazon. Minerals, vol. 12, no. 6, p. 674, Jun. 2022. DOI 10.3390/min12060674. Available at: https://www.mdpi.com/2075- 163X/12/6/674. Accessed on: 23 Jan. 2025. GONÇALVES, R. V. S.; CARDOSO, J. C. F.; OLIVEIRA, P. E.; RAYMUNDO, D.; DE OLIVEIRA, D. C. The role of topography, climate, soil and the surrounding matrix in the distribution of Veredas wetlands in central Brazil. Wetlands Ecology and Management, vol. 30, no. 6, p. 1261–1279, 1 Dec. 2022. DOI 10.1007/s11273-022-09895-z. Available at: https://doi.org/10.1007/s11273-022-09895-z. Accessed on: 26 Dec. 2024. GONÇALVES, T. G.; PONS, N. A. D.; MELLONI, E. G. P.; MANCINI, M.; CURI, N. Digital soil mapping: Predicting soil classes distribution in large areas based on existing soil maps from similar small areas. Ciência e Agrotecnologia, vol. 45, p. e007921, 2021. DOI 10.1590/1413- 7054202145007921. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413- 70542021000100226&tlng=en. Accessed on: 23 Dec. 2024. GOOLEY, L.; HUANG, J.; PAGÉ, D.; TRIANTAFILIS, J. Digital soil mapping of available water content using proximal and remotely sensed data. Soil Use and Management, vol. 30, no. 1, p. 139–151, 2014. DOI 10.1111/sum.12094. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/sum.12094. Accessed on: 18 Aug. 2024. GOWER, J. C. A General Coefficient of Similarity and Some of Its Properties. Biometrics, vol. 27, no. 4, p. 857–871, 1971. DOI 10.2307/2528823. Available at: https://www.jstor.org/stable/2528823. Accessed on: 21 Nov. 2024. GRIEVES, M. Intelligent digital twins and the development and management of complex systems. Digital Twin, vol. 2, p. 8, 25 May 2022. DOI 10.12688/digitaltwin.17574.1. Available at: https://digitaltwin1.org/articles/2-8/v1. Accessed on: 22 Feb. 2025. 135 GRIEVES, M.; HUA, E. Y. (Eds.). Digital Twins, Simulation, and the Metaverse: Driving Efficiency and Effectiveness in the Physical World through Simulation in the Virtual Worlds. Cham: Springer Nature Switzerland, 2024(Simulation Foundations, Methods and Applications). DOI 10.1007/978-3-031-69107-2. Available at: https://link.springer.com/10.1007/978-3-031-69107-2. Accessed on: 24 Feb. 2025. GRIEVES, M.; VICKERS, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In: KAHLEN, F. J.; FLUMERFELT, S.; ALVES, Anabela (eds.). Transdisciplinary Perspectives on Complex Systems. Cham: Springer International Publishing, 2017. p. 85–113. DOI 10.1007/978-3-319-38756-7_4. Available at: http://link.springer.com/10.1007/978-3-319-38756-7_4. Accessed on: 22 Feb. 2025. GRUIJTER, J. J. (Ed.). Sampling for natural resource monitoring. Berlin ; New York: Springer, 2006. GRUNWALD, S. Current State of Digital Soil Mapping and What Is Next. In: BOETTINGER, Janis L.; HOWELL, D. W.; MOORE, A. C.; HARTEMINK, A. E.; KIENAST-BROWN, S. (eds.). Digital Soil Mapping: Bridging Research, Environmental Application, and Operation. Dordrecht: Springer Netherlands, 2010. p. 3–12. DOI 10.1007/978-90-481-8863- 5_1. Available at: https://doi.org/10.1007/978-90-481-8863-5_1. Accessed on: 21 Nov. 2024. GRUNWALD, S.; THOMPSON, J. A.; BOETTINGER, J. L. Digital Soil Mapping and Modeling at Continental Scales: Finding Solutions for Global Issues. Soil Science Society of America Journal, vol. 75, no. 4, p. 1201–1213, 2011. DOI 10.2136/sssaj2011.0025. Available at: https://onlinelibrary.wiley.com/doi/abs/10.2136/sssaj2011.0025. Accessed on: 20 Aug. 2024. GRUNWALD, Sabine. Grand Challenges in Pedometrics-AI Research. Frontiers in Soil Science, vol. 1, 20 Aug. 2021. DOI 10.3389/fsoil.2021.714323. Available at: https://www.frontiersin.org/journals/soil-science/articles/10.3389/fsoil.2021.714323/full. Accessed on: 30 Aug. 2024. GRUNWALD, S.; MURAD, M. O. F.; FARRINGTON, S.; WALLACE, W.; ROONEY, D.. Multi-Sensor Soil Probe and Machine Learning Modeling for Predicting Soil Properties. Sensors, vol. 24, no. 21, p. 6855, Jan. 2024. DOI 10.3390/s24216855. Available at: https://www.mdpi.com/1424-8220/24/21/6855. Accessed on: 29 Oct. 2024. GRUNWALD, S.; VASQUES, Gustavo M.; RIVERO, R. G. Fusion of Soil and Remote Sensing Data to Model Soil Properties. Advances in Agronomy. [S. l.]: Elsevier, 2015. vol. 131, p. 1–109. DOI 10.1016/bs.agron.2014.12.004. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0065211314000169. Accessed on: 20 Aug. 2024. GUIMARAES FILHO, A. G.; BORBA, P. Methodology for Land Mapping of Amapa State-A Special Case of Amazon Radiography Project. In: IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 26 Sep. 2020. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium [...]. Waikoloa, HI, USA: IEEE, 26 Sep. 2020. p. 1540–1543. DOI 10.1109/IGARSS39084.2020.9324673. Available at: https://ieeexplore.ieee.org/document/9324673/. Accessed on: 24 Jan. 2025. 136 HARTEMINK, A. E.; MCBRATNEY, A.; MENDONÇA-SANTOS, M. L. (Eds.). Digital Soil Mapping with Limited Data. Dordrecht: Springer Netherlands, 2008(SpringerLink Bücher). https://doi.org/10.1007/978-1-4020-8592-5. HEIL, K.; SCHMIDHALTER, U. The Application of EM38: Determination of Soil Parameters, Selection of Soil Sampling Points and Use in Agriculture and Archaeology. Sensors, vol. 17, no. 11, p. 2540, Nov. 2017. DOI 10.3390/s17112540. Available at: https://www.mdpi.com/1424-8220/17/11/2540. Accessed on: 18 Aug. 2024. HEILBRON, M.; SILVA, L. G. E.; ALMEIDA, J. C. H.; TUPINAMBÁ, M.; PEIXOTO, C.; VALERIANO, C. M.; LOBATO, M.; RODRIGUES, S. W. O.; RAGATKY, C. D.; SILVA, M. A.; MONTEIRO, T.; FREITAS, N. C.; MIGUENS, D.; GIRÃO, R. Proterozoic to Ordovician geology and tectonic evolution of Rio de Janeiro State, SE-Brazil: insights on the central Ribeira Orogen from the new 1:400,000 scale geologic map. Brazilian Journal of Geology, vol. 50, p. e20190099, 27 Apr. 2020. DOI https://doi.org/10.1590/2317-4889202020190099. Available at: https://www.scielo.br/j/bjgeo/a/5d4VCzVqGVRKttNYLNhn8Pf/. Accessed on: 22 Feb. 2025. HENGL, T.; JESUS, J. M.; MACMILLAN, R. A.; BATJES, N. H.; HEUVELINK, G. B. M.; RIBEIRO, E.; SAMUEL-ROSA, A.; KEMPEN, B.; LEENAARS, J. G. B.; WALSH, M. G.; GONZALEZ, M. R.. SoilGrids1km — Global Soil Information Based on Automated Mapping. PLOS ONE, vol. 9, no. 8, p. e105992, 29 Aug. 2014. DOI 10.1371/journal.pone.0105992. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105992. Accessed on: 21 Nov. 2024. HENRYS, P. A.; MONDAIN-MONVAL, T. O.; JARVIS, S. G. Adaptive sampling in ecology: Key challenges and future opportunities. Methods in Ecology and Evolution, vol. 15, no. 9, p. 1483–1496, 2024. DOI 10.1111/2041-210X.14393. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.14393. Accessed on: 10 Jan. 2025. HORST-HEINEN, T. Z.; DALMOLIN, R. S. D.; TEN CATEN, A.; MOURA-BUENO, J. M.; GRUNWALD, S.; PEDRON, F. A.; RODRIGUES, M. F. ROSIN, N. A.; DA SILVA- SANGOI, D. V. Soil depth prediction by digital soil mapping and its impact in pine forestry productivity in South Brazil. Forest Ecology and Management, vol. 488, p. 118983, 15 May 2021. DOI 10.1016/j.foreco.2021.118983. Available at: https://www.sciencedirect.com/science/article/pii/S0378112721000724. Accessed on: 30 Aug. 2024. HUANG, J.; MCBRATNEY, A. B.; MINASNY, B.; TRIANTAFILIS, J. Monitoring and modelling soil water dynamics using electromagnetic conductivity imaging and the ensemble Kalman filter. Geoderma, vol. 285, p. 76–93, Jan. 2017. DOI 10.1016/j.geoderma.2016.09.027. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0016706116304931. Accessed on: 3 Sep. 2024. IBGE. Base Cartográfica Contínua do Estado do Rio de Janeiro, escala 1:25.000. Rio de Janeiro, Brazil: IBGE, Coordenação de Cartografia, 2018a. IBGE. Mapeamento de recurso naturais do Brasil escala 1:250.000. Rio de Janeiro, Brazil: Coordenação de Recursos Naturais e Estudos Ambientais, 2018b. 137 J. C. FAVROT. Pour une approche raisoneé du drainage agricole en France. La méthode des secteurs de référence. C.R. Académie d’Agriculture de France, , p. 716–723, 1981. . JEAN-MARC ROBBEZ-MASSON. Reconnaissance et délimitation de motifs d’organisation spatiale. Application à la cartographie des pédopaysages. 1994. 192 f. Thesis – École Nationale Supérieure Agronomique de Montpellier, Montepellier, 1994. JENNY, H. Factors of soil formation: a system of quantitative pedology. Foreword by Ronald Amundson. Originally published: New York : McGraw-Hill, 1941. With new foreword. Includes bibliographical references and index. New York, USA: Dover Publications, 1994(Dover Books on Earth Sciences). JI, W.; ADAMCHUK, V. I.; CHEN, S.; MAT SU, A. S.; ISMAIL, A.; GAN, Q.; SHI, Z.; BISWAS, Asim. Simultaneous measurement of multiple soil properties through proximal sensor data fusion: A case study. Geoderma, vol. 341, p. 111–128, 1 May 2019. DOI 10.1016/j.geoderma.2019.01.006. Available at: https://www.sciencedirect.com/science/article/pii/S0016706117311217. Accessed on: 18 