Please use this identifier to cite or link to this item:
https://rima.ufrrj.br/jspui/handle/20.500.14407/21235Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Oliveira, Júlia Ayres de | - |
| dc.date.accessioned | 2025-04-28T12:06:14Z | - |
| dc.date.available | 2025-04-28T12:06:14Z | - |
| dc.date.issued | 2025-02-21 | - |
| dc.identifier.citation | OLIVEIRA, Júlia Ayres de. Avaliação da diversidade e composição funcional na Mata Atlântica por meio de imagens multiespectrais obtidas com drone. 2025. 78 f. Dissertação (Mestrado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. | pt_BR |
| dc.identifier.uri | https://rima.ufrrj.br/jspui/handle/20.500.14407/21235 | - |
| dc.description.abstract | A avaliação da diversidade funcional de florestas fornece importantes informações para compreender o funcionamento dos ecossistemas e as respostas das espécies frente às mudanças climáticas, além de servir como ferramenta de gestão em áreas em processo de restauração ecológica. No entanto, as medições em campo de atributos funcionais tendem a ser dispendiosas, enquanto o sensoriamento remoto oferece alternativas para o estudo da biodiversidade em maiores escalas e em menor tempo. O objetivo geral deste estudo foi utilizar imagens multiespectrais obtidas com drone para quantificar a composição funcional e a diversidade funcional e taxonômica em plantios de restauração ecológica baseados em distintas combinações de grupos sucessionais na Mata Atlântica, no estado do Rio de Janeiro. Os objetivos específicos foram quantificar a composição funcional e a diversidade funcional e taxonômica na escala de comunidade na área em processo de restauração ecológica; obter imagens multiespectrais com câmera embarcada em drone; analisar as relações entre os parâmetros de composição funcional e diversidade funcional e taxonômica medidos em campo e os índices de vegetação determinados com base nas imagens multiespectrais; ajustar e validar modelos estatísticos para quantificar a composição funcional e a diversidade funcional e taxonômica de áreas em processo de restauração na Mata Atlântica por meio de imagens multiespectrais. As hipóteses testadas foram: 1) As medidas de composição funcional e diversidade funcional e taxonômica são diferentes entre os tratamentos baseados em grupos sucessionais; 2) As medidas dos índices de vegetação obtidos com drone são diferentes entre os tratamentos baseados em grupos sucessionais; 3) As medidas dos índices de vegetação obtidos com drone são correlacionadas com as medidas de composição funcional e diversidade funcional e taxonômica. Além disso, foram avaliadas duas abordagens de ponderação dos dados de composição e diversidade funcional (abundância vs produto entre área de copa e altura) e duas abordagens de obtenção dos índices de vegetação (todos os pixels vs somente pixels iluminados). Nossos resultados indicaram que apenas duas medidas de composição funcional, as Médias Ponderadas (CWM) da Área Foliar e do Teor de Matéria Seca Foliar, e um índice de vegetação, a média do Simple Ratio, apresentam diferenças estatísticas significativas entre os tratamentos. Por outro lado, as correlações de Spearman entre os dados medidos em campo e os dados remotos variaram de -0,85 a 0,72. Os índices de diversidade funcional apresentaram maiores correlações quando ponderados pela abundância, enquanto as medidas de composição funcional apresentaram maiores correlações quando ponderadas pelo produto entre a área de copa e a altura. Os modelos de regressão lineares simples para a CWM do Fósforo Foliar alcançaram coeficientes de determinação (R2) de até 0,69. Os modelos de regressão lineares múltiplos em função de dois ou mais índices de vegetação permitiram melhores ajustes, com o aumento considerável dos R2 (até 0,81). Esta pesquisa reforça o potencial do sensoriamento remoto na avaliação dos componentes da biodiversidade, assim como evidencia desafios e limitações da abordagem aplicada. Acreditamos que os métodos e os modelos propostos poderão servir como base para novos estudos e contribuir para o avanço do conhecimento científico. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal Rural do Rio de Janeiro | pt_BR |
| dc.subject | biodiversidade | pt_BR |
| dc.subject | sensoriamento remoto | pt_BR |
| dc.subject | aeronave remotamente pilotada | pt_BR |
| dc.subject | biodiversity | pt_BR |
| dc.subject | remote sensing | pt_BR |
| dc.subject | remotely piloted aircraft | pt_BR |
| dc.title | Avaliação da diversidade e composição funcional na Mata Atlântica por meio de imagens multiespectrais obtidas com drone | pt_BR |