Aug. 2024. JUNIOR, P. R. P. R.; NASCIMENTO, Flávio Rodrigues Do. Environment, geology- geomorphology and water availability in the Guandu river basin/Rio de Janeiro. William Morris Davis - Revista de Geomorfologia, vol. 3, no. 1, p. 1–20, 26 Jul. 2022. DOI 10.48025/ISSN2675-6900.v3n1.2022.147. Available at: //williammorrisdavis.uvanet.br/index.php/revistageomorfologia/article/view/147. Accessed on: 12 Dec. 2024. KESKIN, H.; GRUNWALD, S.; HARRIS, W. G. Digital mapping of soil carbon fractions with machine learning. Geoderma, vol. 339, p. 40–58, 1 Apr. 2019. DOI 10.1016/j.geoderma.2018.12.037. Available at: https://www.sciencedirect.com/science/article/pii/S001670611732030X. Accessed on: 30 Aug. 2024. KHALEDIAN, Y.; MILLER, B. A. Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling, vol. 81, p. 401–418, May 2020. DOI 10.1016/j.apm.2019.12.016. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0307904X19307565. Accessed on: 23 Dec. 2024. KHOMUTININ, Y.; FESENKO, S.; LEVCHUK, S.; ZHEBROVSKA, K.; KASHPAROV, V. Optimising sampling strategies for emergency response: Soil sampling. Journal of Environmental Radioactivity, vol. 222, p. 106344, 1 Oct. 2020. DOI 10.1016/j.jenvrad.2020.106344. Available at: https://www.sciencedirect.com/science/article/pii/S0265931X19310288. Accessed on: 21 Nov. 2024. KIM, S.; HEO, S. An agricultural digital twin for mandarins demonstrates the potential for individualized agriculture. Nature Communications, vol. 15, no. 1, p. 1561, 20 Feb. 2024. DOI 10.1038/s41467-024-45725-x. Available at: https://www.nature.com/articles/s41467-024- 45725-x. Accessed on: 18 Aug. 2024. LAGACHERIE, P.; LEGROS, J. P.; BURROUGH, P. A. A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area. Geoderma, vol. 138 65, no. 3–4, p. 283–301, 1995. DOI 10.1016/0016-7061(94)00040-H. Available at: https://linkinghub.elsevier.com/retrieve/pii/001670619400040H. Accessed on: 22 Sep. 2024. LAGACHERIE, P.; MCBRATNEY, A. B.; VOLTZ, M. (Eds.). Digital soil mapping: an introductory perspective. 1st ed. Amsterdam ; Boston: Elsevier, 2007(Developments in soil science, v. 31). LAGACHERIE, P.; ROBBEZ-MASSON, J. M.; NGUYEN-THE, N.; BARTHÈS, J. P. Mapping of reference area representativity using a mathematical soilscape distance. Geoderma, vol. 101, no. 3–4, p. 105–118, 2001. DOI 10.1016/S0016-7061(00)00101-4. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0016706100001014. Accessed on: 22 Sep. 2024. LAGACHERIE, P; VOLTZ, M. Predicting soil properties over a region using sample information from a mapped reference area and digital elevation data: a conditional probability approach. Geoderma, vol. 97, no. 3–4, p. 187–208, 2000. DOI 10.1016/S0016-7061(00)00038- 0. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0016706100000380. Accessed on: 22 Sep. 2024. LAGACHERIE, P.; LEDREUX, C.; LEGROS, J. P. Modélisation de la connaissance d’un pédologue cartographe. Mappemonde, vol. 32, no. 4, p. 12–13, 1993. DOI 10.3406/mappe.1993.1094. Available at: https://www.persee.fr/doc/mappe_0764- 3470_1993_num_32_4_1094. Accessed on: 22 Sep. 2024. LAPIERRE, G. D. J.; IRIZARRY, N. D. M.; ANDREU, M. G. Florida Soil Series and Natural Community Associations: FOR384 FR455, 5 2022. EDIS, vol. 2022, no. 3, 2 Jun. 2022. DOI 10.32473/edis-fr455-2022. Available at: https://journals.flvc.org/edis/article/view/129590. Accessed on: 12 Dec. 2024. LIAW, Andy; WIENER, Matthew. Classification and Regression by randomForest. R News, vol. 2, no. 3, p. 18–22, 2002. Available at: https://CRAN.R-project.org/doc/Rnews/. LIMA, L. A. S.; NEUMANN, M. R. B.; REATTO, A.; ROIG, H. L. Mapeamento de solos do tradicional ao digital, n. M386. Planaltina, DF, Brasil: Embrapa Cerrados, 2013. LOPES, L. C. M.; MARIANO-NETO, E.; AMORIM, A. M. Can soil types explain species distributions? Evaluating the woody understory component of a tropical forest in Brazil. Brazilian Journal of Botany, vol. 39, no. 1, p. 251–259, 1 Mar. 2016. DOI 10.1007/s40415- 015-0235-x. Available at: https://doi.org/10.1007/s40415-015-0235-x. Accessed on: 23 Jan. 2025. M. BORNAND; FAVROT, J. C. Cartographie des sols et gestion de l’eau, depuis l’échelle régionale jusqu’a l’échelon parcellaire: l’exemple en France du Languedoc-Roussillon. Bulletin du Reseau Erosion, vol. 18, 1998. . MA, T.; BRUS, D. J.; ZHU, A.; ZHANG, L.; SCHOLTEN, T.. Comparison of conditioned Latin hypercube and feature space coverage sampling for predicting soil classes using simulation from soil maps. Geoderma, vol. 370, p. 114366, 1 Jul. 2020. DOI 10.1016/j.geoderma.2020.114366. Available at: https://www.sciencedirect.com/science/article/pii/S001670612030135X. Accessed on: 2 Jan. 2025. 