| dc.title.alternative | Assessment of functional diversity and composition in the Atlantic Forest using multispectral images obtained with drone | en |
| dc.type | Dissertação | pt_BR |
| dc.description.abstractOther | The assessment of forest functional diversity provides important insights into ecosystem functioning and species responses to climate change, in addition to serving as a management tool for areas undergoing ecological restoration. However, field measurements of functional traits tend to be costly, while remote sensing offers alternatives for studying biodiversity on larger scales and in less time. The main objective of this study was to use multispectral images acquired with a drone to quantify functional composition as well as functional and taxonomic diversity in ecological restoration plantations based on different combinations of successional groups in the Atlantic Forest, in the state of Rio de Janeiro. The specific objectives were to quantify functional composition and functional and taxonomic diversity at the community scale in the area under ecological restoration; obtain multispectral images using a drone-mounted camera; analyze the relationships between functional composition and functional and taxonomic diversity parameters measured in the field and vegetation indices derived from multispectral images; and adjust and validate statistical models to quantify functional composition and functional and taxonomic diversity in restoration areas of the Atlantic Forest using multispectral images. The hypotheses tested were: (1) Functional composition and functional and taxonomic diversity metrics differ among treatments based on successional groups; (2) Vegetation index values obtained with a drone differ among treatments based on successional groups; (3) Vegetation index values obtained with a drone are correlated with functional composition and functional and taxonomic diversity metrics. Additionally, two weighting approaches for functional composition and diversity data (abundance vs. the product of canopy area and height) and two approaches for vegetation index extraction (all pixels vs. only sunlit pixels) were evaluated. Our results indicated that only two functional composition metrics, the Community Weighted Means (CWM) of Leaf Area and Leaf Dry Matter Content, and one vegetation index, the mean Simple Ratio, showed statistically significant differences among treatments. On the other hand, Spearman correlations between field-measured and remotely sensed data ranged from -0,85 to 0,72. Functional diversity indices showed higher correlations when weighted by abundance, while functional composition metrics showed higher correlations when weighted by the product of canopy area and height. Simple linear regression models for the CWM of Leaf Phosphorus achieved coefficients of determination (R2) of up to 0,69. Multiple linear regression models based on two or more vegetation indices provided better fits, with a considerable increase in R2 values (up to 0,81). This research reinforces the potential of remote sensing in assessing biodiversity components while also highlighting the challenges and limitations of the applied approach. We believe that the proposed methods and models can serve as a foundation for future studies and contribute to the advancement of scientific knowledge. | en |
| dc.contributor.advisor1 | Sansevero, Jerônimo Boelsums Barreto | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-3389-2581 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5790238611041834 | pt_BR |
| dc.contributor.advisor-co1 | Lyra, Gustavo Bastos | - |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0002-9882-7000 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/2677800541601144 | pt_BR |
| dc.contributor.advisor-co2 | Moraes, Luiz Fernando Duarte de | - |
| dc.contributor.advisor-co2ID | https://orcid.org/0000-0001-9953-267X | pt_BR |
| dc.contributor.advisor-co2Lattes | http://lattes.cnpq.br/0374432757124562 | pt_BR |
| dc.contributor.referee1 | Sansevero, Jerônimo Boelsums Barreto | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-3389-2581 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/5790238611041834 | pt_BR |
| dc.contributor.referee2 | Almeida, Catherine Torres de | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0002-8140-2903 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/5534145837431294 | pt_BR |
| dc.contributor.referee3 | Gorgens, Eric Bastos | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0003-2517-0279 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/2266409430041146 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/3792569430921040 | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.publisher.department | Instituto de Florestas | pt_BR |
| dc.publisher.initials | UFRRJ | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Ciências Ambientais e Florestais | pt_BR |
| dc.relation.references | AGISOFT LLC. AgiSoft Metashape (Versão 2.1.4). Software, 2024. Disponível em http://www.agisoft.com/downloads/installer/. ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711–728, 2013. BARNES, E. et al. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA, v. 1619, p. 6, 2000. BAZZO, C. O. G. et al. Integration of UAV-sensed features using machine learning methods to assess species richness in wet grassland ecosystems. Ecological Informatics, v. 83, 2024. BECCARI, E. et al. Plant Spectral Diversity from High‐Resolution Multispectral Imagery Detects Functional Diversity Patterns in Coastal Dune Communities. J Vegetation Science, v. 35, n. 2, 2024. BELLARD, C. et al. Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr, v. 23, p. 1376–1386, 2014. BUDOWSKI, G. Distribution of tropical American rain forest species in the light of successional processes. Turrialba, v. 15, n. 1, p. 40–42, 1965. CALMON, M. et al. Pacto pela Restauração da Mata Atlântica: um movimento pela valorização da floresta. In: FUJIHARA, M. A., CAVALCANTI, R, GUIMARÃES, A., GARLIPP, R. (eds.) O valor das florestas. Terra das Artes Editora, São Paulo, p. 330–335, 2009. CAVENDER-BARES, J. A. et al. Applying Remote Sensing to Biodiversity Science. In: J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.). Remote sensing of plant biodiversity. Springer, p. 13–42, 2020. CAVENDER-BARES, J. et al. Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. American Journal of Botany, v. 104, n. 7, p. 966-969, 2017. 48 CHAVE, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters, v. 12, p. 351–366, 2009. CHAZDON, R. L. et al. A policy‐driven knowledge agenda for global forest and landscape restoration. Conservation Letters, v. 10, n. 1, p. 125-132, 2017. CROUZEILLES, R. et al. There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspectives in Ecology and Conservation, v. 17, p. 80-83, 2019. DE ALMEIDA, D. R. A. et al. Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral and lidar fusion. Remote Sensing of Environment, v. 264, 2021. DE BELLO, F. et al. Handbook of trait-based ecology: from theory to R tools. Cambridge University Press, 2021. DECHANT, B. et al. Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches. Remote Sensing of Environment, v. 311, 2024. DÍAZ, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences, v. 104, n. 52, p. 20684- 20689, 2007. DÍAZ, S. et al. The global spectrum of plant form and function. Nature, v. 529, p. 167–171, 2016. DÍAZ, S. et al. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, v. 15, p. 295–304, 2004. DJI. Phantom 4 multiespectral. User Manual, 2019. Disponível em: https://www.dji.com/br/p4-multispectral. Acesso em: 13 de maio de 2024. FAJARDO, A.; SIEFERT, A. Phenological variation of leaf functional traits within species. Oecologia, v. 180, p. 951–959, 2016. FASSNACHT, F. E. et al. About the link between biodiversity and spectral variation. Applied Vegetation Science, v. 25, n. 1, 2022. FONTI, V.; BELITSER, E. Feature selection using LASSO. VU Amsterdam research paper in business analytics, v. 30, p. 1-25, 2017. FORMAGGIO, A. R.; SANCHES, I. D. A. Sensoriamento remoto em agricultura. Oficina de Textos, 2017. FOX, J.; WEISBERG, S. An R Companion to Applied Regression. 3. ed. Thousand Oaks, CA: Sage, 2019. Disponível em: https://socialsciences.mcmaster.ca/jfox/Books/Companion/. GANN, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restoration Ecology. v. 27, n. S1, p. S1–S46, 2019. 49 GARNIER, E.; NAVAS, M. L.; GRIGULIS, K. Plant functional diversity: organism traits, community structure, and ecosystem properties. Oxford University Press, 2016. GITELSON, A. A., KEYDAN, G. P., MERZLYAK, M. N.. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letter, v. 33, 2006. GITELSON, A. A.; GRITZ, Y.; MERZLYAK, M. N.. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol., v. 160, p. 271–282, 2003. GITELSON, A. A.; KAUFMAN, Y. J.; MERZLYAK, M. N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ., v. 58, p. 289-298, 1996. GOEL, N. S.; QIN, W. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation. Remote Sensing Reviews, v. 10, n. 4, p, 309-347, 1994. GORNISH, E. S. et al. Functional traits are used in restoration practice: a response to Merchant et al. (2022). Restoration Ecology, v. 31, n. 7, 2023. HARRELL, F. Hmisc: Harrell Miscellaneous (R package version 5.2-0). 2024. Disponível em: https://CRAN.R-project.org/package=Hmisc. HUETE, A. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, v. 25, p. 295-309, 1988. HUETE, A. et al. A comparison of vegetation indices over a global set of TM images for EOS- MODIS. Remote Sensing of Environment, v. 59, p. 440-451, 1997. HUETE, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, v. 83, p. 195–213, 2002. HUNT Jr., E. R. et al. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, v. 21, p. 103-112, 2013. JACQUEMOUD, S.; BARET, F. PROSPECT: A model of leaf optical properties spectra. Remote sensing of environment, v. 34, n. 2, p. 75-91, 1990. JETZ, W. et al. Monitoring plant functional diversity from space. Nature plants, v. 2, 2016. JORDAN, C.F. Derivation of leaf-area index from quality of light on the Forest floor. Ecology v. 50, n. 663, 1969. KASSAMBARA, A.; MUNDT, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. Versão 1.0.7. 2020. Disponível em: https://CRAN.R- project.org/package=factoextra. 50 KOTHARI, S.; SCHWEIGER, A. K. Plant spectra as integrative measures of plant phenotypes. Journal of Ecology. v. 110, p. 2536–2554, 2022. KUHN, M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software, v. 28, n. 5, p. 1–26, 2008. LALIBERTÉ, E.; LEGENDRE, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology, v. 91, p. 299–305, 2010. LALIBERTÉ, E.; LEGENDRE, P.; SHIPLEY, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. Versão 1.0-12.3. 2014. Disponível em: https://cran.r-project.org/package=FD. LAUGHLIN, D. C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letter, v. 17, n. 7, p. 771-784, 2014. LIMA, H. C. et al. Caracterização fisionômica-florística e mapeamento da vegetação da Reserva Biológica Poço das Antas, Silva Jardim, Rio de Janeiro, Brasil. Rodriguésia, v. 57, n. 3, p. 369-389, 2006. LOUREIRO, N. et al. Use of the trait-based approach in ecological restoration studies: a global review. Trees, v. 37, n. 5, p. 1287-1297, 2023. MA X. et al. Monitoring Plant Functional Diversity Using the Reflectance and Echo from Space. Remote Sensing, v. 12, n. 8, p.1248, 2020. MANHÃES, A. P. et al. Functional trajectory for the assessment of ecological restoration success. Restoration Ecology, v. 30, n. 8, 2022. MASON, N. WH. et al. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, v. 111, n. 1, p. 112-118, 2005. MCKENNA, P. B. et al. Measuring and monitoring restored ecosystems: can remote sensing be applied to the ecological recovery wheel to inform restoration success? Restoration Ecology, v. 31, n. 1, 2023. MERCHANT, T. K. et al. Four reasons why functional traits are not being used in restoration practice. Restoration Ecology, v. 31, n. 3, 2022. MORAES, L. F. D. et al. Plantio de espécies arbóreas nativas para a restauração ecológica na Reserva Biológica de Poço das Antas, Rio de Janeiro, Brasil. Rodriguesia, v. 57, n. 3, p. 477- 489, 2006. MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, 403, 853–858, 2000. OLLINGER, S. V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist, v. 189, n. 2, p. 375-394, 2011. 51 OSTERTAG, R. et al. Using plant functional traits to restore Hawaiian rainforest. Journal of Applied Ecology, v. 52, n. 4, p. 805-809, 2015. PANTALEÃO, L. C. et al. Linking plant functional traits to soil properties in tropical forest restoration. Forest Ecology and Management, v. 563, p. 121976, 2024. PEIXOTO, G. L. et al. (orgs). Plano de Manejo Integrado do Fogo da Reserva Biológica de Poço das Antas. MMA. ICMBio, 2022. PÉREZ-HARGUINDEGUY, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, v. 61, n. 34, p. 167234, 2013. PETCHEY, O. L.; GASTON, K. J. Functional diversity (FD), species richness and community composition. Ecology Letters, v. 5, n. 3, p. 402–411, 2002. PETCHEY, O. L.; GASTON, K. J. Functional diversity: back to basics and looking forward. Ecology Letters, v. 9, n. 6, p. 741– 758, 2006. PINON, T. B. M. et al. Biodiversity from the Sky: Testing the Spectral Variation Hypothesis in the Brazilian Atlantic Forest. Remote Sensing, v. 16, n. 23, p. 4363, 2024. PONTIUS, J., SCHABERG, P., HANAVAN, R. Remote Sensing for Early, Detailed, and Accurate Detection of Forest Disturbance and Decline for Protection of Biodiversity. In: J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.). Remote sensing of plant biodiversity. Springer, p. 121–154, 2020. QGIS.org. QGIS Geographic Information System. Open Source Geospatial Foundation Project, 2024. Disponível em: http://qgis.osgeo.org. Acesso em: 22 de junho de 2024. R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2024. Disponível em: https://www.R-project.org. RAO, C. R. Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, v. 21, p. 24-43, 1982. RESTREPO‐CARVAJAL, I. C. et al. Testing for priority effects of tree plantings on natural regeneration in restoration sites in the Brazilian Atlantic Forest. Applied Vegetation Science, v. 27, n. 1, 2024. REZENDE, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv., v. 16, p. 208–214. doi:10.1016/j.pecon.2018.10.002, 2018. RIBEIRO, M. C. et al. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv., v. 142, p. 1141-1153, doi: 10.1016/j.biocon.2009.02.021, 2009. ROBINSON, J. M. et al. Existing and emerging uses of drones in restoration ecology. Methods in Ecology and Evolution. v. 13, n. 9, p. 1899–1911, 2022. 52 ROUSE, J. W. et al. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ., p. 351, 309, 1974. SÁNCHEZ, E. et al. Nitrogen metabolism in roots and leaves of green bean plants exposed to different phosphorus doses. Phyton-International Journal of Experimental Botany, v. 78, 2009. SANDQUIST, D. R.; CORDELL, S. Functional diversity of carbon-gain, water-use, and leaf- allocation traits in trees of a threatened lowland dry forest in Hawaii. American Journal of Botany, n. 94, p. 1459–1469, 2007. SANSEVERO, J. B. B.; GARBIN, M. L. Restoration success of tropical forests: the search for indicators. In: LATAWIEC, A. E; AGOL, D. (Eds.). Sustainability Indicators. De Gruyter Open Ltd. Warsaw, Poland, 2015. SCARANO, F. R.; CEOTTO, P. Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodiversity and Conservation, v. 24, n. 9, p. 2319-2331, 2015. SCHIMEL, D. S.; ASNER, G. P.; MOORCROFT, P. Observing changing ecological diversity in the Anthropocene. Frontiers in Ecology and the Environment, v. 11, n. 3, p. 129-137, 2013. SCHWEIGER, A. K. et al. How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response. Methods Ecol. Evol., v. 8, p. 86-95, 2017. SCHWEIGER, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nature Ecology & Evolution. v. 2., p. 976-998, 2018. SERBIN, S. P.; TOWNSEND, P. A. Scaling functional traits from leaves to canopies. In: J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.). Remote sensing of plant biodiversity. Springer, p. 43–82, 2020. SHANNON, C. E.; WEAVER, W. The mathematical theory of communication. Urbana: University of Illinois Press, 1949. SOS Mata Atlântica; INPE. Atlas dos remanescentes florestais da Mata Atlântica: período 2020-2021. São Paulo, 2022. SOUZA, F. E. S.; RODRIGUES, J. I. J. Evaluation of Machine Learning Algorithms in the Classification of Multispectral Images from the Sentinel-2A/2B Orbital Sensor for Mapping the Environmental Dynamics of Ria Formosa (Algarve, Portugal). ISPRS International Journal of Geo-Information, v. 12, n. 9, p. 361, 2023. SUDING, K.N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol., v. 14, p. 1125–1140, 2008. 53 TUCKER, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, v. 8, n. 2, p. 127-150, 1979. USTIN, S. L.; JACQUEMOUD, S. How the Optical Properties of Leaves Modify the Absorption and Scattering of Energy and Enhance Leaf Functionality. In: J. Cavender-Bares, J. A. Gamon, & P. A. Townsend (Eds.). Remote sensing of plant biodiversity. Springer, p. 349– 384, 2020. VILLÉGER, S.; MASON, N. WH.; MOUILLOT, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, v. 89, n. 8, p. 2290-2301, 2008. VIOLLE, C. et al. Let the concept of trait be functional! Oikos, v. 116, p. 882-892, 2007. WANG, R.; GAMON, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, v. 231, 2019. WANG, X. et al. Extraction of vegetation information from visible unmanned aerial vehicle images. Nongye Gongcheng Xuebao / Transactions of the Chinese Society of Agricultural Engineering, v. 31, n. 5, p. 152–159, 2015. WICKHAM, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, 2016. WOEBBECKE, D. M. et al. Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE, v. 38, n. 1, p. 259-269, 1995. YANG, C. et al. Airborne hyperspectral imagery and yield monitor data for mapping cotton yield variability. Precis. Agric., v. 5, p. 445-461, 2004. ZEILEIS, A.; HOTHORN, T. Diagnostic Checking in Regression Relationships. R News, v. 2, n. 3, p. 7-10, 2002. Disponível em: https://CRAN.R-project.org/doc/Rnews/. ZHANG, W. et al. The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize. Field Crops Research, v. 219, p. 113-119, 2018. | pt_BR |
| dc.subject.cnpq | Recursos Florestais e Engenharia Florestal | pt_BR |
| Appears in Collections: | Mestrado em Ciências Ambientais e Florestais | |
Se for cadastrado no RIMA, poderá receber informações por email.
Se ainda não tem uma conta, cadastre-se aqui!
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 2025 - Júlia Ayres de Oliveira.pdf | 6.2 MB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