139 MAIA, R.; BEZERRA, F. The Geomorphology of the Northeast: Classical and Current Perspectives. In: MAIA, R.; BEZERRA, F. (eds.). Structural Geomorphology in Northeastern Brazil. Cham: Springer International Publishing, 2020. p. 31–40. DOI 10.1007/978-3-030-13311-5_3. Available at: https://doi.org/10.1007/978-3-030-13311-5_3. Accessed on: 23 Jan. 2025. MALLAVAN, B. P.; MINASNY, B.; MCBRATNEY, A. B. Homosoil, a Methodology for Quantitative Extrapolation of Soil Information Across the Globe. In: BOETTINGER, J. L.; HOWELL, David W.; MOORE, A. C.; HARTEMINK, A. E.; KIENAST-BROWN, S. (eds.). Digital Soil Mapping. Dordrecht: Springer Netherlands, 2010. p. 137–150. DOI 10.1007/978- 90-481-8863-5_12. Available at: http://link.springer.com/10.1007/978-90-481-8863-5_12. Accessed on: 4 Sep. 2024. MALONE, B. P.; MINANSY, B.; BRUNGARD, C. Some methods to improve the utility of conditioned Latin hypercube sampling. PeerJ, vol. 7, p. e6451, 25 Feb. 2019. DOI 10.7717/peerj.6451. Available at: https://peerj.com/articles/6451. Accessed on: 29 Dec. 2024. MALONE, B. P.; MINASNY, B.; MCBRATNEY, A. B. Using R for Digital Soil Mapping. Cham: Springer International Publishing, 2017(Progress in Soil Science). DOI 10.1007/978-3- 319-44327-0. Available at: http://link.springer.com/10.1007/978-3-319-44327-0. Accessed on: 12 Feb. 2025. MALONE, B. P.; STYC, Q.; MINASNY, B.; MCBRATNEY, A. B. Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data. Geoderma, vol. 290, p. 91–99, 15 Mar. 2017. DOI 10.1016/j.geoderma.2016.12.008. Available at: https://www.sciencedirect.com/science/article/pii/S0016706116309922. Accessed on: 23 Dec. 2024. MARQUES, J. A.; COSTA, P. G.; MARANGONI, L. F. B.; PEREIRA, C. M.; ABRANTES, D. P.; CALDERON, E. N.; CASTRO, C. B.; BIANCHINI, A. Environmental health in southwestern Atlantic coral reefs: Geochemical, water quality and ecological indicators. Science of The Total Environment, vol. 651, p. 261–270, 15 Feb. 2019. DOI 10.1016/j.scitotenv.2018.09.154. Available at: https://www.sciencedirect.com/science/article/pii/S0048969718335988. Accessed on: 23 Jan. 2025. MCBRATNEY, A. B; MENDONÇA SANTOS, M. L; MINASNY, B. On digital soil mapping. Geoderma, vol. 117, no. 1, p. 3–52, 2003. DOI 10.1016/S0016-7061(03)00223-4. Available at: https://www.sciencedirect.com/science/article/pii/S0016706103002234. Accessed on: 22 Sep. 2024. MCBRATNEY, A. B.; WEBSTER, R. Spatial dependence and classification of the soil along a transect in northeast Scotland. Geoderma, vol. 26, p. 63–82, 1 Jul. 1981. DOI 10.1016/0016- 7061(81)90076-8. Available at: https://www.sciencedirect.com/science/article/pii/0016706181900768. Accessed on: 25 Nov. 2024. MCBRATNEY, A. B.; MINASNY, B.; STOCKMANN, U. (Eds.). Pedometrics. Cham: Springer International Publishing, 2018(Progress in Soil Science). DOI 10.1007/978-3-319- 140 63439-5. Available at: http://link.springer.com/10.1007/978-3-319-63439-5. Accessed on: 27 Aug. 2024. MCBRATNEY, A. B.; ODEH, I. O. A.; BISHOP, T. F. A.; DUNBAR, M. S.; S., T. M. An overview of pedometric techniques for use in soil survey. Geoderma, vol. 97, no. 3, p. 293– 327, 1 Sep. 2000. DOI 10.1016/S0016-7061(00)00043-4. Available at: https://www.sciencedirect.com/science/article/pii/S0016706100000434. Accessed on: 25 Nov. 2024. MEYER, H.; PEBESMA, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution, vol. 12, no. 9, p. 1620–1633, 2021. DOI 10.1111/2041-210X.13650. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/2041-210X.13650. Accessed on: 21 Nov. 2024. MINASNY, B.; MCBRATNEY, A. B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, vol. 32, no. 9, p. 1378–1388, Nov. 2006. DOI 10.1016/j.cageo.2005.12.009. Available at: https://linkinghub.elsevier.com/retrieve/pii/S009830040500292X. Accessed on: 30 Sep. 2024. MOMOLI, R. S.; COOPER, M. Water erosion on cultivated soil and soil under riparian forest. Pesquisa Agropecuaria Brasileira, vol. 51, no. 9, p. 1295–1305, 2016. https://doi.org/10.1590/S0100-204X2016000900029. MOREIRA, Fattima M. S.; SIQUEIRA, J. O.; BRUSSAARD, L. Soil biodiversity in Amazonian and other Brazilian ecosystems. Wallingford: CABI publ, 2006. MOURA, D. M. B.; OLIVEIRA, I. J.; NASCIMENTO, D. T. F.; SOUSA, F. A. Refinamento do mapa de solos da alta bacia hidrográfica do Ribeirão Santa Marta, estado de Goiás, Brasil. Caderno de Geografia, vol. 30, no. 62, p. 865, 3 Aug. 2020. DOI 10.5752/P.2318- 2962.2020v30n62p865. Available at: http://periodicos.pucminas.br/index.php/geografia/article/view/22936. Accessed on: 23 Dec. 2024. MOURA, R. L.; AMADO-FILHO, G. M.; MORAES, F. C.; BRASILEIRO, P. S.; SALOMON, P. S.; MAHIQUES, M. M.; BASTOS, A. C.; ALMEIDA, M. G.; SILVA, J. M.; ARAUJO, B. F.; BRITO, F. P.; RANGEL, T. P.; OLIVEIRA, B. C. V.; BAHIA, R. G.; PARANHOS, R. P.; DIAS, R. J. S.; SIEGLE, E.; FIGUEIREDO, A. G.; PEREIRA, R. C.; THOMPSON, F. L. An extensive reef system at the Amazon River mouth. Science Advances, vol. 2, no. 4, p. e1501252, 22 Apr. 2016. DOI 10.1126/sciadv.1501252. Available at: https://www.science.org/doi/10.1126/sciadv.1501252. Accessed on: 23 Jan. 2025. NAUMAN, T. W.; KIENAST-BROWN, S.; ROECKER, S. M.; BRUNGARD, C.; WHITE, D.; PHILIPPE, J.; THOMPSON, J. A. Soil landscapes of the United States (SOLUS): Developing predictive soil property maps of the conterminous United States using hybrid training sets. Soil Science Society of America Journal, vol. 88, no. 6, p. 2046–2065, 2024. DOI 10.1002/saj2.20769. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/saj2.20769. Accessed on: 23 Dec. 2024. NAWAR, S.; CORSTANJE, R.; HALCRO, G.; MULLA, D.; MOUAZEN, A. M. Delineation of Soil Management Zones for Variable-Rate Fertilization. Advances in Agronomy. [S. l.]: 141 Elsevier, 2017. vol. 143, p. 175–245. DOI 10.1016/bs.agron.2017.01.003. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0065211317300032. Accessed on: 18 Aug. 2024. NEIVA, H.; DA SILVA, M.; CARDOSO, C. Analysis of Climate Behavior and Land Use in the City of Rio de Janeiro, RJ, Brazil. Climate, vol. 5, no. 3, p. 52, 14 Jul. 2017. DOI 10.3390/cli5030052. Available at: https://www.mdpi.com/2225-1154/5/3/52. Accessed on: 26 Dec. 2024. NENKAM, A. M.; WADOUX, A. M. J. C.; MINASNY, B.; MCBRATNEY, A. B.; TRAORE, P. C. S.; FALCONNIER, G. N.; WHITBREAD, A. M. Using homosoils for quantitative extrapolation of soil mapping models. European Journal of Soil Science, vol. 73, no. 5, p. e13285, Sep. 2022. DOI 10.1111/ejss.13285. Available at: https://bsssjournals.onlinelibrary.wiley.com/doi/10.1111/ejss.13285. Accessed on: 4 Sep. 2024. NENKAM, A. M.; WADOUX, A. M. J. C.; MINASNY, B.; MCBRATNEY, A. B.; TRAORE, P. C. S.; WHITBREAD, A. M. Using homosoils to enrich sparse soil data infrastructure: An example from Mali. CATENA, vol. 223, p. 106862, Apr. 2023. DOI 10.1016/j.catena.2022.106862. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0341816222008487. Accessed on: 4 Sep. 2024. NEYESTANI, M. SARMADIAN, F.; JAFARI, A.; KESHAVARZI, A.; SHARIFIFAR, A. Digital mapping of soil classes using spatial extrapolation with imbalanced data. Geoderma Regional, vol. 26, p. e00422, Sep. 2021. DOI 10.1016/j.geodrs.2021.e00422. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2352009421000675. Accessed on: 4 Jan. 2025. ODGERS, N. P.; MCBRATNEY, A. B.; CARRÉ, F. Soil Profile Classes. In: MCBRATNEY, A. B.; MINASNY, B.; STOCKMANN, U. (eds.). Pedometrics. Cham: Springer International Publishing, 2018. p. 265–288. DOI 10.1007/978-3-319-63439-5_9. Available at: https://doi.org/10.1007/978-3-319-63439-5_9. Accessed on: 10 Jan. 2025. OWENS, P. R.; RUTLEDGE, E. M. MORPHOLOGY. In: HILLEL, D. (ed.). Encyclopedia of Soils in the Environment. Oxford: Elsevier, 2005. p. 511–520. DOI 10.1016/B0-12-348530- 4/00002-3. Available at: https://www.sciencedirect.com/science/article/pii/B0123485304000023. Accessed on: 19 Jan. 2025. PADARIAN, J.; MINASNY, B.; MCBRATNEY, A. B. Using deep learning for digital soil mapping. SOIL, vol. 5, no. 1, p. 79–89, 2019. DOI 10.5194/soil-5-79-2019. Available at: https://soil.copernicus.org/articles/5/79/2019/. Accessed on: 1 Oct. 2024. PELADARINOS, N.; PIROMALIS, D.; CHEIMARAS, V.; TSEREPAS, E.; MUNTEANU, R. A.; PAPAGEORGAS, P. Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review. Sensors, vol. 23, no. 16, p. 7128, 11 Aug. 2023. DOI 10.3390/s23167128. Available at: https://www.mdpi.com/1424-8220/23/16/7128. Accessed on: 24 Feb. 2025. PEREIRA, M. G.; ANJOS, L. H. C. Formas extraíveis de ferro em solos do estado do Rio de Janeiro. Revista Brasileira de Ciência do Solo, vol. 23, no. 2, p. 371–382, Jun. 1999. DOI 10.1590/S0100-06831999000200020. Available at: 142 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100- 06831999000200020&lng=pt&tlng=pt. Accessed on: 25 Nov. 2024. PEREIRA, M. G.; ANJOS, L. H. C.; NETO, E. C. S.; JUNIOR, C. R. P. Solos do Rio de Janeiro - Gênese, classificação e limitações ao uso agrícola. 1st ed. [S. l.]: Atena Editora, 2023. DOI 10.22533/at.ed.273232510. Available at: https://atenaeditora.com.br/catalogo/ebook/solos-do-rio-de-janeiro-genese-classificacao-e- limitacoes-ao-uso-agricola. Accessed on: 22 Feb. 2025. PEREIRA, P. H. C.; LIMA, G. V.; PONTES, A. V. F.; CÔRTES, L. G. F.; GOMES, E.; SAMPAIO, Cláudio L. S.; PINTO, T. K.; MIRANDA, R. J.; CARDOSO, A. T. C.; ARAUJO, J. C.; SEOANE, José Carlos Sícoli. Unprecedented Coral Mortality on Southwestern Atlantic Coral Reefs Following Major Thermal Stress. Frontiers in Marine Science, vol. 9, 20 May 2022. DOI 10.3389/fmars.2022.725778. Available at: https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2022.725778/full. Accessed on: 23 Jan. 2025. PINHEIRO JUNIOR, C. R.; PEREIRA, M. G.; AZEVEDO, A. C.; VAN HUYSSTEEN, C.; ANJOS, L. H. C.; FONTANA, A.; SILVA NETO, E. C.; VIEIRA, J. N.; SANTOS, T. G. Genesis and classification of carbonate soils in the State of Rio de Janeiro, Brazil. Journal of South American Earth Sciences, vol. 108, p. 103183, 1 Jun. 2021. DOI 10.1016/j.jsames.2021.103183. Available at: https://www.sciencedirect.com/science/article/pii/S0895981121000304. Accessed on: 26 Dec. 2024. POGGIO, L.; DE SOUSA, L. M.; BATJES, N. H.; HEUVELINK, G. B. M.; KEMPEN, B.; RIBEIRO, E.; ROSSITER, D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. SOIL, vol. 7, no. 1, p. 217–240, 14 Jun. 2021. DOI 10.5194/soil- 7-217-2021. Available at: https://soil.copernicus.org/articles/7/217/2021/. Accessed on: 21 Nov. 2024. PURCELL, W.; NEUBAUER, T.. Digital Twins in Agriculture: A State-of-the-art review. Smart Agricultural Technology, vol. 3, p. 100094, Feb. 2023. DOI 10.1016/j.atech.2022.100094. Available at: https://linkinghub.elsevier.com/retrieve/pii/S2772375522000594. Accessed on: 24 Feb. 2025. PYLIANIDIS, C.; OSINGA, S.; ATHANASIADIS, I. N. Introducing digital twins to agriculture. Computers and Electronics in Agriculture, vol. 184, p. 105942, May 2021. DOI 10.1016/j.compag.2020.105942. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0168169920331471. Accessed on: 24 Feb. 2025. R CORE TEAM. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2024. Available at: https://www.R- project.org/. RODRIGUES, F. A.; BRAMLEY, R. G. V.; GOBBETT, D. L. Proximal soil sensing for Precision Agriculture: Simultaneous use of electromagnetic induction and gamma radiometrics in contrasting soils. Geoderma, vol. 243–244, p. 183–195, 1 Apr. 2015. DOI 10.1016/j.geoderma.2015.01.004. Available at: https://www.sciencedirect.com/science/article/pii/S0016706115000051. Accessed on: 15 Aug. 2024. 143 RODRIGUES, H. M.; CEDDIA, M. B.; TASSINARI, W.; VASQUES, G. M.; BRANDÃO, Z. N.; MORAIS, J. P. S.; OLIVEIRA, R. P.; NEVES, M. L.; TAVARES, S. R. L. Remote and Proximal Sensors Data Fusion: Digital Twins in Irrigation Management Zoning. Sensors, vol. 24, no. 17, p. 5742, 4 Sep. 2024. DOI 10.3390/s24175742. Available at: https://www.mdpi.com/1424-8220/24/17/5742. Accessed on: 22 Sep. 2024. ROSSETTI, D. F. Evolução sedimentar miocênica nos estados do Pará e Maranhão. Geologia USP. Série Científica, vol. 6, no. 2, p. 7–18, 1 Oct. 2006. DOI 10.5327/S1519- 874X2006000300003. Available at: https://www.revistas.usp.br/guspsc/article/view/27420. Accessed on: 23 Jan. 2025. ROUDIER, P. clhs: a R package for conditioned Latin hypercube sampling. [S. l.: s. n.], 2011. SANTOS, H. G.; JÚNIOR, W. C.; DART, R. O.; ÁGLIO, M. L. D.; SOUSA, J S; PARES, J. G.; FONTANA, A.; MARTINS, A. L. S.; OLIVEIRA, A. P. O novo mapa de solos do Brasil: legenda atualizada. Rio de Janeiro, Brazil: Embrapa Solos, 2011(Documentos 130, Documentos 130). Available at: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123772/1/DOC-130-O-novo-mapa-de- solos-do-Brasil.pdf. Accessed on: 25 Nov. 2024. SAURETTE, D. D.; BISWAS, A.; HECK, R. J.; GILLESPIE, A. W.; BERG, A. A. Determining minimum sample size for the conditioned Latin hypercube sampling algorithm. Pedosphere, vol. 34, no. 3, p. 530–539, 1 Jun. 2024. DOI 10.1016/j.pedsph.2022.09.001. Available at: https://www.sciencedirect.com/science/article/pii/S1002016022000868. Accessed on: 26 Dec. 2024. SAURETTE, D. D.; HECK, R. J.; GILLESPIE, A. W.; BERG, A. A.; BISWAS, A. Divergence metrics for determining optimal training sample size in digital soil mapping. Geoderma, vol. 436, p. 116553, Aug. 2023. DOI 10.1016/j.geoderma.2023.116553. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0016706123002306. Accessed on: 26 Dec. 2024. SAURETTE, D. D.; HECK, R. J.; GILLESPIE, A. W.; BERG, A. A.; BISWAS, A. Sample Size Optimization for Digital Soil Mapping: An Empirical Example. Land, vol. 13, no. 3, p. 365, 14 Mar. 2024. DOI 10.3390/land13030365. Available at: https://www.mdpi.com/2073- 445X/13/3/365. Accessed on: 24 Dec. 2024. SCARPELLI, W.; HORIKAVA, E. H. Chromium, iron, gold and manganese in Amapá and northern Pará, Brazil. Brazilian Journal of Geology, vol. 48, p. 415–433, Sep. 2018. DOI https://doi.org/10.1590/2317-4889201820180026. Available at: https://www.scielo.br/j/bjgeo/a/4gJXnwJ8bG4db5xgwq739Cj/?lang=en. Accessed on: 23 Jan. 2025. SCARPELLI, W.; HORIKAVA, É. H.. Gold, iron and manganese in central Amapá, Brazil. Brazilian Journal of Geology, vol. 47, no. 4, p. 703–721, Dec. 2017. DOI 10.1590/2317- 4889201720170114. Available at: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S2317- 48892017000400703&lng=en&tlng=en. Accessed on: 23 Jan. 2025. 144 SELLARDS, E. H. Geology of Florida. The Journal of Geology, vol. 27, no. 4, p. 286–302, May 1919. DOI 10.1086/622662. Available at: https://www.journals.uchicago.edu/doi/10.1086/622662. Accessed on: 12 Dec. 2024. SENA, N. C.; VELOSO, G. V.; LOPES, A. O.; FRANCELINO, M. R.; FERNANDES-FILHO, E. I.; SENRA, E. O.; SILVA FILHO, L. A.; CONDÉ, V. F.; SILVA, D. L. A.; ARAÚJO, R. W. Soil sampling strategy in areas of difficult access using the cLHS method. Geoderma Regional, vol. 24, p. e00354, 1 Mar. 2021. DOI 10.1016/j.geodrs.2020.e00354. Available at: https://www.sciencedirect.com/science/article/pii/S2352009420301036. Accessed on: 26 Dec. 2024. SHADDAD, S. M.; MADRAU, S.; CASTRIGNANÒ, A.; MOUAZEN, A. M. Data fusion techniques for delineation of site-specific management zones in a field in UK. Precision Agriculture, vol. 17, no. 2, p. 200–217, Apr. 2016. DOI 10.1007/s11119-015-9417-6. Available at: http://link.springer.com/10.1007/s11119-015-9417-6. Accessed on: 18 Aug. 2024. SILVA, M. D. S. D.; BARRETO-GARCIA, P. A. B.; MONROE, P. H. M.; PEREIRA, M. G.; PINTO, L. A. D. S. R.; NUNES, M. R. Physically protected carbon stocks in a Brazilian Oxisol under homogeneous forest systems. Geoderma Regional, vol. 40, 2025. https://doi.org/10.1016/j.geodrs.2024.e00915. SOARES, M. O.; ROSSI, S.; GURGEL, A. R.; LUCAS, C. C.; TAVARES, T. C. L.; DINIZ, B.; FEITOSA, C. V.; RABELO, E. F.; PEREIRA, P. H. C.; KIKUCHI, R. K. P.; LEÃO, Z. M. A. N.; CRUZ, I. C. S.; CARNEIRO, P. B. M.; ALVAREZ-FILIP, L. Impacts of a changing environment on marginal coral reefs in the Tropical Southwestern Atlantic. Ocean & Coastal Management, vol. 210, p. 105692, 1 Sep. 2021. DOI 10.1016/j.ocecoaman.2021.105692. Available at: https://www.sciencedirect.com/science/article/pii/S0964569121001769. Accessed on: 23 Jan. 2025. SOIL SURVEY STAFF, NATURAL RESOURCES CONSERVATION SERVICE. Web Soil Survey. 2016. Available at: http://websoilsurvey.nrcs.usda.gov. Accessed on: 23 Dec. 2024. STUMPF, F.; SCHMIDT, K.; BEHRENS, T.; SCHÖNBRODT-STITT, S.; BUZZO, G.; DUMPERTH, C.; WADOUX, A.; XIANG, W.; SCHOLTEN, T.. Incorporating limited field operability and legacy soil samples in a hypercube sampling design for digital soil mapping. Journal of Plant Nutrition and Soil Science, vol. 179, no. 4, p. 499–509, 2016. DOI 10.1002/jpln.201500313. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/jpln.201500313. Accessed on: 29 Dec. 2024. TEEGAVARAPU, R. S. V.; SHARMA, P. J. Influences of climate variability on regional precipitation and temperature associations. Hydrological Sciences Journal, vol. 66, no. 16, p. 2395–2414, 10 Dec. 2021. DOI 10.1080/02626667.2021.1994976. Available at: https://doi.org/10.1080/02626667.2021.1994976. Accessed on: 23 Jan. 2025. TEN CATEN, A.; DALMOLIN, R. S. D.; PEDRON, F. A.; SANTOS, M. L. M. Extrapolação das relações solo-paisagem a partir de uma área de referência. Ciência Rural, vol. 41, p. 812– 816, May 2011. DOI 10.1590/S0103-84782011000500012. Available at: https://www.scielo.br/j/cr/a/zbfLpXgYxGsWqkdhk6w7Xsc/?lang=pt. Accessed on: 30 Sep. 2024. 145 TERUIYA, R. K.; PARADELLA, W. R.; DOS SANTOS, A. R.; DALL’AGNOL, R.; VENEZIANI, P. Integrating airborne SAR, Landsat TM and airborne geophysics data for improving geological mapping in the Amazon region: the Cigano Granite, Carajás Province, Brazil. International Journal of Remote Sensing, vol. 29, no. 13, p. 3957–3974, 1 Jul. 2008. DOI 10.1080/01431160801891838. Available at: https://doi.org/10.1080/01431160801891838. Accessed on: 24 Jan. 2025. U.S. CENSUS BUREAU. Primary and secondary roads state-based shapefile. Department of Commerce - TIGER: [s. n.], 2019. USDA/NRCS. 1981-2010 Annual Average Maximum Temperature by State. Texas, USA: USDA/NRCS - National Geospatial Center of Excellence, 2012a. USDA/NRCS. 1981-2010 Annual Average Precipitation by State. Texas, USA: USDA/NRCS - National Geospatial Center of Excellence, 2012b. USGS MINERAL RESOURCES. State geologic maps. Reston, USA: [s. n.], 2017. VAN WESTEN, C. J.; CASTELLANOS, E.; KURIAKOSE, S. L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning. vol. 102, no. 3, p. 112–131, 1 Dec. 2008. DOI 10.1016/j.enggeo.2008.03.010. Available at: https://www.sciencedirect.com/science/article/pii/S0013795208001786. Accessed on: 9 Aug. 2024. VASCONCELOS, B. N. F.; BRAVO, J. V. M.; CUNHA, J. E. F.; FERNANDES-FILHO, E. I. Mapping the Soil Frontiers with Legacy Soil Data: An Approach for Covering the Lack of Updated Reference Maps of Minas Gerais, Brazil. Anuário do Instituto de Geociências, vol. 46, 3 May 2023. DOI 10.11137/1982-3908_2023_46_49327. Available at: https://revistas.ufrj.br/index.php/aigeo/article/view/49327. Accessed on: 23 Dec. 2024. VERDOUW, C.; TEKINERDOGAN, B.; BEULENS, A.; WOLFERT, S. Digital twins in smart farming. Agricultural Systems, vol. 189, p. 103046, Apr. 2021. DOI 10.1016/j.agsy.2020.103046. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0308521X20309070. Accessed on: 18 Aug. 2024. VOLTZ, M.; LAGACHERIE, P.; LOUCHART, X. Predicting soil properties over a region using sample information from a mapped reference area. European Journal of Soil Science, vol. 48, no. 1, p. 19–30, 1997. DOI 10.1111/j.1365-2389.1997.tb00181.x. Available at: https://bsssjournals.onlinelibrary.wiley.com/doi/10.1111/j.1365-2389.1997.tb00181.x. Accessed on: 22 Sep. 2024. WADOUX, A. M. J. C.; HEUVELINK, G. B. M.; LARK, R. M.; LAGACHERIE, P; BOUMA, J.; MULDER, V. L.; LIBOHOVA, Z.; YANG, L.; MCBRATNEY, A. B. Ten challenges for the future of pedometrics. Geoderma, vol. 401, p. 11, 2021. DOI 10.1016/j.geoderma.2021.115155. Available at: https://linkinghub.elsevier.com/retrieve/pii/S0016706121002354. Accessed on: 21 Sep. 2024. WATTS, F. C.; COLLINS, M. E. Formation of The Soils in Florida. Soils of Florida. 1st ed. Madison, WI, USA: American Society of Agronomy and Soil Science Society of America, 2008. p. 1–28. DOI 10.2136/2008.soilsofflorida.c1. Available at: http://doi.wiley.com/10.2136/2008.soilsofflorida.c1. Accessed on: 12 Dec. 2024. 146 YIGINI, Y.; PANAGOS, P. Reference Area Method for Mapping Soil Organic Carbon Content at Regional Scale. Procedia Earth and Planetary Science, Geochemistry of the Earth’s surface GES-10 Paris France, 18-23 August, 2014. vol. 10, p. 330–338, 1 Jan. 2014. DOI 10.1016/j.proeps.2014.08.028. Available at: https://www.sciencedirect.com/science/article/pii/S1878522014000903. Accessed on: 21 Nov. 2024. ZHANG, L.; ZHU, A. X.; LIU, J.; MA, T.; YANG, L.; ZHOU, C. An adaptive uncertainty- guided sampling method for geospatial prediction and its application in digital soil mapping. International Journal of Geographical Information Science, vol. 37, no. 2, p. 476–498, 1 Feb. 2023. DOI 10.1080/13658816.2022.2125973. Available at: https://doi.org/10.1080/13658816.2022.2125973. Accessed on: 10 Jan. 2025. ZHANG, Y.; SAURETTE, D. D.; EASHER, T. H.; JI, W.; ADAMCHUK, V. I.; BISWAS, A. Comparison of sampling designs for calibrating digital soil maps at multiple depths. Pedosphere, vol. 32, no. 4, p. 588–601, 1 Aug. 2022. DOI 10.1016/S1002-0160(21)60055-3. Available at: https://www.sciencedirect.com/science/article/pii/S1002016021600553. Accessed on: 26 Dec. 2024. | pt_BR |
| dc.subject.cnpq | Agronomia | pt_BR |
| Appears in Collections: | Doutorado em Agronomia - Ciência do Solo | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2025 - Hugo Machado Rodrigues.pdf | 5.97 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
